Loading [MathJax]/jax/output/SVG/jax.js
Research article

On generalized inverse sum indeg index and energy of graphs

  • Received: 13 October 2019 Accepted: 20 January 2020 Published: 04 March 2020
  • MSC : 05C07, 05C35, 05C50

  • Topological indices are used to predict certain phsio-chemical properties of the chemical compounds. Among all indices, degree based indices are of vital importance. In this paper, we introduce generalized inverse sum indeg index and generalized inverse sum indeg energy of graphs. We study the generalized inverse sum indeg index and energy from an algebraic point of view. Extremal values of this index for some graph classes are determined. Some spectral properties of generalized inverse sum indeg matrix are studied. We also find Nordhaus-Gaddum-type results for generalized inverse sum indeg index spectral radius and energy.

    Citation: Sumaira Hafeez, Rashid Farooq. On generalized inverse sum indeg index and energy of graphs[J]. AIMS Mathematics, 2020, 5(3): 2388-2411. doi: 10.3934/math.2020158

    Related Papers:

    [1] Xiuwen Wang, Maoqun Wang . Sombor index of uniform hypergraphs. AIMS Mathematics, 2024, 9(11): 30174-30185. doi: 10.3934/math.20241457
    [2] Yufei Huang, Hechao Liu . Bounds of modified Sombor index, spectral radius and energy. AIMS Mathematics, 2021, 6(10): 11263-11274. doi: 10.3934/math.2021653
    [3] Juan C. Hernández, José M. Rodríguez, O. Rosario, José M. Sigarreta . Extremal problems on the general Sombor index of a graph. AIMS Mathematics, 2022, 7(5): 8330-8343. doi: 10.3934/math.2022464
    [4] Swathi Shetty, B. R. Rakshith, N. V. Sayinath Udupa . Extremal graphs and bounds for general Gutman index. AIMS Mathematics, 2024, 9(11): 30454-30471. doi: 10.3934/math.20241470
    [5] Zhen Lin, Ting Zhou, Xiaojing Wang, Lianying Miao . The general Albertson irregularity index of graphs. AIMS Mathematics, 2022, 7(1): 25-38. doi: 10.3934/math.2022002
    [6] Hicham Saber, Zahid Raza, Abdulaziz M. Alanazi, Adel A. Attiya, Akbar Ali . On trees with a given number of segments and their maximum general $ Z $-type index. AIMS Mathematics, 2025, 10(1): 195-207. doi: 10.3934/math.2025010
    [7] Muhammad Kamran Jamil, Muhammad Imran, Aisha Javed, Roslan Hasni . On the first general Zagreb eccentricity index. AIMS Mathematics, 2021, 6(1): 532-542. doi: 10.3934/math.2021032
    [8] Hongzhuan Wang, Xianhao Shi, Ber-Lin Yu . On the eccentric connectivity coindex in graphs. AIMS Mathematics, 2022, 7(1): 651-666. doi: 10.3934/math.2022041
    [9] Chang Liu, Jianping Li . Sharp bounds on the zeroth-order general Randić index of trees in terms of domination number. AIMS Mathematics, 2022, 7(2): 2529-2542. doi: 10.3934/math.2022142
    [10] Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz . On the Gutman-Milovanović index and chemical applications. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094
  • Topological indices are used to predict certain phsio-chemical properties of the chemical compounds. Among all indices, degree based indices are of vital importance. In this paper, we introduce generalized inverse sum indeg index and generalized inverse sum indeg energy of graphs. We study the generalized inverse sum indeg index and energy from an algebraic point of view. Extremal values of this index for some graph classes are determined. Some spectral properties of generalized inverse sum indeg matrix are studied. We also find Nordhaus-Gaddum-type results for generalized inverse sum indeg index spectral radius and energy.


    Let G be a graph with vertex set V(G) and edge set E(G). The number of neighbours of a vertex w in G is called the degree of w, denoted by dG(w). If vertices w and z are connected by an edge, we denote it by wz. The order n(G) of a graph G is given by n(G)=|V(G)|. The size e(G) of a graph G is defined by e(G)=|E(G)|. For any wV(G), NG(w) is the set of all vertices adjacent to w in graph G. The graph G{w} is a graph formed from G by removing the vertex w of G and all edges incident with w. The largest (smallest) degree of G is the largest (smallest) vertex degree in G, represented as ΔG(δG). A graph of order n(G), size e(z), maximum degree ΔG and minimum degree δG is denoted by G(n(G),e(G),ΔG,δG) and a graph of order n and size m is denoted by Gmn. Throughout this paper, we consider simple and connected graphs.

    A star graph Sn on n vertices is a tree consisting of a central vertex adjacent to n1 pendant vertices. An n-vertex cycle Cn (n3) is a graph with V(Cn)={v1,,vn} and E(Cn)={vjvj+1|j=1,2,,n1}{vnv1}. A simple graph of order n in which every vertex is joined by an edge to other n1 vertices is said to be a complete graph represented by Kn. If we can split V(G) of G into two disjoint sets X1 and X2 with the property that no two vertices of the same set are adjacent is called a bipartite graph. A complete bipartite graph Km,n is a bipartite graph with |X1|=m, |X2|=n and each vertex in X1 is adjacent to eaxh vertex in X2.

    A topological index TI(G) of a graph G is a molecular descriptor which is a conversion of a molecular structure into some real number. In theoretical chemistry, many of the molecular descriptors are considered and have found applications, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].

    A degree based topological index of a graph G can be represented as

    TI(G)=wzE(G)F(dG(w),dG(z)),

    where F is a function with the property F(x,y)=F(y,x).

    The inverse sum indeg (henceforth, ISI) index of a graph G was introduced by Vukičević and Gašperov [19] and defined as

    ISI(G)=wzE(G)dG(w)dG(z)dG(w)+dG(z).

    In this paper, we introduce generalized inverse sum indeg (henceforth, ISI) index and generalized ISI energy of graphs. Our strong motivation to define generalized ISI index and energy is that a lot of the degree based topological indices and energies are derived from it by giving the specific values to the parameters α,β. We now define generalized inverse sum indeg index as

    Sα,β(G)=wzE(G)(dG(w)dG(z))α(dG(w)+dG(z))β, (1.1)

    where α and β are real numbers.

    The adjacency matrix A(G)=[aij]n×n of an n-vertex graph G is defined as

    aij={1if vivjE(G),0otherwise.

    The A-characteristic polynomial of G is the polynomial of the form:

    Φ(G,λ)=det(A(G)λIn)=λn+ni=1aiλni,

    where In is the identity matrix of order n. The A-eigenvalues of G are the A-eigenvalues of A(G).

    Let λ1,,λn be the A-eigenvalues of a graph G. Gutman [20] defined the energy of G as

    E(G)=ni=1|λi|.

    Zangi et al. [21] defined the ISI matrix S(G)=[sij]n×n of an n-vertex graph G as:

    sij={dG(vi)dG(vj)dG(vi)+dG(vj)if vivjE(G),0otherwise.

