Citation: Sumaira Hafeez, Rashid Farooq. On generalized inverse sum indeg index and energy of graphs[J]. AIMS Mathematics, 2020, 5(3): 2388-2411. doi: 10.3934/math.2020158
[1] | Xiuwen Wang, Maoqun Wang . Sombor index of uniform hypergraphs. AIMS Mathematics, 2024, 9(11): 30174-30185. doi: 10.3934/math.20241457 |
[2] | Yufei Huang, Hechao Liu . Bounds of modified Sombor index, spectral radius and energy. AIMS Mathematics, 2021, 6(10): 11263-11274. doi: 10.3934/math.2021653 |
[3] | Juan C. Hernández, José M. Rodríguez, O. Rosario, José M. Sigarreta . Extremal problems on the general Sombor index of a graph. AIMS Mathematics, 2022, 7(5): 8330-8343. doi: 10.3934/math.2022464 |
[4] | Swathi Shetty, B. R. Rakshith, N. V. Sayinath Udupa . Extremal graphs and bounds for general Gutman index. AIMS Mathematics, 2024, 9(11): 30454-30471. doi: 10.3934/math.20241470 |
[5] | Zhen Lin, Ting Zhou, Xiaojing Wang, Lianying Miao . The general Albertson irregularity index of graphs. AIMS Mathematics, 2022, 7(1): 25-38. doi: 10.3934/math.2022002 |
[6] | Hicham Saber, Zahid Raza, Abdulaziz M. Alanazi, Adel A. Attiya, Akbar Ali . On trees with a given number of segments and their maximum general $ Z $-type index. AIMS Mathematics, 2025, 10(1): 195-207. doi: 10.3934/math.2025010 |
[7] | Muhammad Kamran Jamil, Muhammad Imran, Aisha Javed, Roslan Hasni . On the first general Zagreb eccentricity index. AIMS Mathematics, 2021, 6(1): 532-542. doi: 10.3934/math.2021032 |
[8] | Hongzhuan Wang, Xianhao Shi, Ber-Lin Yu . On the eccentric connectivity coindex in graphs. AIMS Mathematics, 2022, 7(1): 651-666. doi: 10.3934/math.2022041 |
[9] | Chang Liu, Jianping Li . Sharp bounds on the zeroth-order general Randić index of trees in terms of domination number. AIMS Mathematics, 2022, 7(2): 2529-2542. doi: 10.3934/math.2022142 |
[10] | Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz . On the Gutman-Milovanović index and chemical applications. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094 |
Let G be a graph with vertex set V(G) and edge set E(G). The number of neighbours of a vertex w in G is called the degree of w, denoted by dG(w). If vertices w and z are connected by an edge, we denote it by wz. The order n(G) of a graph G is given by n(G)=|V(G)|. The size e(G) of a graph G is defined by e(G)=|E(G)|. For any w∈V(G), NG(w) is the set of all vertices adjacent to w in graph G. The graph G−{w} is a graph formed from G by removing the vertex w of G and all edges incident with w. The largest (smallest) degree of G is the largest (smallest) vertex degree in G, represented as ΔG(δG). A graph of order n(G), size e(z), maximum degree ΔG and minimum degree δG is denoted by G(n(G),e(G),ΔG,δG) and a graph of order n and size m is denoted by Gmn. Throughout this paper, we consider simple and connected graphs.
A star graph Sn on n vertices is a tree consisting of a central vertex adjacent to n−1 pendant vertices. An n-vertex cycle Cn (n≥3) is a graph with V(Cn)={v1,…,vn} and E(Cn)={vjvj+1|j=1,2,…,n−1}∪{vnv1}. A simple graph of order n in which every vertex is joined by an edge to other n−1 vertices is said to be a complete graph represented by Kn. If we can split V(G) of G into two disjoint sets X1 and X2 with the property that no two vertices of the same set are adjacent is called a bipartite graph. A complete bipartite graph Km,n is a bipartite graph with |X1|=m, |X2|=n and each vertex in X1 is adjacent to eaxh vertex in X2.
A topological index TI(G) of a graph G is a molecular descriptor which is a conversion of a molecular structure into some real number. In theoretical chemistry, many of the molecular descriptors are considered and have found applications, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18].
A degree based topological index of a graph G can be represented as
TI(G)=∑wz∈E(G)F(dG(w),dG(z)), |
where F is a function with the property F(x,y)=F(y,x).
The inverse sum indeg (henceforth, ISI) index of a graph G was introduced by Vukičević and Gašperov [19] and defined as
ISI(G)=∑wz∈E(G)dG(w)dG(z)dG(w)+dG(z). |
In this paper, we introduce generalized inverse sum indeg (henceforth, ISI) index and generalized ISI energy of graphs. Our strong motivation to define generalized ISI index and energy is that a lot of the degree based topological indices and energies are derived from it by giving the specific values to the parameters α,β. We now define generalized inverse sum indeg index as
Sα,β(G)=∑wz∈E(G)(dG(w)dG(z))α(dG(w)+dG(z))β, | (1.1) |
where α and β are real numbers.
The adjacency matrix A(G)=[aij]n×n of an n-vertex graph G is defined as
aij={1if vivj∈E(G),0otherwise. |
The A-characteristic polynomial of G is the polynomial of the form:
Φ(G,λ)=det(A(G)−λIn)=λn+n∑i=1aiλn−i, |
where In is the identity matrix of order n. The A-eigenvalues of G are the A-eigenvalues of A(G).
Let λ1,…,λn be the A-eigenvalues of a graph G. Gutman [20] defined the energy of G as
E(G)=n∑i=1|λi|. |
Zangi et al. [21] defined the ISI matrix S(G)=[sij]n×n of an n-vertex graph G as:
sij={dG(vi)dG(vj)dG(vi)+dG(vj)if vivj∈E(G),0otherwise. |
The S-characteristic polynomial of G is given by:
ΦS(G,ρ)=det(S(G)−ρIn)=ρn+n∑i=1biρn−i. |
The S-eigenvalues of G are the S-eigenvalues of S(G).
Let ρ1,…,ρn be the S-eigenvalues of G. Zangi et al. [21] defined the ISI energy of G as
EISI(G)=n∑i=1|ρi|. |
We can now define a generalized ISI matrix Aα,β(G)=[bij]n×n of an n-vertex graph G as
bij={(dG(vi)dG(vj))α(dG(vi)+dG(vj))βif vivj∈E(G),0otherwise. |
The Aα,β-characteristic polynomial of G is given by:
ψ(G,σ)=det(Aα,β(G)−σIn)=σn+n∑i=1ciσn−i. |
The Aα,β-eigenvalues of G are the Aα,β-eigenvalues of Aα,β(G).
Let σ1,…,σn be the Aα,β-eigenvalues of G. Then we define the generalized ISI energy of graph G as
Eα,β(G)=n∑i=1|σi|. | (1.2) |
We list here some of the degree based indices and energies of a graph G that can be obtained from the generalized ISI index and energy by only giving specific values to the parameters α,β.
1. If α=0 and β=−1, then Sα,β(G)=M1(G) is the first Zagreb index [3] and matrix A0,−1(G) is the first Zagreb matrix [12]. The energy corresponding to A0,−1(G) is the first Zagreb energy ZE1(G) also introduced in [12]. Note that ZE1(G)=E0,−1(G).
