In this paper, we solved some open problems on general Gutman index. More precisely, we characterized unicyclic graphs with extremal general Gutman index for some $ a $ and $ b $. We presented a sharp bound on general Gutman index of $ G $ in terms of order and vertex connectivity of $ G $. Also, we obtained some bounds on general Gutman index in terms of order, general Randić index, diameter, and independence number of graph $ G $. In addition, QSPR analysis on various anticancer drug structures was carried out to relate their physicochemical properties with the general Gutman index of the structure for some $ a $ and $ b $.
Citation: Swathi Shetty, B. R. Rakshith, N. V. Sayinath Udupa. Extremal graphs and bounds for general Gutman index[J]. AIMS Mathematics, 2024, 9(11): 30454-30471. doi: 10.3934/math.20241470
In this paper, we solved some open problems on general Gutman index. More precisely, we characterized unicyclic graphs with extremal general Gutman index for some $ a $ and $ b $. We presented a sharp bound on general Gutman index of $ G $ in terms of order and vertex connectivity of $ G $. Also, we obtained some bounds on general Gutman index in terms of order, general Randić index, diameter, and independence number of graph $ G $. In addition, QSPR analysis on various anticancer drug structures was carried out to relate their physicochemical properties with the general Gutman index of the structure for some $ a $ and $ b $.
[1] | A. Ali, B. Furtula, I. Redžepović, I. Gutman, Atom-bond sum-connectivity index, J. Math. Chem., 60 (2022), 2081–2093. https://doi.org/10.1007/s10910-022-01403-1 doi: 10.1007/s10910-022-01403-1 |
[2] | A. Alsinai, A. Saleh, H. Ahmed, L. N. Mishra, N. Soner, On fourth leap zagreb index of graphs, Discrete Math. Algorithms Appl., 15 (2023), 2250077. https://doi.org/10.1142/S179383092250077X doi: 10.1142/S179383092250077X |
[3] | A. Altassan, B. A. Rather, M. Imran, Inverse sum indeg index (energy) with applications to anticancer drugs, Mathematics, 10 (2022), 4749. https://doi.org/10.3390/math10244749 doi: 10.3390/math10244749 |
[4] | V. Andova, D. Dimitrov, J. Fink, R. Skrekovski, Bounds on Gutman index, MATCH Commun. Math. Comput. Chem., 67 (2012), 515–524. |
[5] | B. Bollobás, P. Erd$\ddot{o}$s, Graphs of extremal weights, Ars Combin., 50 (1998), 225–233. |
[6] | X. Cheng, X. Li, Extremal general Gutman index of trees, MATCH Commun. Math. Comput. Chem., 89 (2023), 567–582. https://doi.org/10.46793/match.89-3.567C doi: 10.46793/match.89-3.567C |
[7] | K. C. Das, G. Su, L. Xiong, Relation between degree distance and Gutman index of graphs, MATCH Commun. Math. Comput. Chem., 76 (2016), 221–232. |
[8] | K. C. Das, T. Vetrík, General Gutman index of a graph, MATCH Commun. Math. Comput. Chem., 89 (2023), 583–603. https://doi.org/10.46793/match.89-3.583D doi: 10.46793/match.89-3.583D |
[9] | L. Feng, The Gutman index of unicyclic graphs, Discrete Math. Algorithms Appl., 4 (2012), 1250031. https://doi.org/10.1142/S1793830912500310 doi: 10.1142/S1793830912500310 |
[10] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
[11] | S. Mondal, N. De, A. Pal, Topological indices of some chemical structures applied for the treatment of covid-19 patients, Polycycl. Aromat. Comp., 42 (2022), 1220–1234. https://doi.org/10.1080/10406638.2020.1770306 doi: 10.1080/10406638.2020.1770306 |
[12] | S. Mondal, A. Dey, N. De, A. Pal, QSPR analysis of some novel neighbourhood degree-based topological descriptors, Complex Intell. Syst., 7 (2021), 977–996. https://doi.org/10.1007/s40747-020-00262-0 doi: 10.1007/s40747-020-00262-0 |
[13] | S. Mondal, K. C. Das, On the sanskruti index of graphs, J. Appl. Math. Comput., 69 (2023), 1205–1219. https://doi.org/10.1007/s12190-022-01789-w doi: 10.1007/s12190-022-01789-w |
[14] | S. Mukwembi, On the upper bound of Gutman index of graphs, MATCH Commun. Math. Comput. Chem., 68 (2012), 343–348. |
[15] | I. Redžepović, B. Furtula, Comparative study on structural sensitivity of eigenvalue-based molecular descriptors, J. Math. Chem., 59 (2021), 476–487. https://doi.org/10.1007/s10910-020-01202-6 doi: 10.1007/s10910-020-01202-6 |
[16] | J. A. Rodríguez-Velázquez, A. T Balaban, Two new topological indices based on graph adjacency matrix eigenvalues and eigenvectors, J. Math. Chem., 57 (2019), 1053–1074. https://doi.org/10.1007/s10910-019-01008-1 doi: 10.1007/s10910-019-01008-1 |
[17] | M. Shanmukha, N. Basavarajappa, K. Shilpa, A. Usha, Degree-based topological indices on anticancer drugs with QSPR analysis, Heliyon, 6 (2020). https://doi.org/10.1016/j.heliyon.2020.e04235 doi: 10.1016/j.heliyon.2020.e04235 |
[18] | J. Wei, M. F. Hanif, H. Mahmood, M. K. Siddiqui, M. Hussain, QSPR analysis of diverse drugs using linear regression for predicting physical properties, Polycycl. Aromat. Comp, 44 (2023), 4850–4870. https://doi.org/10.1080/10406638.2023.2257848 doi: 10.1080/10406638.2023.2257848 |