    The S-characteristic polynomial of G is given by:

    ΦS(G,ρ)=det(S(G)ρIn)=ρn+ni=1biρni.

    The S-eigenvalues of G are the S-eigenvalues of S(G).

    Let ρ1,,ρn be the S-eigenvalues of G. Zangi et al. [21] defined the ISI energy of G as

    EISI(G)=ni=1|ρi|.

    We can now define a generalized ISI matrix Aα,β(G)=[bij]n×n of an n-vertex graph G as

    bij={(dG(vi)dG(vj))α(dG(vi)+dG(vj))βif vivjE(G),0otherwise.

    The Aα,β-characteristic polynomial of G is given by:

    ψ(G,σ)=det(Aα,β(G)σIn)=σn+ni=1ciσni.

    The Aα,β-eigenvalues of G are the Aα,β-eigenvalues of Aα,β(G).

    Let σ1,,σn be the Aα,β-eigenvalues of G. Then we define the generalized ISI energy of graph G as

    Eα,β(G)=ni=1|σi|. (1.2)

    We list here some of the degree based indices and energies of a graph G that can be obtained from the generalized ISI index and energy by only giving specific values to the parameters α,β.

    1. If α=0 and β=1, then Sα,β(G)=M1(G) is the first Zagreb index [3] and matrix A0,1(G) is the first Zagreb matrix [12]. The energy corresponding to A0,1(G) is the first Zagreb energy ZE1(G) also introduced in [12]. Note that ZE1(G)=E0,1(G).

    2. If α=0 and β=1/2, then Sα,β(G)=SCI(G) is the sum-connectivity index [22] and matrix A0,1/2(G) is the sum-connectivity matrix [23]. The energy corresponding to A0,1/2(G) is the sum-connectivity energy SE(G), introduced in [23]. It is easy to see that SE(G)=E0,1/2(G).

    3. If α=0 and β=α then Sα,β(G)=χα(G) is the general sum connectivity index [11] and matrix A0,α(G) is the general sum-connectivity matrix [24]. The energy corresponding to A0,α(G) is the general sum-connectivity energy GSE(G), defined in [24]. See that GSE(G)=E0,α(G).

    4. If α=1 and β=0 then Sα,β(G)=M2(G) is the second Zagreb index [11] and matrix A1,0(G) is the second Zagreb matrix [12]. The energy corresponding to A1,0(G) is the second Zagreb energy ZE2(G), introduced in [12]. Note ZE2(G)=E1,0(G).

    5. If α=1/2 and β=0 then Sα,β(G)=R(G) is the Randić index [13] and matrix A1/2,0(G) is the Randić matrix. The energy corresponding to A1/2,0(G) is the Randić energy RE(G), defined in [25,26]. See that RE(G)=E1/2,0(G).

    6. If β=0 then Sα,β(G)=Rα(G) is the generalized form of Randić index (also known as general product-connectivity index) [27] and matrix Aα,0(G) is the general Randić matrix. The energy corresponding to Aα,0(G) is the general Randić energy RαE(G), introduced in [28]. It is easy to see that RαE(G)=Eα,0(G).

    7. If α=1/2 and β=1 then 2Sα,β(G)=GA(G) is the geometric-arithmetic index [14] and matrix A1/2,1(G) is the geometric-arithmetic matrix. The energy corresponding to A1/2,1(G) is the geometric-arithmetic energy GAE(G), defined in [15]. Note that GAE(G)=2E1/2,1(G).

    8. If α=1 and β=1 then Sα,β(G)=ISI(G) is the inverse sum indeg index [19] and matrix A1,1(G) is the inverse sum indeg matrix. The energy corresponding to A1,1(G) is the inverse sum indeg energy ISIE(G) introduced in [21]. See that ISIE(G)=E1,1(G).

    For study of more degree-based topological indices, see [29] and references therein.

    In this paper, we study the generalized inverse sum indeg index and energy from an algebraic point of view. Extremal values of this index for some graph classes are determined. Some spectral properties of generalized inverse sum indeg matrix are studied. We also find Nordhaus-Gaddum-type results for generalized inverse sum indeg index spectral radius and energy.

    Under certain conditions, we now determine the monotonicity of the generalized ISI index of a graph G when new edges are added in the graph.

    Lemma 2.1. Let w and z be two non-adjacent vertices of a graph G. Also let G+wz is the graph formed from G by joining w and z by an edge wz. If α,βR with α0 and αβ, then Sα,β(G+wz)>Sα,β(G).

    Proof. If α,βR with α0 and αβ, then for any real numbers x,y1, we have (1+1x)α(1+1x+y)β. This implies (x+1)α(x+y+1)βxα(x+y)β. Hence ((x+1)y)α(x+y+1)β(xy)α(x+y)β.

    Let NG(w)={w1,,wr} and NG(z)={z1,,zt}. Then

    Sα,β(G+wz)Sα,β(G)=[((dG(w)+1)(dG(z)+1))α(dG(w)+dG(z)+2)β]+ri=1[((dG(w)+1)d(G(wi)))α(dG(w)+dG(wi)+1)β(dG(w)dG(wi))α(dG(w)+(dG(wi))β]+tj=1[((dG(z)+1)dG(zj))α(dG(z)+dG(zj)+1)β(dG(z)dG(zj))α(dG(z)+(dG(zj))β]>0,

    where [((dG(w)+1)(dG(z)+1))α(dG(w)+dG(z)+2)β]>0. Therefore Sα,β(G+wz)>Sα,β(G).

    Two simple graphs G1 and G2 are said to be isomorphic if there exists a bijection ϕ:V(G1)V(G2) such that uvE(G1) if and only if ϕ(u)ϕ(v)E(G2). We write G1G2 if G1 and G2 are isomorphic.

    Next corollary is obtained from Lemma 2.1.

    Corollary 2.2. Let α,βR with α0 and αβ. Suppose T is a spanning tree of graph G with n(G)=n and GT. Then Sα,β(G)>Sα,β(T).

    Next theorem relates Sα,β(G) with χβ(G).

    Theorem 2.3. Suppose G=G(n,m,ΔG,δG) is a graph.

    (1). If α0, then Sα,β(G)m2δ2αGχβ(G).

    (2). If α0, then Sα,β(G)m2Δ2αGχβ(G).

    In both cases, the inequality becomes equality if G is a regular graph.

    Proof. (1). By Arithmetic mean-Harmonic mean inequality, we have

    mSα,β(G)=mwzE(G)(dG(w)dG(z))α(dG(w)+dG(z))β1mwzE(G)(dG(w)+dG(z))β(dG(w)dG(z))α.

    Now if α0, then (dG(w)dG(z))αδ2αG. Therefore

    1mwzE(G)(dG(w)+dG(z))β(dG(w)dG(z))α1mwzE(G)(dG(w)+dG(z))βδ2αG=χβ(G)mδ2αG.