2. If α=0 and β=1/2, then Sα,β(G)=SCI(G) is the sum-connectivity index [22] and matrix A0,1/2(G) is the sum-connectivity matrix [23]. The energy corresponding to A0,1/2(G) is the sum-connectivity energy SE(G), introduced in [23]. It is easy to see that SE(G)=E0,1/2(G).
3. If α=0 and β=−α then Sα,β(G)=χα(G) is the general sum connectivity index [11] and matrix A0,−α(G) is the general sum-connectivity matrix [24]. The energy corresponding to A0,−α(G) is the general sum-connectivity energy GSE(G), defined in [24]. See that GSE(G)=E0,−α(G).
4. If α=1 and β=0 then Sα,β(G)=M2(G) is the second Zagreb index [11] and matrix A1,0(G) is the second Zagreb matrix [12]. The energy corresponding to A1,0(G) is the second Zagreb energy ZE2(G), introduced in [12]. Note ZE2(G)=E1,0(G).
5. If α=−1/2 and β=0 then Sα,β(G)=R(G) is the Randić index [13] and matrix A−1/2,0(G) is the Randić matrix. The energy corresponding to A−1/2,0(G) is the Randić energy RE(G), defined in [25,26]. See that RE(G)=E−1/2,0(G).
6. If β=0 then Sα,β(G)=Rα(G) is the generalized form of Randić index (also known as general product-connectivity index) [27] and matrix Aα,0(G) is the general Randić matrix. The energy corresponding to Aα,0(G) is the general Randić energy RαE(G), introduced in [28]. It is easy to see that RαE(G)=Eα,0(G).
7. If α=1/2 and β=1 then 2Sα,β(G)=GA(G) is the geometric-arithmetic index [14] and matrix A1/2,1(G) is the geometric-arithmetic matrix. The energy corresponding to A1/2,1(G) is the geometric-arithmetic energy GAE(G), defined in [15]. Note that GAE(G)=2E1/2,1(G).
8. If α=1 and β=1 then Sα,β(G)=ISI(G) is the inverse sum indeg index [19] and matrix A1,1(G) is the inverse sum indeg matrix. The energy corresponding to A1,1(G) is the inverse sum indeg energy ISIE(G) introduced in [21]. See that ISIE(G)=E1,1(G).
For study of more degree-based topological indices, see [29] and references therein.
In this paper, we study the generalized inverse sum indeg index and energy from an algebraic point of view. Extremal values of this index for some graph classes are determined. Some spectral properties of generalized inverse sum indeg matrix are studied. We also find Nordhaus-Gaddum-type results for generalized inverse sum indeg index spectral radius and energy.
Under certain conditions, we now determine the monotonicity of the generalized ISI index of a graph G when new edges are added in the graph.
Lemma 2.1. Let w and z be two non-adjacent vertices of a graph G. Also let G+wz is the graph formed from G by joining w and z by an edge wz. If α,β∈R with α≥0 and α≥β, then Sα,β(G+wz)>Sα,β(G).
Proof. If α,β∈R with α≥0 and α≥β, then for any real numbers x,y≥1, we have (1+1x)α≥(1+1x+y)β. This implies (x+1)α(x+y+1)β≥xα(x+y)β. Hence ((x+1)y)α(x+y+1)β≥(xy)α(x+y)β.
Let NG(w)={w1,…,wr} and NG(z)={z1,…,zt}. Then
Sα,β(G+wz)−Sα,β(G)=[((dG(w)+1)(dG(z)+1))α(dG(w)+dG(z)+2)β]+r∑i=1[((dG(w)+1)d(G(wi)))α(dG(w)+dG(wi)+1)β−(dG(w)dG(wi))α(dG(w)+(dG(wi))β]+t∑j=1[((dG(z)+1)dG(zj))α(dG(z)+dG(zj)+1)β−(dG(z)dG(zj))α(dG(z)+(dG(zj))β]>0, |
where [((dG(w)+1)(dG(z)+1))α(dG(w)+dG(z)+2)β]>0. Therefore Sα,β(G+wz)>Sα,β(G).
Two simple graphs G1 and G2 are said to be isomorphic if there exists a bijection ϕ:V(G1)→V(G2) such that uv∈E(G1) if and only if ϕ(u)ϕ(v)∈E(G2). We write G1≅G2 if G1 and G2 are isomorphic.
Next corollary is obtained from Lemma 2.1.
Corollary 2.2. Let α,β∈R with α≥0 and α≥β. Suppose T is a spanning tree of graph G with n(G)=n and G≇T. Then Sα,β(G)>Sα,β(T).
Next theorem relates Sα,β(G) with χβ(G).
Theorem 2.3. Suppose G=G(n,m,ΔG,δG) is a graph.
(1). If α≥0, then Sα,β(G)≥m2δ2αGχβ(G).
(2). If α≤0, then Sα,β(G)≥m2Δ2αGχβ(G).
In both cases, the inequality becomes equality if G is a regular graph.
Proof. (1). By Arithmetic mean-Harmonic mean inequality, we have
mSα,β(G)=m∑wz∈E(G)(dG(w)dG(z))α(dG(w)+dG(z))β≤1m∑wz∈E(G)(dG(w)+dG(z))β(dG(w)dG(z))α. |
Now if α≥0, then (dG(w)dG(z))α≥δ2αG. Therefore
1m∑wz∈E(G)(dG(w)+dG(z))β(dG(w)dG(z))α≤1m∑wz∈E(G)(dG(w)+dG(z))βδ2αG=χβ(G)mδ2αG. |
Hence Sα,β(G)≥m2δ2αGχβ(G). Now the above inequality becomes equality if and only if for every wz∈E(G), (dG(w)dG(z))α(dG(w)+dG(z))β=b2α−β2β, where b is some positive constant. This is possible if and only if G is a b-regular graph.
Similarly one can prove (2). Now we give relationship between Sα,β(G) and Rα(G).
Theorem 2.4. Suppose G=G(n,m,ΔG,δG) is a graph.
(1). If β≥0, then Rα(G)2βΔβG≤Sα,β(G)≤Rα(G)2βδβG.
(2). If β≤0, then Rα(G)2βδβG≤Sα,β(G)≤Rα(G)2βΔβG.
In both cases, the inequality becomes equality if G is a regular graph.
Proof. (1). If β≥0, then (dG(w)+dG(z))β≤(2ΔG)β and (dG(w)+dG(z))β≥(2δG)β. Hence
Sα,β(G)=∑wz∈E(G)(dG(w)dG(z))α(dG(w)+dG(z))β≥∑wz∈E(G)(dG(w)dG(z))α2βΔβG=Rα(G)2βΔβG.Sα,β(G)=∑wz∈E(G)(dG(w)dG(z))α(dG(w)+dG(z))β≤∑wz∈E(G)(dG(w)dG(z))α2βδβG=Rα(G)2βδβG. |
Clearly the equality holds if and only if G is a regular graph.
Part (2) can be proved analogously. By direct computation, we obtain the following results.
Theorem 2.5. Suppose G1,G2,…,Gr are components of a graph G. Then Eα,β(G)=r∑j=1Eα,β(Gj).
Theorem 2.6. Suppose G is an n-vertex and k-regular graph. Then Eα,β(G)=k2α2βkβE(G).
Theorem 2.7. Eα,β(Km,n)=2(mn)12+α(m+n)β.
Proof. Since Aα,β(Km,n)=(mn)α(m+n)βA(Km,n), we have Eα,β(Km,n)=(mn)α(m+n)βE(Km,n)=2(mn)12+α(m+n)β. Using Theorem 2.6, we get the following two results.