    Hence Sα,β(G)m2δ2αGχβ(G). Now the above inequality becomes equality if and only if for every wzE(G), (dG(w)dG(z))α(dG(w)+dG(z))β=b2αβ2β, where b is some positive constant. This is possible if and only if G is a b-regular graph.

    Similarly one can prove (2). Now we give relationship between Sα,β(G) and Rα(G).

    Theorem 2.4. Suppose G=G(n,m,ΔG,δG) is a graph.

    (1). If β0, then Rα(G)2βΔβGSα,β(G)Rα(G)2βδβG.

    (2). If β0, then Rα(G)2βδβGSα,β(G)Rα(G)2βΔβG.

    In both cases, the inequality becomes equality if G is a regular graph.

    Proof. (1). If β0, then (dG(w)+dG(z))β(2ΔG)β and (dG(w)+dG(z))β(2δG)β. Hence

    Sα,β(G)=wzE(G)(dG(w)dG(z))α(dG(w)+dG(z))βwzE(G)(dG(w)dG(z))α2βΔβG=Rα(G)2βΔβG.Sα,β(G)=wzE(G)(dG(w)dG(z))α(dG(w)+dG(z))βwzE(G)(dG(w)dG(z))α2βδβG=Rα(G)2βδβG.

    Clearly the equality holds if and only if G is a regular graph.

    Part (2) can be proved analogously. By direct computation, we obtain the following results.

    Theorem 2.5. Suppose G1,G2,,Gr are components of a graph G. Then Eα,β(G)=rj=1Eα,β(Gj).

    Theorem 2.6. Suppose G is an n-vertex and k-regular graph. Then Eα,β(G)=k2α2βkβE(G).

    Theorem 2.7. Eα,β(Km,n)=2(mn)12+α(m+n)β.

    Proof. Since Aα,β(Km,n)=(mn)α(m+n)βA(Km,n), we have Eα,β(Km,n)=(mn)α(m+n)βE(Km,n)=2(mn)12+α(m+n)β. Using Theorem 2.6, we get the following two results.

    Theorem 2.8. Eα,β(Cn)=4αβE(Cn).

    Theorem 2.9. Eα,β(Kn)=21β(n1)2αβ+1.

    In this section, we find extremal values of graphs and bounds with respect to generalized ISI index in some graph classes.

    Theorem 3.1. Suppose T is a tree with n(T)=n. If α=β and 0α1, then

    Sα,β(T)(n1)(n1)αnα,

    where the inequality becomes equality if TSn.

    Proof. We prove the result by induction on n.

    For n=1,2,3, the only tree is the star graph Sn. So the statement follows trivially for n3. Now assume that the statement holds true for n4.

    Suppose T is a tree with n(T)=n. Let vw be a pendent edge of T with dT(w)=1 and dT(v)=t. As n4, we have 2tn. Further, since T is not isomorphic to a star, we have that there exists at least one neighbor u of v in T with dT(u)2. Let NT(v){w,u}={v1,,vt2}.

    Let ˜T=Tw. Then n(˜T)=n1. Now

    Sα,β(T)Sα,β(˜T)=(tt+1)α+[(dT(u)tdT(u)+t)α(dT(u)(t1)dT(u)+t1)α]+t2i=1[(dT(vi)tdT(vi)+t)α(dT(vi)(t1)dT(vi)+t1)α].

    Let y>0 and define

    g(y)=(yty+t)α(y(t1)y+t1)α.

    Then

    g(y)=αyα1[(ty+t)α+1(t1y+t1)α+1]=αyα1[(yt+t2t)α+1(yt+t2ty)α+1(y+t)α+1(y+t1)α+1].

    As t2, 0α1 and y>0, we have (y+t)α+1>0 and (y+t1)α+1>0. Also (yt+t2t)>(yt+t2ty). Therefore (yt+t2t)α+1>(yt+t2ty)α+1. Hence g(y)>0 and thus g(y) is strictly increasing for y>0. Also 2α>1 for 0α1, dT(vi)1 and dT(u)2, we have

    Sα,β(T)Sα,β(˜T)(tt+1)α+[(2t2+t)α(2(t1)t+1)α]+t1i=1[(tt+1)α(t1t)α](tt+1)α+[(2t2+t)α(2(t1)t+1)α]>(tt+1)α+2α(t2+t)α>(tt+2)α+2α(tt+2)α=(tt+2)α(1+2α)>2(tt+2)α.

    Since t2, we have

    Sα,β(T)Sα,β(˜T)>2(tt+2)α>1(n1)(n1)αnα(n2)(n2)α(n1)α=Sα,β(Sn)Sα,β(Sn1)

    Therefore by induction hypothesis Sα,β(T)Sα,β(Sn)>Sα,β(˜T)Sα,β(Sn1)0. This concludes the proof by induction and clearly equality holds if TSn.

    Next theorem gives the minimal graph with respect to generalized ISI index in class of all connected graphs with smallest degree 2.

    Theorem 3.2. Among all connected graphs Gmn with smallest degree 2, we have

    (1). If α0 and β0, then Sα,β(Gmn)m4αβ.

    (2). If α=β0, then Sα,β(Gmn)m.

    In both cases, the inequality becomes equality for GmnCn.

    Proof. (1). If α0 and β0, then for any w,zV(Gmn), we have (dGmn(w)dGmn(z))α4α and (dGmn(w)+dGmn(z))β4β. Therefore

    Sα,β(Gmn)=wzE(Gmn)(dGmn(w)dGmn(z))α(dGmn(w)+dGmn(z))βm4αβ.

    Now Sα,β(Gmn)=m4αβ if and only if dGmn(w)=dGmn(v)=2 for every edge wzE(Gmn). Therefore the inequality becomes equality for GmnCn.

    (2). Since δGmn=2, therefore (dGmn(w)dGmn(z))(dGmn(w)+dGmn(z)). Hence

    Sα,β(Gmn)=wzE(Gmn)(dGmn(w)dGmn(z))α(dGmn(w)+dGmn(z))βm.

    Similar to the proof of Part (1), the inequality becomes equality for GmnCn.

    Any subset of pairwise non-adjacent vertices of a graph G is called an independent set of a graph G. The maximum size of an independent set of a graph G is called the independence number of G. The join GH of two graphs G and H is formed by making every vertex of G adjacent to every vertex of H.

    The proof of next theorem is similar to the proof of Theorem 3.2 [30] and thus omitted.

    Theorem 3.3. Let α0 is a real number and αβ when βR. Also let n4 and G be a connected graph with n(G)=n4 and independence number ξ. Then

    Sα,β(G)(nξ)(nξ1)(n1)2αβ2β+1+ξ(nξ)((nξ)(n1))α(2nξ1)β,

    where the inequality becomes equality when G¯KξKnξ.

    In this section, we give lower and upper bounds on spectral radius and spread of graphs with respect to generalized ISI matrix. For any complex n×n matrix M with eigenvalues μ1,,μn, the spread s(M) of M is introduced in [10] and is defined as s(M)=maxi,j|μiμj|.