Theorem 2.8. Eα,β(Cn)=4α−βE(Cn).
Theorem 2.9. Eα,β(Kn)=21−β(n−1)2α−β+1.
In this section, we find extremal values of graphs and bounds with respect to generalized ISI index in some graph classes.
Theorem 3.1. Suppose T is a tree with n(T)=n. If α=β and 0≤α≤1, then
Sα,β(T)≥(n−1)(n−1)αnα, |
where the inequality becomes equality if T≅Sn.
Proof. We prove the result by induction on n.
For n=1,2,3, the only tree is the star graph Sn. So the statement follows trivially for n≤3. Now assume that the statement holds true for n≥4.
Suppose T is a tree with n(T)=n. Let vw be a pendent edge of T with dT(w)=1 and dT(v)=t. As n≥4, we have 2≤t≤n. Further, since T is not isomorphic to a star, we have that there exists at least one neighbor u of v in T with dT(u)≥2. Let NT(v)∖{w,u}={v1,…,vt−2}.
Let ˜T=T−w. Then n(˜T)=n−1. Now
Sα,β(T)−Sα,β(˜T)=(tt+1)α+[(dT(u)tdT(u)+t)α−(dT(u)(t−1)dT(u)+t−1)α]+t−2∑i=1[(dT(vi)tdT(vi)+t)α−(dT(vi)(t−1)dT(vi)+t−1)α]. |
Let y>0 and define
g(y)=(yty+t)α−(y(t−1)y+t−1)α. |
Then
g′(y)=αyα−1[(ty+t)α+1−(t−1y+t−1)α+1]=αyα−1[(yt+t2−t)α+1−(yt+t2−t−y)α+1(y+t)α+1(y+t−1)α+1]. |
As t≥2, 0≤α≤1 and y>0, we have (y+t)α+1>0 and (y+t−1)α+1>0. Also (yt+t2−t)>(yt+t2−t−y). Therefore (yt+t2−t)α+1>(yt+t2−t−y)α+1. Hence g′(y)>0 and thus g(y) is strictly increasing for y>0. Also 2α>1 for 0≤α≤1, dT(vi)≥1 and dT(u)≥2, we have
Sα,β(T)−Sα,β(˜T)≥(tt+1)α+[(2t2+t)α−(2(t−1)t+1)α]+t−1∑i=1[(tt+1)α−(t−1t)α]≥(tt+1)α+[(2t2+t)α−(2(t−1)t+1)α]>(tt+1)α+2α(t2+t)α>(tt+2)α+2α(tt+2)α=(tt+2)α(1+2α)>2(tt+2)α. |
Since t≥2, we have
Sα,β(T)−Sα,β(˜T)>2(tt+2)α>1≥(n−1)(n−1)αnα−(n−2)(n−2)α(n−1)α=Sα,β(Sn)−Sα,β(Sn−1) |
Therefore by induction hypothesis Sα,β(T)−Sα,β(Sn)>Sα,β(˜T)−Sα,β(Sn−1)≥0. This concludes the proof by induction and clearly equality holds if T≅Sn.
Next theorem gives the minimal graph with respect to generalized ISI index in class of all connected graphs with smallest degree 2.
Theorem 3.2. Among all connected graphs Gmn with smallest degree 2, we have
(1). If α≥0 and β≤0, then Sα,β(Gmn)≥m4α−β.
(2). If α=β≥0, then Sα,β(Gmn)≥m.
In both cases, the inequality becomes equality for Gmn≅Cn.
Proof. (1). If α≥0 and β≤0, then for any w,z∈V(Gmn), we have (dGmn(w)dGmn(z))α≥4α and (dGmn(w)+dGmn(z))β≤4β. Therefore
Sα,β(Gmn)=∑wz∈E(Gmn)(dGmn(w)dGmn(z))α(dGmn(w)+dGmn(z))β≥m4α−β. |
Now Sα,β(Gmn)=m4α−β if and only if dGmn(w)=dGmn(v)=2 for every edge wz∈E(Gmn). Therefore the inequality becomes equality for Gmn≅Cn.
(2). Since δGmn=2, therefore (dGmn(w)dGmn(z))≥(dGmn(w)+dGmn(z)). Hence
Sα,β(Gmn)=∑wz∈E(Gmn)(dGmn(w)dGmn(z))α(dGmn(w)+dGmn(z))β≥m. |
Similar to the proof of Part (1), the inequality becomes equality for Gmn≅Cn.
Any subset of pairwise non-adjacent vertices of a graph G is called an independent set of a graph G. The maximum size of an independent set of a graph G is called the independence number of G. The join G∨H of two graphs G and H is formed by making every vertex of G adjacent to every vertex of H.
The proof of next theorem is similar to the proof of Theorem 3.2 [30] and thus omitted.
Theorem 3.3. Let α≥0 is a real number and α≥β when β∈R. Also let n≥4 and G be a connected graph with n(G)=n≥4 and independence number ξ. Then
Sα,β(G)≤(n−ξ)(n−ξ−1)(n−1)2α−β2β+1+ξ(n−ξ)((n−ξ)(n−1))α(2n−ξ−1)β, |
where the inequality becomes equality when G≅¯Kξ∨Kn−ξ.
In this section, we give lower and upper bounds on spectral radius and spread of graphs with respect to generalized ISI matrix. For any complex n×n matrix M with eigenvalues μ1,…,μn, the spread s(M) of M is introduced in [10] and is defined as s(M)=maxi,j|μi−μj|.
Let σ1≥⋯≥σn be the Aα,β-eigenvalues of a simple graph G. Then spread Aα,β(G) is defined as s(Aα,β(G))=σ1−σn, since the eigenvalues σ1,…,σn are all real.
For convenience, we define some notations. We denote determinant of Aα,β(G) by det(Aα,β(G)). Let
Q=∑1≤i<j≤n(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β,Ω=det(Aα,β(G)). |
We first give some lemmas that are used to prove our main results. The proof is straight forward.
Lemma 4.1. Let G be an n-vertex graph and σ1,…,σn be its Aα,β-eigenvalues. Then
(1). n∑i=1σi=0,
(2). n∑i=1σ2i=2Q.
Lemma 4.2 (Horn and Johnson [5]). Let A1=[aij]n×n and A2=[bij]n×n be n×n symmetric and non-negative matrices. If A1≥A2, that is, aij≥bij for all i,j=1,…,n, then η1(A1)≥η1(A2), where η1(Ak), k=1,2 is the largest eigenvalue of the respective matrix.
Theorem 4.3 (Hong [6]). Let Gmn be a connected graph with A-eigenvalues λ1≥⋯≥λn. Then
λ1≤√2m−n+1, |
where the equality holds if and only if Gmn≅Sn or Gmn≅Kn.
Theorem 4.4 (Cao [31]). Let G=G(n,m,ΔG,δG) be a graph with A-eigenvalues λ1≥⋯≥λn and δG≥1. Then
λ1≤√2m−δG(n−1)+(δG−1)ΔG. |
Lemma 4.5 (Zhang [32]). If C is a symmetric matrix of order n with eigenvalues η1≥⋯≥ηn, then for any y∈Rn with y≠0,
yTCy≤η1yTy, |
where yT is the transpose of y. Equality holds if and only if y is an eigenvector of C corresponding to the eigenvalue η1.
Now we give bounds on largest Aα,β-eigenvalue of a graph.