    Let σ1σn be the Aα,β-eigenvalues of a simple graph G. Then spread Aα,β(G) is defined as s(Aα,β(G))=σ1σn, since the eigenvalues σ1,,σn are all real.

    For convenience, we define some notations. We denote determinant of Aα,β(G) by det(Aα,β(G)). Let

    Q=1i<jn(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β,Ω=det(Aα,β(G)).

    We first give some lemmas that are used to prove our main results. The proof is straight forward.

    Lemma 4.1. Let G be an n-vertex graph and σ1,,σn be its Aα,β-eigenvalues. Then

    (1). ni=1σi=0,

    (2). ni=1σ2i=2Q.

    Lemma 4.2 (Horn and Johnson [5]). Let A1=[aij]n×n and A2=[bij]n×n be n×n symmetric and non-negative matrices. If A1A2, that is, aijbij for all i,j=1,,n, then η1(A1)η1(A2), where η1(Ak), k=1,2 is the largest eigenvalue of the respective matrix.

    Theorem 4.3 (Hong [6]). Let Gmn be a connected graph with A-eigenvalues λ1λn. Then

    λ12mn+1,

    where the equality holds if and only if GmnSn or GmnKn.

    Theorem 4.4 (Cao [31]). Let G=G(n,m,ΔG,δG) be a graph with A-eigenvalues λ1λn and δG1. Then

    λ12mδG(n1)+(δG1)ΔG.

    Lemma 4.5 (Zhang [32]). If C is a symmetric matrix of order n with eigenvalues η1ηn, then for any yRn with y0,

    yTCyη1yTy,

    where yT is the transpose of y. Equality holds if and only if y is an eigenvector of C corresponding to the eigenvalue η1.

    Now we give bounds on largest Aα,β-eigenvalue of a graph.

    Theorem 4.6. Let n2. Also let G=G(n,m,ΔG,δG) be a connected graph with Aα,β-eigenvalues σ1σn and α,βR.

    (1). If α,β0 then

    Rα(G)n2βΔβGσ1(n1)2α2mn+12β.

    (2). If α,β0 then

    Rα(G)n2βδβGσ12mn+12β(n1)β.

    (3). If α0 and β0 then

    Rα(G)n2βδβGσ1(n1)2αβ2mn+12β.

    (4). If α0 and β0 then

    Rα(G)n2βΔβGσ12mn+12β.

    Proof. (1). Let yRn such that y=(y1,y2,,yn)T. Then

    yTAα,β(G)y=vivjE(G)(dG(vi)dG(vj))α(dG(vi)+dG(vj))βyiyjvivjE(G)(dG(vi)dG(vj))α2βΔβGyiyj.

    Taking y=(1n,1n,,1n)T, we get 12βΔβGvivjE(G)(dG(vi)dG(vj))αyiyj=Rα(G)n2βΔβG. Therefore by Lemma 4.5, σ1Rα(G)n2βΔβG.

    Now for any vertex viV(G), i=1,,n, we have 1δGdG(vi)ΔG(n1). Therefore

    (dG(vi)dG(vi))α(dG(vj)+dG(vj))βΔ2αG2βδβG(n1)2α2β.

    If η1 is the spectral radius of a matrix (n1)2α2βA(G), then by Lemma 4.2 and Theorem 4.3, we obtain

    σ1η1=(n1)2αλ12β(n1)2α2mn+12β,

    where λ1 is the spectral radius of A(H).

    (2). Let yRn such that y=(y1,y2,,yn)T. Then

    yTAα,β(G)y=vivjE(G)(dG(vi)dG(vj))α(dG(vi)+dG(vj))βyiyjvivjE(G)(dG(vi)dG(vj))α2βδβGyiyj.

    Taking y=(1n,1n,,1n)T, we get 12βδβGvivjE(G)(dG(vi)dG(vj))αyiyj=Rα(G)n2βδβG. Therefore by Lemma 4.5, σ1Rα(G)n2βδβG.

    Now for any vertex viV(G), i=1,,n, we have 1δGdG(vi)ΔG(n1). Since α,β0, therefore δ2αG1 and ΔβG(n1)β. Now

    (dG(vi)dG(vj))α(dG(vi)+dG(vj))βδ2αG2βΔβG12β(n1)β.

    If η1 is the spectral radius of a matrix 12β(n1)βA(G), then by Lemma 4.2 and Theorem 4.3, we obtain

    σ1η1=λ12β(n1)β2mn+12β(n1)β,

    where λ1 is the spectral radius of A(G).

    Parts (3) and (4) can be proved analogously.

    Next theorem gives bounds on the smallest Aα,β-eigenvalue of a graph.

    Theorem 4.7. Let G=G(n,m,ΔG,δG) be a graph with Aα,β-eigenvalues σ1σn. Then

    2Q+(n1)(n2)Ω2/n12σn2(n1)Qn,

    where α,βR.

    Proof. By Part (1) of Lemma 4.1, we get

    σ2n=(n1i=1σi)2=n1i=1σ2i+21i<jn1σiσj.

    Since arithmetic mean is always greater than geometric mean, therefore

    2(n1)(n2)1i<jn1σiσj(σn21σn22σn2n)2/(n1)(n2)=(det(Aα,β(G)))2/n1=Ω2/n1.

    Hence σ2n(2Qσ2n)+(n1)(n2)Ω2/n1 and σn2Q+(n1)(n2)Ω2/n12.

    Again using Part (1) of Lemma 4.1 and Cauchy-Schwartz inequality, we have

    σ2n(n1)n1i=1σ2i=(n1)(2Qσ2n).

    Hence σn2(n1)Qn.

    In the following theorem, we give bounds on spread of the generalized ISI matrix of a graph.

    Theorem 4.8. Let G=G(n,m,ΔG,δG) be a connected graph with Aα,β-eigenvalues σ1σn. Then

    (1). If α,β0 then

    s(Aα,β(G))Rα(G)n2βΔβG(n1)2α2β2m(n1)n,s(Aα,β(G))(n1)2α2mn+12β2m+22β(n1)2β+1(n2)Ω2/n1212+β(n1)β.

    (2). If α,β0 then

    s(Aα,β(G))Rα(G)n2βδβG12β(n1)β2m(n1)n,s(Aα,β(G)2mn+12β(n1)β2m(n1)4α+22β(n1)(n2)Ω2/n1212+β.

    (3). If α0 and β0 then

    s(Aα,β(G))Rα(G)n2βδβG(n1)2αβ2β2m(n1)n,s(Aα,β(G))(n1)2αβ2mn+12β2m+22β(n1)(n2)Ω2/n1212+β.

    (4). If α0 and β0 then

    s(Aα,β(G))Rα(G)n2βΔβG12β2m(n1)n,s(Aα,β(G))2mn+12β2m(n1)4α+22β(n1)1+2β(n2)Ω2/n1212+β(n1)β.