Theorem 4.6. Let n≥2. Also let G=G(n,m,ΔG,δG) be a connected graph with Aα,β-eigenvalues σ1≥⋯≥σn and α,β∈R.
(1). If α,β≥0 then
Rα(G)n2βΔβG≤σ1≤(n−1)2α√2m−n+12β. |
(2). If α,β≤0 then
Rα(G)n2βδβG≤σ1≤√2m−n+12β(n−1)β. |
(3). If α≥0 and β≤0 then
Rα(G)n2βδβG≤σ1≤(n−1)2α−β√2m−n+12β. |
(4). If α≤0 and β≥0 then
Rα(G)n2βΔβG≤σ1≤√2m−n+12β. |
Proof. (1). Let y∈Rn such that y=(y1,y2,…,yn)T. Then
yTAα,β(G)y=∑vivj∈E(G)(dG(vi)dG(vj))α(dG(vi)+dG(vj))βyiyj≥∑vivj∈E(G)(dG(vi)dG(vj))α2βΔβGyiyj. |
Taking y=(1√n,1√n,…,1√n)T, we get 12βΔβG∑vivj∈E(G)(dG(vi)dG(vj))αyiyj=Rα(G)n2βΔβG. Therefore by Lemma 4.5, σ1≥Rα(G)n2βΔβG.
Now for any vertex vi∈V(G), i=1,…,n, we have 1≤δG≤dG(vi)≤ΔG≤(n−1). Therefore
(dG(vi)dG(vi))α(dG(vj)+dG(vj))β≤Δ2αG2βδβG≤(n−1)2α2β. |
If η1 is the spectral radius of a matrix (n−1)2α2βA(G), then by Lemma 4.2 and Theorem 4.3, we obtain
σ1≤η1=(n−1)2αλ12β≤(n−1)2α√2m−n+12β, |
where λ1 is the spectral radius of A(H).
(2). Let y∈Rn such that y=(y1,y2,…,yn)T. Then
yTAα,β(G)y=∑vivj∈E(G)(dG(vi)dG(vj))α(dG(vi)+dG(vj))βyiyj≥∑vivj∈E(G)(dG(vi)dG(vj))α2βδβGyiyj. |
Taking y=(1√n,1√n,…,1√n)T, we get 12βδβG∑vivj∈E(G)(dG(vi)dG(vj))αyiyj=Rα(G)n2βδβG. Therefore by Lemma 4.5, σ1≥Rα(G)n2βδβG.
Now for any vertex vi∈V(G), i=1,…,n, we have 1≤δG≤dG(vi)≤ΔG≤(n−1). Since α,β≤0, therefore δ2αG≤1 and ΔβG≥(n−1)β. Now
(dG(vi)dG(vj))α(dG(vi)+dG(vj))β≤δ2αG2βΔβG≤12β(n−1)β. |
If η1 is the spectral radius of a matrix 12β(n−1)βA(G), then by Lemma 4.2 and Theorem 4.3, we obtain
σ1≤η1=λ12β(n−1)β≤√2m−n+12β(n−1)β, |
where λ1 is the spectral radius of A(G).
Parts (3) and (4) can be proved analogously.
Next theorem gives bounds on the smallest Aα,β-eigenvalue of a graph.
Theorem 4.7. Let G=G(n,m,ΔG,δG) be a graph with Aα,β-eigenvalues σ1≥⋯≥σn. Then
√2Q+(n−1)(n−2)Ω2/n−12≤σn≤√2(n−1)Qn, |
where α,β∈R.
Proof. By Part (1) of Lemma 4.1, we get
σ2n=(−n−1∑i=1σi)2=n−1∑i=1σ2i+2∑1≤i<j≤n−1σiσj. |
Since arithmetic mean is always greater than geometric mean, therefore
2(n−1)(n−2)∑1≤i<j≤n−1σiσj≥(σn−21σn−22…σn−2n)2/(n−1)(n−2)=(det(Aα,β(G)))2/n−1=Ω2/n−1. |
Hence σ2n≥(2Q−σ2n)+(n−1)(n−2)Ω2/n−1 and σn≥√2Q+(n−1)(n−2)Ω2/n−12.
Again using Part (1) of Lemma 4.1 and Cauchy-Schwartz inequality, we have
σ2n≤(n−1)n−1∑i=1σ2i=(n−1)(2Q−σ2n). |
Hence σn≤√2(n−1)Qn.
In the following theorem, we give bounds on spread of the generalized ISI matrix of a graph.
Theorem 4.8. Let G=G(n,m,ΔG,δG) be a connected graph with Aα,β-eigenvalues σ1≥⋯≥σn. Then
(1). If α,β≥0 then
s(Aα,β(G))≥Rα(G)n2βΔβG−(n−1)2α2β√2m(n−1)n,s(Aα,β(G))≤(n−1)2α√2m−n+12β−√2m+22β(n−1)2β+1(n−2)Ω2/n−1212+β(n−1)β. |
(2). If α,β≤0 then
s(Aα,β(G))≥Rα(G)n2βδβG−12β(n−1)β√2m(n−1)n,s(Aα,β(G)≤√2m−n+12β(n−1)β−√2m(n−1)4α+22β(n−1)(n−2)Ω2/n−1212+β. |
(3). If α≥0 and β≤0 then
s(Aα,β(G))≥Rα(G)n2βδβG−(n−1)2α−β2β√2m(n−1)n,s(Aα,β(G))≤(n−1)2α−β√2m−n+12β−√2m+22β(n−1)(n−2)Ω2/n−1212+β. |
(4). If α≤0 and β≥0 then
s(Aα,β(G))≥Rα(G)n2βΔβG−12β√2m(n−1)n,s(Aα,β(G))≤√2m−n+12β−√2m(n−1)4α+22β(n−1)1+2β(n−2)Ω2/n−1212+β(n−1)β. |
Proof. (1). We have 1≤δG≤dG(vi)≤ΔG≤(n−1) for any vertex vi∈V(G), i=1,…,n. Therefore
2Q=2∑1≤i<j≤n(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β≥2∑1≤i<j≤nδ4αG22βΔ2βG≥m21−2β(n−1)2β. | (4.1) |
Also
2Q=2∑1≤i<j≤n(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β≤2∑1≤i<j≤nΔ4αG22βδ2βG≤m21−2β(n−1)4α. | (4.2) |
Hence using Theorem 4.6, Theorem 4.7 and Equations (4.1) and (4.2), we get
s(Aα,β(G))=σ1−σn≤(n−1)2α√2m−n+12β−√2Q+(n−1)(n−2)Ω2/n−12≤(n−1)2α√2m−n+12β−1√2√2m(2(n−1))2β+(n−1)(n−2)Ω2/n−1=(n−1)2α√2m−n+12β−√2m+22β(n−1)2β+1(n−2)Ω2/n−1212+β(n−1)β. |
Also
s(Aα,β(G))=σ1−σn≥Rα(G)n2βΔβG−√2(n−1)Qn≥Rα(G)n2βΔβG−(n−1)2α2β√2m(n−1)n. |
(2). We have 1≤δG≤dG(vi)≤ΔG≤(n−1) for any vertex vi∈V(G), i=1,…,n. Since α,β≤0, therefore ΔαG≥(n−1)α and δβG≤1. Now
2Q=2∑1≤i<j≤n(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β≥2∑1≤i<j≤nΔ4αG22βδ2βG≥m21−2β(n−1)4α. | (4.3) |
Also
2Q=2∑1≤i<j≤n(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β≤2∑1≤i<j≤nδ4αG22βΔ2βG=m21−2β(n−1)2β. | (4.4) |
Hence using Theorem 4.6, Theorem 4.7 and Equations (4.3) and (4.4), we get
s(Aα,β(G))=σ1−σn≤√2m−n+12β(n−1)β−√2Q+(n−1)(n−2)Ω2/n−12≤√2m−n+12β(n−1)β−1√2√2m(n−1)4α22β+(n−1)(n−2)Ω2/n−1=√2m−n+12β(n−1)β−√2m(n−1)4α+22β(n−1)(n−2)Ω2/n−1212+β. |
Also
s(Aα,β(G))=σ1−σn≥Rα(G)n2βδβG−√2(n−1)Qn≥Rα(G)n2βδβG−12β(n−1)β√2m(n−1)n. |
Similarly, one can prove Parts (3) and (4). The proof is complete.
In this section, we give some bounds for the generalized ISI energy of graphs. We would like to mention that the idea of proof of next theorem is taken from the proof of Theorem 13 [8].
Theorem 5.1. Let G=G(n,m,ΔG,δG) be a connected graph having Aα,β-eigenvalues σ1≥⋯≥σn and α,β∈R.
(1). If α,β≥0 then
21−βRα(G)n(n−1)β≤Eα,β(G)≤(n−1)2α2β√2nm. |
(2). If α,β≤0 then
21−βRα(G)n≤Eα,β(G)≤12β(n−1)β√2nm. |
(3). If α≥0 and β≤0 then
21−βRα(G)n≤Eα,β(G)≤(n−1)2α−β2β√2nm. |
(4). If α≤0 and β≥0 then
21−βRα(G)n(n−1)β≤Eα,β(G)≤12β√2nm. |
Proof. (1). With no loss of generality, suppose that σ1,…,σt are positive and σt+1,…,σn are negative. Using Theorem 4.6, we get
Eα,β(G)=n∑i=1|σi|=2t∑i=1σi≥2σ1≥2Rα(G)n2βΔβG≥21−βRα(G)n(n−1)β. |
Now applying Cauchy-Schwartz inequality, Part (2) of Lemma 4.1 and Equation (4.2), we have
Eα,β(G)=n∑i=1|σi|≤√nn∑i=1σ2i=√2nQ≤√2nm(n−1)4α22β=(n−1)2α2β√2nm. |
(2). With no loss of generality, suppose that σ1,…,σt are positive and σt+1,…,σn are negative. Since α,β≤0 therefore δβG≤1. Now using Theorem 4.6 (2), we get
Eα,β(G)=n∑i=1|σi|=2t∑i=1σi≥2σ1≥2Rα(G)n2βδβG≥21−βRα(G)n. |
Now applying Cauchy-Schwartz inequality, Part (2) of Lemma 4.1 and Equation (4.4), we have
Eα,β(G)=n∑i=1|σi|≤√nn∑i=1σ2i=√2nQ≤√2nm(n−1)2β22β=12β(n−1)β√2nm. |
One can prove Parts (3) and (4) in a similar manner. The result is proved.
Theorem 5.2. Let G=G(n,m,ΔG,δG) be a connected graph with Aα,β-eigenvalues σ1≥⋯≥σn. Then
(1). If α,β≥0 then
21−β√m(n−1)β≤Eα,β(G)≤(n−1)2α2β[√2m−n+1+√2m(n−1)−Rα2(G)(n−1)1−2β−4αn2]. |
(2). If α,β≤0 then
21−β(n−1)2α√m≤Eα,β(G)≤12β(n−1)β[√2m−n+1+√2m(n−1)−Rα2(G)(n−1)1+2βn2δ2βG]. |
(3). If α≥0 and β≤0 then
21−β√m≤Eα,β(G)≤(n−1)2α−β2β[√2m−n+1+√2m(n−1)−Rα2(G)(n−1)1+2β−4αn2δ2βG]. |
(4). If α≤0 and β≥0 then
21−β(n−1)2α−β√m≤Eα,β(G)≤12β[√2m−n+1+√2m(n−1)−Rα2(G)(n−1)n2Δ2βG]. |
Proof. (1). By Part (1) of Lemma 4.1, we have n∑i=1σ2i=−2∑1≤i<j≤nσiσj. Using Part (2) of Lemma 4.1, we obtain
(Eα,β(G))2=(n∑i=1|σi|)2=n∑i=1σ2i+2∑1≤i<j≤n|σiσj|≥2Q+2|∑1≤i<j≤nσiσj|=4Q. |
Now
4Q=4∑1≤i<j≤n(dG(vi)dG(vj))2α(dG(vi)+dG(vj))2β≥∑1≤i<j≤n4δ4αG22βΔ2βG≥m22−2β(n−1)2β. |
Hence Eα,β(G)≥21−β√m(n−1)β.
To prove inequality on the right side, we apply Cauchy-Schwartz inequality to obtain (n∑i=2|σi|)2≤(n−1)n∑i=2σ2i. Therefore using Part (2) of Lemma 4.1, (Eα,β(G)−σ1)2≤(n−1)(2Q−σ21). Hence by Theorem 4.6 (1), we get
Eα,β(G)≤σ1+√(n−1)(2Q−σ21)≤(n−1)2α√2m−n+12β+√(n−1)[m21−2β(n−1)4α−Rα2(G)n222β(n−1)2β]=(n−1)2α2β[√2m−n+1+√2m(n−1)−Rα2(G)(n−1)1−2β−4αn2]. |
(2). Using Eq (4.3), we get
4Q=2(2Q)≥22−2βm(n−1)4α. |
Hence Eα,β(G)≥21−β(n−1)2α√m.
Now using Theorem 4.6 (2) and Eq (4.4), we get
Eα,β(G)≤σ1+√(n−1)(2Q−σ21)≤√2m−n+12β(n−1)β+√(n−1)[m21−2β(n−1)2β−Rα2(G)n222βδ2βG]=12β(n−1)β[√2m−n+1+√2m(n−1)−Rα2(G)(n−1)1+2βn2δ2βG]. |
This gives the required result.
Analogously, one can prove Parts (3) and (4).
The compliment of a simple graph G is a graph represented by ¯G with the property that V(G)=V(¯G) and wz∈E(G) if and only if wz∉E(¯G). Therefore n(G)=n(¯G), e(¯G)=n2(G)−n(G)2−e(G), Δ¯G=n(G)−1−δG and δ¯G=n(G)−1−ΔG. The Aα,β-eigenvalues of ¯G are ¯σi, i=1,2,…,n. A maximal connected subetaaph of G is called a connected component of G.
We first present bounds on σ1+¯σ1.
Theorem 6.1. Let G=G(n,m,ΔG,δG) be a connected graph and α,β∈R.
(1). If β≥0 then
σ1+¯σ1≥1n2β[Rα(G)(n−1)β+Rα(¯G)(n−1−δG)β]. |
(2). If β≤0 then
σ1+¯σ1≥1n2β[Rα(G)δβG+Rα(¯G)(n−1−∇G)β]. |
Proof. (1). Let y∈Rn such that y=(y1,y2,…,yn)T. Then
yT[Aα,β(G)+Aα,β(¯G)]y=∑vivj∈E(G)(dG(vi)dG(vj))α(dG(vi)+dG(vj))βyiyj+∑vivj∈E(¯G)(d¯G(vi)d¯G(vj))α(d¯G(vi)+d¯G(vj))βyiyj≥∑vivj∈E(G)(dG(vi)dG(vj))α2βΔβGyiyj+∑vivj∈E(¯G)(d¯G(vi)d¯G(vj))α2βΔβ¯Gyiyj. |
Since Δ¯G=n−1−δG and ΔG≤n−1 therefore taking y=(1√n,1√n,…,1√n)T and using Lemma 4.5, we obtain
σ1+¯σ1≥1n2β[Rα(G)(n−1)β+Rα(¯G)(n−1−δG)β]. |
Part (2) can be proved similarly.