    Proof. (1). We have 1δGdG(vi)ΔG(n1) for any vertex viV(G), i=1,,n. Therefore

    2Q=21i<jn(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β21i<jnδ4αG22βΔ2βGm212β(n1)2β. (4.1)

    Also

    2Q=21i<jn(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β21i<jnΔ4αG22βδ2βGm212β(n1)4α. (4.2)

    Hence using Theorem 4.6, Theorem 4.7 and Equations (4.1) and (4.2), we get

    s(Aα,β(G))=σ1σn(n1)2α2mn+12β2Q+(n1)(n2)Ω2/n12(n1)2α2mn+12β122m(2(n1))2β+(n1)(n2)Ω2/n1=(n1)2α2mn+12β2m+22β(n1)2β+1(n2)Ω2/n1212+β(n1)β.

    Also

    s(Aα,β(G))=σ1σnRα(G)n2βΔβG2(n1)QnRα(G)n2βΔβG(n1)2α2β2m(n1)n.

    (2). We have 1δGdG(vi)ΔG(n1) for any vertex viV(G), i=1,,n. Since α,β0, therefore ΔαG(n1)α and δβG1. Now

    2Q=21i<jn(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β21i<jnΔ4αG22βδ2βGm212β(n1)4α. (4.3)

    Also

    2Q=21i<jn(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β21i<jnδ4αG22βΔ2βG=m212β(n1)2β. (4.4)

    Hence using Theorem 4.6, Theorem 4.7 and Equations (4.3) and (4.4), we get

    s(Aα,β(G))=σ1σn2mn+12β(n1)β2Q+(n1)(n2)Ω2/n122mn+12β(n1)β122m(n1)4α22β+(n1)(n2)Ω2/n1=2mn+12β(n1)β2m(n1)4α+22β(n1)(n2)Ω2/n1212+β.

    Also

    s(Aα,β(G))=σ1σnRα(G)n2βδβG2(n1)QnRα(G)n2βδβG12β(n1)β2m(n1)n.

    Similarly, one can prove Parts (3) and (4). The proof is complete.

    In this section, we give some bounds for the generalized ISI energy of graphs. We would like to mention that the idea of proof of next theorem is taken from the proof of Theorem 13 [8].

    Theorem 5.1. Let G=G(n,m,ΔG,δG) be a connected graph having Aα,β-eigenvalues σ1σn and α,βR.

    (1). If α,β0 then

    21βRα(G)n(n1)βEα,β(G)(n1)2α2β2nm.

    (2). If α,β0 then

    21βRα(G)nEα,β(G)12β(n1)β2nm.

    (3). If α0 and β0 then

    21βRα(G)nEα,β(G)(n1)2αβ2β2nm.

    (4). If α0 and β0 then

    21βRα(G)n(n1)βEα,β(G)12β2nm.

    Proof. (1). With no loss of generality, suppose that σ1,,σt are positive and σt+1,,σn are negative. Using Theorem 4.6, we get

    Eα,β(G)=ni=1|σi|=2ti=1σi2σ12Rα(G)n2βΔβG21βRα(G)n(n1)β.

    Now applying Cauchy-Schwartz inequality, Part (2) of Lemma 4.1 and Equation (4.2), we have

    Eα,β(G)=ni=1|σi|nni=1σ2i=2nQ2nm(n1)4α22β=(n1)2α2β2nm.

    (2). With no loss of generality, suppose that σ1,,σt are positive and σt+1,,σn are negative. Since α,β0 therefore δβG1. Now using Theorem 4.6 (2), we get

    Eα,β(G)=ni=1|σi|=2ti=1σi2σ12Rα(G)n2βδβG21βRα(G)n.

    Now applying Cauchy-Schwartz inequality, Part (2) of Lemma 4.1 and Equation (4.4), we have

    Eα,β(G)=ni=1|σi|nni=1σ2i=2nQ2nm(n1)2β22β=12β(n1)β2nm.

    One can prove Parts (3) and (4) in a similar manner. The result is proved.

    Theorem 5.2. Let G=G(n,m,ΔG,δG) be a connected graph with Aα,β-eigenvalues σ1σn. Then

    (1). If α,β0 then

    21βm(n1)βEα,β(G)(n1)2α2β[2mn+1+2m(n1)Rα2(G)(n1)12β4αn2].

    (2). If α,β0 then

    21β(n1)2αmEα,β(G)12β(n1)β[2mn+1+2m(n1)Rα2(G)(n1)1+2βn2δ2βG].

    (3). If α0 and β0 then

    21βmEα,β(G)(n1)2αβ2β[2mn+1+2m(n1)Rα2(G)(n1)1+2β4αn2δ2βG].

    (4). If α0 and β0 then

    21β(n1)2αβmEα,β(G)12β[2mn+1+2m(n1)Rα2(G)(n1)n2Δ2βG].

    Proof. (1). By Part (1) of Lemma 4.1, we have ni=1σ2i=21i<jnσiσj. Using Part (2) of Lemma 4.1, we obtain

    (Eα,β(G))2=(ni=1|σi|)2=ni=1σ2i+21i<jn|σiσj|2Q+2|1i<jnσiσj|=4Q.

    Now

    4Q=41i<jn(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β1i<jn4δ4αG22βΔ2βGm222β(n1)2β.

    Hence Eα,β(G)21βm(n1)β.

    To prove inequality on the right side, we apply Cauchy-Schwartz inequality to obtain (ni=2|σi|)2(n1)ni=2σ2i. Therefore using Part (2) of Lemma 4.1, (Eα,β(G)σ1)2(n1)(2Qσ21). Hence by Theorem 4.6 (1), we get

    Eα,β(G)σ1+(n1)(2Qσ21)(n1)2α2mn+12β+(n1)[m212β(n1)4αRα2(G)n222β(n1)2β]=(n1)2α2β[2mn+1+2m(n1)Rα2(G)(n1)12β4αn2].

    (2). Using Eq (4.3), we get

    4Q=2(2Q)222βm(n1)4α.

    Hence Eα,β(G)21β(n1)2αm.

    Now using Theorem 4.6 (2) and Eq (4.4), we get

    Eα,β(G)σ1+(n1)(2Qσ21)2mn+12β(n1)β+(n1)[m212β(n1)2βRα2(G)n222βδ2βG]=12β(n1)β[2mn+1+2m(n1)Rα2(G)(n1)1+2βn2δ2βG].

    This gives the required result.

    Analogously, one can prove Parts (3) and (4).

    The compliment of a simple graph G is a graph represented by ¯G with the property that V(G)=V(¯G) and wzE(G) if and only if wzE(¯G). Therefore n(G)=n(¯G), e(¯G)=n2(G)n(G)2e(G), Δ¯G=n(G)1δG and δ¯G=n(G)1ΔG. The Aα,β-eigenvalues of ¯G are ¯σi, i=1,2,,n. A maximal connected subetaaph of G is called a connected component of G.

    We first present bounds on σ1+¯σ1.