Theorem 6.2. Let G=G(n,m,δG,ΔG) be a connected graph and G1 is a connected component of ¯G with ¯σ1=σ1(G1).
(1). Let α,β≥0.
(a). If ΔG=n−1 or Δ¯G=n−1, then
σ1+¯σ1≤12β[(n−1)2α√2m−n+1+(n(G1)−1)2α√2e(G1)−n(G1)+1], |
(b). If ΔG≤n−2 and Δ¯G≤n−2, then
σ1+¯σ1≤(n−2)2α2β[√2m−n+1+√(n2−2n−2m+1)+δG(2+ΔG−n)]. |
(2) Let α,β≤0.
(a). If ΔG=n−1 or Δ¯G=n−1, then
σ1+¯σ1≤12β[√2m−n+1(n−1)β+√2e(G1)−n(G1)+1(n(G1)−1)β], |
(b). If ΔG≤n−2 and Δ¯G≤n−2, then
σ1+¯σ1≤12β(n−2)β[√2m−n+1+√(n2−2n−2m+1)+δG(2+ΔG−n)]. |
(3). Let α≥0 and β≤0.
(a). If ΔG=n−1 or Δ¯G=n−1, then
σ1+¯σ1≤12β[(n−1)2α−β√2m−n+1+(n(G1)−1)2α−β√2e(G1)−n(G1)+1], |
(b). If ΔG≤n−2 and Δ¯G≤n−2, then
σ1+¯σ1≤(n−2)2α−β2β[√2m−n+1+√(n2−2n−2m+1)+δG(2+ΔG−n)]. |
(4) Let α≤0 and β≥0.
(a). If ΔG=n−1 or Δ¯G=n−1, then
σ1+¯σ1≤12β[√2m−n+1+√2e(G1)−n(G1)+1], |
(b). If ΔG≤n−2 and Δ¯G≤n−2, then
σ1+¯σ1≤12β[√2m−n+1+√(n2−2n−2m+1)+δG(2+ΔG−n)]. |
Proof. (1).
(a). Assume that ΔG=n−1. From Theorem 4.6, we have
σ1≤(n−1)2α√2m−n+12β. | (6.1) |
Let G1,G2,…,Gs be connected components of ¯G. With no loss of generality, assume that σ1(G1)≥σ1(G2)≥⋯≥σ1(Gs). Also note that ¯σ1=σ1(G1). Therefore using Theorem 4.6, we get
¯σ1≤(n(G1)−1)2α√2e(G1)−n(G1)+12β. | (6.2) |
The desired result is obtained by adding Equations (6.1) and (6.2).
(b). If ΔG≤n−2 and Δ¯G≤n−2, then δ¯G≥1. From Theorem 4.6, we have
σ1≤(n−2)2α√2m−n+12β. | (6.3) |
Now using Inequalities δ¯G=n−1−ΔG and Δ¯G≤n−2, Theorem 4.4 and proof of Theorem 4.6, we obtain
¯σ1≤(n−2)2α√2(n2)−2m−δ¯G(n−1)+(δ¯G−1)Δ¯G2βδβ¯G=(n−2)2α2βδβ¯G√(n2−2n−2m+1)+δG(2+ΔG−n)≤(n−2)2α2β√(n2−2n−2m+1)+δG(2+ΔG−n). | (6.4) |
By adding Eqs (6.3) and (6.4), we get the result.
Now similarly using Theorem 4.4 and Theorem 4.6, one can prove Parts (2) ∼ (4).
We now give bounds on Eα,β(G(n,m,ΔG,δG))+Eα,β(¯G(n,m,Δ¯G,δ¯G)).
Theorem 6.3. Let G=G(n,m,Δ,δ) be a connected graph and G1 is a connected component of ¯G with ¯σ1=σ1(G1).
(1). Let α,β≥0.
(a). If ΔG=n−1 or Δ¯G=n−1, then
Eα,β(G)+Eα,β(¯G)≤(n−1)2α2βU+12β[(n(G1)−1)2α√2e(G1)−n(G1)+1+W1], |
(b). If ΔG≤n−2 and Δ¯G≤n−2, then
Eα,β(G)+Eα,β(¯G)≤(n−2)2α2βU′+(n−1−δG)2α√n2−n−2m2β(n−1−ΔG)βW2. |
(2). Let α,β≤0.
(a). If ΔG=n−1 or Δ¯G=n−1, then
Eα,β(G)+Eα,β(¯G)≤12β(n−1)βU1+12β[√2e(G1)−n(G1)+1(n(G1)−1)β+W3√n2−n−2m(n−1−δG)β(n−1−ΔG)β], |
(b). If ΔG≤n−2 and Δ¯G≤n−2, then
Eα,β(G)+Eα,β(¯G)≤12β(n−2)βU′1+(n−1−ΔG)2α√n2−n−2m2β(n−1−δG)βW4. |
(3). Let α≥0 and β≤0.
(a). If ΔG=n−1 or Δ¯G=n−1, then
Eα,β(G)+Eα,β(¯G)≤(n−1)2α−β2βU2+12β√2e(G1)−n(G1)+1(n(G1)−1)2α−β+W5√n2−n−2m2β, |
(b). If ΔG≤n−2 and Δ¯G≤n−2, then
Eα,β(G)+Eα,β(¯G)≤(n−2)2α−β2βU′2+(n−1−δG)2α−β√n2−n−2m2βW6. |
(4). Let α≤0 and β≥0.
(a). If ΔG=n−1 or Δ¯G=n−1, then
Eα,β(G)+Eα,β(¯G)≤12βU3+12β[√2e(G1)−n(G1)+1+W7√n2−n−2m], |
(b). If ΔG≤n−2 and Δ¯G≤n−2, then
Eα,β(G)+Eα,β(¯G)≤12βU3+(n−1−ΔG)2α−β√n2−n−2m2βW8, |
where
U=√2m−n+1+√2m(n−1)−Rα2(G)(n−1)1−4α−2βn2,U′=√2m−n+1+√2m(n−1)−Rα2(G)(n−1)n2(n−2)4α+2β,U1=√2m−n+1+√2m(n−1)−Rα2(G)(n−1)1+2βn2δ2βG,U′1=√2m−n+1+√2m(n−1)−Rα2(G)(n−1)(n−2)2βn2δ2βG,U2=√2m−n+1+√2m(n−1)−Rα2(G)(n−1)1−4α+2βn2δ2βG,U′2=√2m−n+1+√2m(n−1)−Rα2(G)(n−1)n2(n−2)4α−2βδ2βG,U3=√2m−n+1+√2m(n−1)−Rα2(G)(n−1)n2Δ2βG,W1=√(n−1)[(n−1−δG)4α(n2−n−2m)(n−1−ΔG)2β−(n−1−ΔG)4α(n2−n−2m)24n2(n−1−δG)2β],W2=√1+1−n+δG(2+ΔG−n)n2−n−2m+√(n−1)−(n−1)(n−1−ΔG)4α+2β(n2−n−2m)4n2(n−1−δG)2β+4α,W3=√(n−1)[(n−1−ΔG)4α+2β−(n−1−δG)4α+2β(n2−n−2m)4n2],W4=√1+1−n+δG(2+ΔG−n)n2−n−2m+√(n−1)−(n−1)(n−1−δG)4α+2β(n2−n−2m)4n2(n−1−ΔG)2β+4α,W5=√(n−1)[(n−1−δG)4α−2β−(n−1−ΔG)4α−2β(n2−n−2m)4n2],W6=√1+1−n+δG(2+ΔG−n)n2−n−2m+√(n−1)−(n−1)(n−1−ΔG)4α−2β(n2−n−2m)4n2(n−1−δG)4α−2β,W7=√(n−1)[(n−1−ΔG)4α−2β−(n−1−δG)4α−2β(n2−n−2m)4n2],W8=√1+1−n+δG(2+ΔG−n)n2−n−2m+√(n−1)−(n−1)(n−1−δG)4α−2β(n2−n−2m)4n2(n−1−ΔG)4α−2β. |
Proof. (1). Note that Δ¯G=n−1−δG and δ¯G=n−1−ΔG. Using Part (2) of Lemma 4.1 on compliment of a graph G, we see that
2Q=2∑1≤i<j≤n(d¯G(vi)d¯G(vj))2α(d¯G(vi)+d¯G(vj))2β≤2∑wz∈E(¯G)(Δ¯G)4α22β(δ¯G)2β=2[((n2)−m)(n−1−δG)4α22β(n−1−ΔG)2β]=(n−1−δG)4α(n2−n−2m)22β(n−1−ΔG)2β. |
Similar to the proof of Theorem 4.6, we get
¯σ1≥(δ¯G)2α(n2−n−2m)n2β+1(Δ¯G)β=(n−1−ΔG)2α(n2−n−2m)n2β+1(n−1−δG)β. | (6.5) |
Applying Cauchy-Schwartz inequality to obtain (n∑i=2|¯σi|)2≤(n−1)n∑i=2¯σ2i. Therefore using Part (2) of Lemma 4.1, (Eα,β(¯G)−¯σ1)2≤(n−1)(2Q−¯σ21).
(a). From Theorem 5.2, we see that
Eα,β(G)≤(n−1)2α2β[√2m−n+1+√2m(n−1)−R2α(G)(n−1)1−2β−4αn2]. | (6.6) |
If ΔG=n−1 or Δ¯G=n−1, then by using Inequality (6.2), we obtain
Eα,β(¯G)≤¯σ1+√(n−1)(2Q−¯σ21)≤(n(G1)−1)2α√2e(G1)−n(G1)+12β+√(n−1)[(n−1−δG)4α(n2−n−2m)22β(n−1−ΔG)2β−(n−1−ΔG)4α(n2−n−2m)2n222β+2(n−1−δG)2β]=12β[(n(G1)−1)2α√2e(G1)−n(G1)+1+W1]. | (6.7) |
By adding Eqs. (6.6) and (6.7), we get the desired result.
(b). From proof of Theorem 5.2 (1), we see that
Eα,β(G)≤(n−2)2α2β[√2m−n+1+√2m(n−1)−Rα2(G)(n−1)n2(n−2)2β+4α]. | (6.8) |
If ΔG≤n−2 and Δ¯G≤n−2, then using Lemma 4.4 and proof of Theorem 4.6, we get
Eα,β(¯G)≤¯σ1+√(n−1)(2Q−¯σ21)≤(n−1−δG)2α2β(n−1−ΔG)β√(n2−2n−2m+1)+δG(2+ΔG−n)+√(n−1)[(n−1−δG)4α(n2−n−2m)22β(n−1−ΔG)2β−(n−1−ΔG)4α(n2−n−2m)2n222β+2(n−1−δG)2β]=(n−1−δG)2α√n2−n−2m2β(n−1−ΔG)βW2 | (6.9) |
The desired result is obtained by adding Eqs (6.8) and (6.9).
One can prove Parts (2) ∼ (4) similarly.
Theorem 6.4. Let G=G(n,m,ΔG,δG) be a connected graph and α,β are real numbers.
(1). If α,β≥0 then
Eα,β(G)+Eα,β(¯G)≥21−β√m(n−1)β+√2(n2−n−2m)(n−1−ΔG)2α2β(n−1−δG)β. |
(2). If α,β≤0 then
Eα,β(G)+Eα,β(¯G)≥21−β(n−1)2α√m+√2(n2−n−2m)(n−1−δG)2α2β(n−1−ΔG)β. |
(3). If α≥0 and β≤0 then
Eα,β(G)+Eα,β(¯G)≥21−β√m+√2(n2−n−2m)(n−1−∇G)2α−β2β. |
(4). If α≤0 and β≥0 then
Eα,β(G)+Eα,β(¯G)≥21−β(n−1)2α−β√m+√2(n2−n−2m)(n−1−δG)2α−β2β. |
Proof. (1). From Theorem 5.2, we see that
Eα,β(G)≥21−β√m(n−1)β. | (6.10) |
By Part (1) of Lemma 4.1, we have n∑i=1¯σ2i=−2∑1≤i<j≤n¯σi¯σj. Using Part (2) of Lemma 4.1, we obtain
(Eα,β(¯G))2=(n∑i=1|¯σi|)2=n∑i=1¯σ2i+2∑1≤i<j≤n|¯σi¯σj|≥2Q+2|∑1≤i<j≤n¯σi¯σj|=4Q. |
We know that Δ¯G=n−1−δG and δ¯G=n−1−ΔG. Now
4Q=4∑1≤i<j≤n(d¯G(vi)d¯G(vj))2α(d¯G(vi)+d¯G(vj))2β≥∑1≤i<j≤n4(δ¯G)4α22β(Δ¯G)2β=21−2β(n2−n−2m)(n−1−ΔG)4α(n−1−δG)2β. |
Hence
Eα,β(¯G)≥(n−1−ΔG)2α√2(n2−n−2m)2β(n−1−δG)β. | (6.11) |
The result is obtained by adding Eqs (6.10) and (6.11).
Now using Theorem 5.2, one can prove Parts (2) ∼ (4) in a similar manner.
We introduce generalized inverse sum indeg index and energy of graphs. Under certain conditions, we discuss the monotonicity of generalized ISI index by adding edges to a graph. We find extremal graphs with respect to generalized ISI index in class of trees, a class of connected graphs with smallest degree 2 and a class of graphs with given independence number. Bounds on spectral radius and spread of generalized ISI matrix are determined. We also find bounds on generalized ISI energy and Nordhaus-Gaddum-type results for generalized inverse sum indeg index spectral radius and energy. In future, one can find the extremal graphs with respect to generalized ISI index in class of trees, chemical trees, unicyclic graphs, bicyclic graphs for general values of parameters α and β. One can also study the spectral properties of graph operations with respect to generalized ISI matrix. Extremal graphs with respect to generalized ISI energy in class of trees, chemical trees, unicyclic graphs and bicyclic graphs can also be determined.
The authors wish to thank to the National University of Sciences and Technology for providing favorable environment for research.
The authors declare no conflict of interest.