    Theorem 6.1. Let G=G(n,m,ΔG,δG) be a connected graph and α,βR.

    (1). If β0 then

    σ1+¯σ11n2β[Rα(G)(n1)β+Rα(¯G)(n1δG)β].

    (2). If β0 then

    σ1+¯σ11n2β[Rα(G)δβG+Rα(¯G)(n1G)β].

    Proof. (1). Let yRn such that y=(y1,y2,,yn)T. Then

    yT[Aα,β(G)+Aα,β(¯G)]y=vivjE(G)(dG(vi)dG(vj))α(dG(vi)+dG(vj))βyiyj+vivjE(¯G)(d¯G(vi)d¯G(vj))α(d¯G(vi)+d¯G(vj))βyiyjvivjE(G)(dG(vi)dG(vj))α2βΔβGyiyj+vivjE(¯G)(d¯G(vi)d¯G(vj))α2βΔβ¯Gyiyj.

    Since Δ¯G=n1δG and ΔGn1 therefore taking y=(1n,1n,,1n)T and using Lemma 4.5, we obtain

    σ1+¯σ11n2β[Rα(G)(n1)β+Rα(¯G)(n1δG)β].

    Part (2) can be proved similarly.

    Theorem 6.2. Let G=G(n,m,δG,ΔG) be a connected graph and G1 is a connected component of ¯G with ¯σ1=σ1(G1).

    (1). Let α,β0.

    (a). If ΔG=n1 or Δ¯G=n1, then

    σ1+¯σ112β[(n1)2α2mn+1+(n(G1)1)2α2e(G1)n(G1)+1],

    (b). If ΔGn2 and Δ¯Gn2, then

    σ1+¯σ1(n2)2α2β[2mn+1+(n22n2m+1)+δG(2+ΔGn)].

    (2) Let α,β0.

    (a). If ΔG=n1 or Δ¯G=n1, then

    σ1+¯σ112β[2mn+1(n1)β+2e(G1)n(G1)+1(n(G1)1)β],

    (b). If ΔGn2 and Δ¯Gn2, then

    σ1+¯σ112β(n2)β[2mn+1+(n22n2m+1)+δG(2+ΔGn)].

    (3). Let α0 and β0.

    (a). If ΔG=n1 or Δ¯G=n1, then

    σ1+¯σ112β[(n1)2αβ2mn+1+(n(G1)1)2αβ2e(G1)n(G1)+1],

    (b). If ΔGn2 and Δ¯Gn2, then

    σ1+¯σ1(n2)2αβ2β[2mn+1+(n22n2m+1)+δG(2+ΔGn)].

    (4) Let α0 and β0.

    (a). If ΔG=n1 or Δ¯G=n1, then

    σ1+¯σ112β[2mn+1+2e(G1)n(G1)+1],

    (b). If ΔGn2 and Δ¯Gn2, then

    σ1+¯σ112β[2mn+1+(n22n2m+1)+δG(2+ΔGn)].

    Proof. (1).

    (a). Assume that ΔG=n1. From Theorem 4.6, we have

    σ1(n1)2α2mn+12β. (6.1)

    Let G1,G2,,Gs be connected components of ¯G. With no loss of generality, assume that σ1(G1)σ1(G2)σ1(Gs). Also note that ¯σ1=σ1(G1). Therefore using Theorem 4.6, we get

    ¯σ1(n(G1)1)2α2e(G1)n(G1)+12β. (6.2)

    The desired result is obtained by adding Equations (6.1) and (6.2).

    (b). If ΔGn2 and Δ¯Gn2, then δ¯G1. From Theorem 4.6, we have

    σ1(n2)2α2mn+12β. (6.3)

    Now using Inequalities δ¯G=n1ΔG and Δ¯Gn2, Theorem 4.4 and proof of Theorem 4.6, we obtain

    ¯σ1(n2)2α2(n2)2mδ¯G(n1)+(δ¯G1)Δ¯G2βδβ¯G=(n2)2α2βδβ¯G(n22n2m+1)+δG(2+ΔGn)(n2)2α2β(n22n2m+1)+δG(2+ΔGn). (6.4)

    By adding Eqs (6.3) and (6.4), we get the result.

    Now similarly using Theorem 4.4 and Theorem 4.6, one can prove Parts (2) (4).

    We now give bounds on Eα,β(G(n,m,ΔG,δG))+Eα,β(¯G(n,m,Δ¯G,δ¯G)).

    Theorem 6.3. Let G=G(n,m,Δ,δ) be a connected graph and G1 is a connected component of ¯G with ¯σ1=σ1(G1).

    (1). Let α,β0.

    (a). If ΔG=n1 or Δ¯G=n1, then

    Eα,β(G)+Eα,β(¯G)(n1)2α2βU+12β[(n(G1)1)2α2e(G1)n(G1)+1+W1],

    (b). If ΔGn2 and Δ¯Gn2, then

    Eα,β(G)+Eα,β(¯G)(n2)2α2βU+(n1δG)2αn2n2m2β(n1ΔG)βW2.

    (2). Let α,β0.

    (a). If ΔG=n1 or Δ¯G=n1, then

    Eα,β(G)+Eα,β(¯G)12β(n1)βU1+12β[2e(G1)n(G1)+1(n(G1)1)β+W3n2n2m(n1δG)β(n1ΔG)β],

    (b). If ΔGn2 and Δ¯Gn2, then

    Eα,β(G)+Eα,β(¯G)12β(n2)βU1+(n1ΔG)2αn2n2m2β(n1δG)βW4.

    (3). Let α0 and β0.

    (a). If ΔG=n1 or Δ¯G=n1, then

    Eα,β(G)+Eα,β(¯G)(n1)2αβ2βU2+12β2e(G1)n(G1)+1(n(G1)1)2αβ+W5n2n2m2β,

    (b). If ΔGn2 and Δ¯Gn2, then

    Eα,β(G)+Eα,β(¯G)(n2)2αβ2βU2+(n1δG)2αβn2n2m2βW6.

    (4). Let α0 and β0.

    (a). If ΔG=n1 or Δ¯G=n1, then

    Eα,β(G)+Eα,β(¯G)12βU3+12β[2e(G1)n(G1)+1+W7n2n2m],

    (b). If ΔGn2 and Δ¯Gn2, then

    Eα,β(G)+Eα,β(¯G)12βU3+(n1ΔG)2αβn2n2m2βW8,

    where

    U=2mn+1+2m(n1)Rα2(G)(n1)14α2βn2,U=2mn+1+2m(n1)Rα2(G)(n1)n2(n2)4α+2β,U1=2mn+1+2m(n1)Rα2(G)(n1)1+2βn2δ2βG,U1=2mn+1+2m(n1)Rα2(G)(n1)(n2)2βn2δ2βG,U2=2mn+1+2m(n1)Rα2(G)(n1)14α+2βn2δ2βG,U2=2mn+1+2m(n1)Rα2(G)(n1)n2(n2)4α2βδ2βG,U3=2mn+1+2m(n1)Rα2(G)(n1)n2Δ2βG,W1=(n1)[(n1δG)4α(n2n2m)(n1ΔG)2β(n1ΔG)4α(n2n2m)24n2(n1δG)2β],W2=1+1n+δG(2+ΔGn)n2n2m+(n1)(n1)(n1ΔG)4α+2β(n2n2m)4n2(n1δG)2β+4α,W3=(n1)[(n1ΔG)4α+2β(n1δG)4α+2β(n2n2m)4n2],W4=1+1n+δG(2+ΔGn)n2n2m+(n1)(n1)(n1δG)4α+2β(n2n2m)4n2(n1ΔG)2β+4α,W5=(n1)[(n1δG)4α2β(n1ΔG)4α2β(n2n2m)4n2],W6=1+1n+δG(2+ΔGn)n2n2m+(n1)(n1)(n1ΔG)4α2β(n2n2m)4n2(n1δG)4α2β,W7=(n1)[(n1ΔG)4α2β(n1δG)4α2β(n2n2m)4n2],W8=1+1n+δG(2+ΔGn)n2n2m+(n1)(n1)(n1δG)4α2β(n2n2m)4n2(n1ΔG)4α2β.

    Proof. (1). Note that Δ¯G=n1δG and δ¯G=n1ΔG. Using Part (2) of Lemma 4.1 on compliment of a graph G, we see that

    2Q=21i<jn(d¯G(vi)d¯G(vj))2α(d¯G(vi)+d¯G(vj))2β2wzE(¯G)(Δ¯G)4α22β(δ¯G)2β=2[((n2)m)(n1δG)4α22β(n1ΔG)2β]=(n1δG)4α(n2n2m)22β(n1ΔG)2β.

    Similar to the proof of Theorem 4.6, we get

    ¯σ1(δ¯G)2α(n2n2m)n2β+1(Δ¯G)β=(n1ΔG)2α(n2n2m)n2β+1(n1δG)β. (6.5)

    Applying Cauchy-Schwartz inequality to obtain (ni=2|¯σi|)2(n1)ni=2¯σ2i. Therefore using Part (2) of Lemma 4.1, (Eα,β(¯G)¯σ1)2(n1)(2Q¯σ21).

    (a). From Theorem 5.2, we see that

    Eα,β(G)(n1)2α2β[2mn+1+2m(n1)R2α(G)(n1)12β4αn2]. (6.6)

    If ΔG=n1 or Δ¯G=n1, then by using Inequality (6.2), we obtain

    Eα,β(¯G)¯σ1+(n1)(2Q¯σ21)(n(G1)1)2α2e(G1)n(G1)+12β+(n1)[(n1δG)4α(n2n2m)22β(n1ΔG)2β(n1ΔG)4α(n2n2m)2n222β+2(n1δG)2β]=12β[(n(G1)1)2α2e(G1)n(G1)+1+W1]. (6.7)

    By adding Eqs. (6.6) and (6.7), we get the desired result.

    (b). From proof of Theorem 5.2 (1), we see that

    Eα,β(G)(n2)2α2β[2mn+1+2m(n1)Rα2(G)(n1)n2(n2)2β+4α]. (6.8)

    If ΔGn2 and Δ¯Gn2, then using Lemma 4.4 and proof of Theorem 4.6, we get

    Eα,β(¯G)¯σ1+(n1)(2Q¯σ21)(n1δG)2α2β(n1ΔG)β(n22n2m+1)+δG(2+ΔGn)+(n1)[(n1δG)4α(n2n2m)22β(n1ΔG)2β(n1ΔG)4α(n2n2m)2n222β+2(n1δG)2β]=(n1δG)2αn2n2m2β(n1ΔG)βW2 (6.9)

    The desired result is obtained by adding Eqs (6.8) and (6.9).

    One can prove Parts (2) (4) similarly.

    Theorem 6.4. Let G=G(n,m,ΔG,δG) be a connected graph and α,β are real numbers.

    (1). If α,β0 then

    Eα,β(G)+Eα,β(¯G)21βm(n1)β+2(n2n2m)(n1ΔG)2α2β(n1δG)β.

    (2). If α,β0 then

    Eα,β(G)+Eα,β(¯G)21β(n1)2αm+2(n2n2m)(n1δG)2α2β(n1ΔG)β.

    (3). If α0 and β0 then

    Eα,β(G)+Eα,β(¯G)21βm+2(n2n2m)(n1G)2αβ2β.

    (4). If α0 and β0 then

    Eα,β(G)+Eα,β(¯G)21β(n1)2αβm+2(n2n2m)(n1δG)2αβ2β.

    Proof. (1). From Theorem 5.2, we see that

    Eα,β(G)21βm(n1)β. (6.10)

    By Part (1) of Lemma 4.1, we have ni=1¯σ2i=21i<jn¯σi¯σj. Using Part (2) of Lemma 4.1, we obtain

    (Eα,β(¯G))2=(ni=1|¯σi|)2=ni=1¯σ2i+21i<jn|¯σi¯σj|2Q+2|1i<jn¯σi¯σj|=4Q.

    We know that Δ¯G=n1δG and δ¯G=n1ΔG. Now

    4Q=41i<jn(d¯G(vi)d¯G(vj))2α(d¯G(vi)+d¯G(vj))2β1i<jn4(δ¯G)4α22β(Δ¯G)2β=212β(n2n2m)(n1ΔG)4α(n1δG)2β.

    Hence

    Eα,β(¯G)(n1ΔG)2α2(n2n2m)2β(n1δG)β. (6.11)

    The result is obtained by adding Eqs (6.10) and (6.11).

    Now using Theorem 5.2, one can prove Parts (2) (4) in a similar manner.

    We introduce generalized inverse sum indeg index and energy of graphs. Under certain conditions, we discuss the monotonicity of generalized ISI index by adding edges to a graph. We find extremal graphs with respect to generalized ISI index in class of trees, a class of connected graphs with smallest degree 2 and a class of graphs with given independence number. Bounds on spectral radius and spread of generalized ISI matrix are determined. We also find bounds on generalized ISI energy and Nordhaus-Gaddum-type results for generalized inverse sum indeg index spectral radius and energy. In future, one can find the extremal graphs with respect to generalized ISI index in class of trees, chemical trees, unicyclic graphs, bicyclic graphs for general values of parameters α and β. One can also study the spectral properties of graph operations with respect to generalized ISI matrix. Extremal graphs with respect to generalized ISI energy in class of trees, chemical trees, unicyclic graphs and bicyclic graphs can also be determined.

    The authors wish to thank to the National University of Sciences and Technology for providing favorable environment for research.

    The authors declare no conflict of interest.