[1] | I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin 1986. |
[2] |
I. Gutman, B. Ruščiˊc, N. Trinajstiˊc, et al., Graph theory and molecular orbitals. XII Acyclic polyenes, J. Chem. Phys., 62 (1975), 3399-3405. doi: 10.1063/1.430994
![]() |
[3] |
I. Gutman, N. Trinajstiˊc, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. doi: 10.1016/0009-2614(72)85099-1
![]() |
[4] |
S. Hafeez, R. Farooq, Inverse sum indeg energy of graphs, IEEE Access, 7 (2019), 100860-100866. doi: 10.1109/ACCESS.2019.2929528
![]() |
[5] | R. A. Horn, C. R. Johnson, Matrix Analysis, New York, Cambridge Univ. Press, 1990. |
[6] |
Y. Hong, Bounds of eigenvalues of graphs, Discret. Math., 123 (1993), 65-74. doi: 10.1016/0012-365X(93)90007-G
![]() |
[7] |
S. M. Hosamani, B. B. Kulkarni, R. G. Boli, et al., QSPR analysis of certain graph theoretical matrices and their corresponding energy, Appl. Math. Nonlinear Sci., 2 (2017), 131-150. doi: 10.21042/AMNS.2017.1.00011
![]() |
[8] | K. C. Das, I. Gutman, B. Furtula, On spectral radius and energy of extended adjacency matrix of graphs, Appl. Math. Comput., 296 (2017), 116-123. |
[9] | S. Fajtlowicz, On conjectures of Graffiti II, Congr. Numer., 60 (1987), 187-197. |
[10] |
L. Mirsky, The spread of a matrix, Mathematika., 3 (1956), 127-130. doi: 10.1112/S0025579300001790
![]() |
[11] |
B. Zhou, N. Trinajstiˊc, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210-218. doi: 10.1007/s10910-009-9542-4
![]() |
[12] | N. J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem., 79 (2018), 371-386. |
[13] |
M. Randiˊc, Characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609-6615. doi: 10.1021/ja00856a001
![]() |
[14] | D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem., 46 (2000), 1369-1376. |
[15] | J. M. Rodriguez, J. M. Sigarreta, Spectral properties of geometricarithmetic index, Appl. Math. Comput., 277 (2016), 142-153. |
[16] |
J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, Discrete Appl. Math., 184 (2015), 202-212. doi: 10.1016/j.dam.2014.11.013
![]() |
[17] | V. S. Shegehall, R. Kanabur, Arithmeticgeometric indices of path graph, J. Math. Comput. Sci., 16 (2015), 19-24. |
[18] | R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009. |
[19] | D. Vukičeviˊc, M. Gašperov, Bond additive modelling 1. Adriatic indices, Croat. Chem. Acta., 83 (2010), 261-273. |
[20] | I. Gutman, The energy of a graph, Ber. Math. statist. Sekt. Forschungszentrum. Graz., 103 (1978), 1-22. |
[21] | S. Zangi, M. Ghorbani, M. Eslampour, On the eigenvalues of some matrices based on vertex Degree, Iranian J. Math. Chem., 9 (2018), 149-156. |
[22] |
B. Zhou, N. Trinajstiˊc, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252-1270. doi: 10.1007/s10910-008-9515-z
![]() |
[23] | B. Zhou, N. Trinajsti, On the sum-connectivity matrix and sum-connectivity energy of (molecular) graphs, Acta Chim. Slov., 57 (2010), 518-523. |
[24] |
H. Deng, H. Huang, J. Zhang, On the eigenvalues of general sum-connectivity laplacian matrix, J. Oper. Res. Soc. Chi., 1 (2013), 347-358. doi: 10.1007/s40305-013-0022-y
![]() |
[25] | Å. B. Bozkurt, A. D. Güngör, I. Gutman, Randiˊc spectral radius and Randiˊc energy MATCH Commun. Math. Comput. Chem., 64 (2010), 321-334. |
[26] | Å. B. Bozkurt, A. D. Güngör, I. Gutman, et al., Randiˊc matrix and Randiˊc energy, MATCH Commun. Math. Comput. Chem., 64 (2010), 239-250. |
[27] | B. Bollobás, P. Erdös, Graphs of extremal weights, Ars. Combin., 50 (1998), 225-233. |
[28] | R. Gu, F. Huang, X. Li, General Randiˊc matrix and general Randiˊc energy, Trans. Comb., 3 (2014), 21-33. |
[29] |
I. Gutman, Degree-based topological indices, Croat. Chem. Acta., 86 (2013), 351-361. doi: 10.5562/cca2294
![]() |
[30] |
M. An, L. Xiong, Some results on the inverse sum indeg index of a graph, Inf. Proc. Lett., 134 (2018), 42-46. doi: 10.1016/j.ipl.2018.02.006
![]() |
[31] | D. Cao, Bounds on eigenvalues and chromatic numbers. Linear Algebra Appl., 270 (1998), 1-13. |
[32] | F. Zhang, Matrix Theory: Basic Results and Techniques, New York, Springer, 1999. |
1. | José M. Sigarreta, Mathematical Properties of Variable Topological Indices, 2020, 13, 2073-8994, 43, 10.3390/sym13010043 | |
2. | R. Aguilar-Sánchez, I. F. Herrera-González, J. A. Méndez-Bermúdez, José M. Sigarreta, Computational Properties of General Indices on Random Networks, 2020, 12, 2073-8994, 1341, 10.3390/sym12081341 | |
3. | Wang Hui, Muhammad Kamran Siddiqui, Shehnaz Akhter, Sumaira Hafeez, Yasir Ali, On Degree Based Topological Aspects of Some Dendrimers, 2022, 1040-6638, 1, 10.1080/10406638.2022.2074478 | |
4. | Ivan Gutman, Juan Monsalve, Juan Rada, A relation between a vertex-degree-based topological index and its energy, 2022, 636, 00243795, 134, 10.1016/j.laa.2021.11.021 | |
5. | Sergio Bermudo, Roberto Cruz, Juan Rada, Vertex-degree-based topological indices of oriented trees, 2022, 433, 00963003, 127395, 10.1016/j.amc.2022.127395 | |
6. | Roberto Cruz, Ivan Gutman, Juan Rada, Hosoya index of VDB-weighted graphs, 2022, 317, 0166218X, 18, 10.1016/j.dam.2022.03.031 | |
7. | Juan Monsalve, Juan Rada, Energy of a digraph with respect to a VDB topological index, 2022, 10, 2300-7451, 417, 10.1515/spma-2022-0171 | |
8. | Walter Carballosa, Ana Granados, José Antonio Méndez Bermúdez, Domingo Pestana, Ana Portilla, Computational properties of the arithmetic–geometric index, 2022, 60, 0259-9791, 1854, 10.1007/s10910-022-01390-3 | |
9. | Ying Wang, Sumaira Hafeez, Shehnaz Akhter, Zahid Iqbal, Adnan Aslam, The Generalized Inverse Sum Indeg Index of Some Graph Operations, 2022, 14, 2073-8994, 2349, 10.3390/sym14112349 | |
10. | Xue Liang Li, Ning Yang, Spectral Properties and Energy of Weighted Adjacency Matrices for Graphs with Degree-based Edge-weight Functions, 2024, 40, 1439-8516, 3027, 10.1007/s10114-024-3127-9 | |
11. | Akbar Ali, Ivan Gutman, Boris Furtula, Abeer M. Albalahi, Amjad E. Hamza, On chemical and mathematical characteristics of generalized degree–based molecular descriptors, 2025, 10, 2473-6988, 6788, 10.3934/math.2025311 |