    [1] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin 1986.
    [2] I. Gutman, B. Ruščiˊc, N. Trinajstiˊc, et al., Graph theory and molecular orbitals. XII Acyclic polyenes, J. Chem. Phys., 62 (1975), 3399-3405. doi: 10.1063/1.430994
    [3] I. Gutman, N. Trinajstiˊc, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. doi: 10.1016/0009-2614(72)85099-1
    [4] S. Hafeez, R. Farooq, Inverse sum indeg energy of graphs, IEEE Access, 7 (2019), 100860-100866. doi: 10.1109/ACCESS.2019.2929528
    [5] R. A. Horn, C. R. Johnson, Matrix Analysis, New York, Cambridge Univ. Press, 1990.
    [6] Y. Hong, Bounds of eigenvalues of graphs, Discret. Math., 123 (1993), 65-74. doi: 10.1016/0012-365X(93)90007-G
    [7] S. M. Hosamani, B. B. Kulkarni, R. G. Boli, et al., QSPR analysis of certain graph theoretical matrices and their corresponding energy, Appl. Math. Nonlinear Sci., 2 (2017), 131-150. doi: 10.21042/AMNS.2017.1.00011
    [8] K. C. Das, I. Gutman, B. Furtula, On spectral radius and energy of extended adjacency matrix of graphs, Appl. Math. Comput., 296 (2017), 116-123.
    [9] S. Fajtlowicz, On conjectures of Graffiti II, Congr. Numer., 60 (1987), 187-197.
    [10] L. Mirsky, The spread of a matrix, Mathematika., 3 (1956), 127-130. doi: 10.1112/S0025579300001790
    [11] B. Zhou, N. Trinajstiˊc, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210-218. doi: 10.1007/s10910-009-9542-4
    [12] N. J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem., 79 (2018), 371-386.
    [13] M. Randiˊc, Characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609-6615. doi: 10.1021/ja00856a001
    [14] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2000), 1369-1376.
    [15] J. M. Rodriguez, J. M. Sigarreta, Spectral properties of geometricarithmetic index, Appl. Math. Comput., 277 (2016), 142-153.
    [16] J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, Discrete Appl. Math., 184 (2015), 202-212. doi: 10.1016/j.dam.2014.11.013
    [17] V. S. Shegehall, R. Kanabur, Arithmeticgeometric indices of path graph, J. Math. Comput. Sci., 16 (2015), 19-24.
    [18] R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
    [19] D. Vukičeviˊc, M. Gašperov, Bond additive modelling 1. Adriatic indices, Croat. Chem. Acta., 83 (2010), 261-273.
    [20] I. Gutman, The energy of a graph, Ber. Math. statist. Sekt. Forschungszentrum. Graz., 103 (1978), 1-22.
    [21] S. Zangi, M. Ghorbani, M. Eslampour, On the eigenvalues of some matrices based on vertex Degree, Iranian J. Math. Chem., 9 (2018), 149-156.
    [22] B. Zhou, N. Trinajstiˊc, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252-1270. doi: 10.1007/s10910-008-9515-z
    [23] B. Zhou, N. Trinajsti, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs, Acta Chim. Slov., 57 (2010), 518-523.
    [24] H. Deng, H. Huang, J. Zhang, On the eigenvalues of general sum-connectivity laplacian matrix, J. Oper. Res. Soc. Chi., 1 (2013), 347-358. doi: 10.1007/s40305-013-0022-y
    [25] Å. B. Bozkurt, A. D. Güngör, I. Gutman, Randiˊc spectral radius and Randiˊc energy MATCH Commun. Math. Comput. Chem., 64 (2010), 321-334.
    [26] Å. B. Bozkurt, A. D. Güngör, I. Gutman, et al., Randiˊc matrix and Randiˊc energy, MATCH Commun. Math. Comput. Chem., 64 (2010), 239-250.
    [27] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars. Combin., 50 (1998), 225-233.
    [28] R. Gu, F. Huang, X. Li, General Randiˊc matrix and general Randiˊc energy, Trans. Comb., 3 (2014), 21-33.
    [29] I. Gutman, Degree-based topological indices, Croat. Chem. Acta., 86 (2013), 351-361. doi: 10.5562/cca2294
    [30] M. An, L. Xiong, Some results on the inverse sum indeg index of a graph, Inf. Proc. Lett., 134 (2018), 42-46. doi: 10.1016/j.ipl.2018.02.006
    [31] D. Cao, Bounds on eigenvalues and chromatic numbers. Linear Algebra Appl., 270 (1998), 1-13.
    [32] F. Zhang, Matrix Theory: Basic Results and Techniques, New York, Springer, 1999.
  • This article has been cited by:

    1. José M. Sigarreta, Mathematical Properties of Variable Topological Indices, 2020, 13, 2073-8994, 43, 10.3390/sym13010043
    2. R. Aguilar-Sánchez, I. F. Herrera-González, J. A. Méndez-Bermúdez, José M. Sigarreta, Computational Properties of General Indices on Random Networks, 2020, 12, 2073-8994, 1341, 10.3390/sym12081341
    3. Wang Hui, Muhammad Kamran Siddiqui, Shehnaz Akhter, Sumaira Hafeez, Yasir Ali, On Degree Based Topological Aspects of Some Dendrimers, 2022, 1040-6638, 1, 10.1080/10406638.2022.2074478
    4. Ivan Gutman, Juan Monsalve, Juan Rada, A relation between a vertex-degree-based topological index and its energy, 2022, 636, 00243795, 134, 10.1016/j.laa.2021.11.021
    5. Sergio Bermudo, Roberto Cruz, Juan Rada, Vertex-degree-based topological indices of oriented trees, 2022, 433, 00963003, 127395, 10.1016/j.amc.2022.127395
    6. Roberto Cruz, Ivan Gutman, Juan Rada, Hosoya index of VDB-weighted graphs, 2022, 317, 0166218X, 18, 10.1016/j.dam.2022.03.031
    7. Juan Monsalve, Juan Rada, Energy of a digraph with respect to a VDB topological index, 2022, 10, 2300-7451, 417, 10.1515/spma-2022-0171
    8. Walter Carballosa, Ana Granados, José Antonio Méndez Bermúdez, Domingo Pestana, Ana Portilla, Computational properties of the arithmetic–geometric index, 2022, 60, 0259-9791, 1854, 10.1007/s10910-022-01390-3
    9. Ying Wang, Sumaira Hafeez, Shehnaz Akhter, Zahid Iqbal, Adnan Aslam, The Generalized Inverse Sum Indeg Index of Some Graph Operations, 2022, 14, 2073-8994, 2349, 10.3390/sym14112349
    10. Xue Liang Li, Ning Yang, Spectral Properties and Energy of Weighted Adjacency Matrices for Graphs with Degree-based Edge-weight Functions, 2024, 40, 1439-8516, 3027, 10.1007/s10114-024-3127-9
    11. Akbar Ali, Ivan Gutman, Boris Furtula, Abeer M. Albalahi, Amjad E. Hamza, On chemical and mathematical characteristics of generalized degree–based molecular descriptors, 2025, 10, 2473-6988, 6788, 10.3934/math.2025311
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3968) PDF downloads(530) Cited by(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog