Research article

Asymptotics on a heriditary recursion

  • Received: 21 July 2024 Revised: 10 October 2024 Accepted: 16 October 2024 Published: 25 October 2024
  • MSC : 03D99, 11B37, 41A60, 65B15

  • The asymptotic behavior for a heriditary recursion

    $ \begin{equation*} x_1>a \, \, \text{and} \, \, x_{n+1} = \frac{1}{n^s}\sum\limits_{k = 1}^nf\left(\frac{x_k}k\right)\text{ for every }n\geq1 \end{equation*} $

    is studied, where $ f $ is decreasing, continuous on $ (a, \infty) $ ($ a < 0 $), and twice differentiable at $ 0 $. The result has been known for the case $ s = 1 $. This paper analyzes the case $ s > 1 $. We obtain an asymptotic sequence that is quite different from the case $ s = 1 $. Some examples and applications are provided.

    Citation: Yong-Guo Shi, Xiaoyu Luo, Zhi-jie Jiang. Asymptotics on a heriditary recursion[J]. AIMS Mathematics, 2024, 9(11): 30443-30453. doi: 10.3934/math.20241469

    Related Papers:

  • The asymptotic behavior for a heriditary recursion

    $ \begin{equation*} x_1>a \, \, \text{and} \, \, x_{n+1} = \frac{1}{n^s}\sum\limits_{k = 1}^nf\left(\frac{x_k}k\right)\text{ for every }n\geq1 \end{equation*} $

    is studied, where $ f $ is decreasing, continuous on $ (a, \infty) $ ($ a < 0 $), and twice differentiable at $ 0 $. The result has been known for the case $ s = 1 $. This paper analyzes the case $ s > 1 $. We obtain an asymptotic sequence that is quite different from the case $ s = 1 $. Some examples and applications are provided.



    加载中


    [1] T. M. Apostol, Introduction to analytic number theory, 1st Eds., New York: Springer, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [2] I. V. Blagouchine, E. Moreau, On a finite sum of cosecants appearing in various problems, J. Math. Anal. Appl., 539 (2024), 128515. https://doi.org/10.1016/j.jmaa.2024.128515 doi: 10.1016/j.jmaa.2024.128515
    [3] N. D. Bruijn, Asymptotic methods in analysis, 1958.
    [4] E. T. Copson, Asymptotic expansions, Cambridge University Press, 2004.
    [5] S. Elaydi, An introduction to difference equations, 3rd Eds., New York: Springer, 2005. https://doi.org/10.1007/0-387-27602-5
    [6] V. Lampret, Simple derivation of the Euler–Boole type summation formula and examples of its use, Mediterr. J. Math. 19 (2022), 77. https://doi.org/10.1007/s00009-022-02000-x doi: 10.1007/s00009-022-02000-x
    [7] D. B. Grünberg, On asymptoticsm, Stirling numbers, gamma function and polylogs, Result. Math., 49 (2006), 89–125. https://doi.org/10.1007/s00025-006-0211-7 doi: 10.1007/s00025-006-0211-7
    [8] C. Heuberger, D. Krenn, G. F. Lipnik, Asymptotic analysis of $q$-recursive sequences, Algorithmica, 84 (2022), 2480–2532. http://doi.org/10.1007/s00453-022-00950-y doi: 10.1007/s00453-022-00950-y
    [9] H. K. Hwang, S. Janson, T. H. Tsai, Exact and asymptotic solutions of a divide-and-conquer recurrence dividing at half: Theory and applications, ACM Trans. Algorithms, 13 (2017), 1–43. https://dl.acm.org/doi/10.1145/3127585 doi: 10.1145/3127585
    [10] C. Mortici, A. Vernescu, Some new facts in discrete asymptotic analysis, Math. Balkanica (N.S.), 21 (2007), 301–308.
    [11] J. D. Murray, Asymptotic analysis, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-1122-8
    [12] F. Olver, Asymptotics and special functions, 1st Eds., New York: A K Peters/CRC Press, 1997. https://doi.org/10.1201/9781439864548
    [13] D. Popa, Asymptotic expansions for the recurrence $x_{n+1} = \frac{1}{n}\sum_{k = 1}^{n}f(\frac{x_{k}}{k})$, Math. Methods Appl. Sci., 46 (2023), 2165–2173. https://doi.org/10.1002/mma.8634 doi: 10.1002/mma.8634
    [14] M. Z. Spivey, The Euler-Maclaurin formula and sums of powers, Math. Mag., 79 (2006), 61–65. http://doi.org/10.1080/0025570X.2006.11953378 doi: 10.1080/0025570X.2006.11953378
    [15] A. Vernescu, C. Mortici, New results in discrete asymptotic analysis, Gen. Math., 16 (2008), 179–188. https://eudml.org/doc/117876
    [16] X. S. Wang, R. Wong, Discrete analogues of Laplace's approximation, Asymptot. Anal., 54 (2007), 165–180.
    [17] R. Wong, Y. Q. Zhao, Recent advances in asymptotic analysis, Anal. Appl., 20 (2022), 1103–1146. https://doi.org/10.1142/S0219530522400012 doi: 10.1142/S0219530522400012
    [18] A. Xu, Approximations of the generalized-Euler-constant function and the generalized Somos' quadratic recurrence constant, J. Inequal. Appl., 2019 (2019), 198. https://doi.org/10.1186/s13660-019-2153-0 doi: 10.1186/s13660-019-2153-0
    [19] A. Xu, Asymptotic expansion related to the generalized Somos recurrence constant, Int. J. Number Theory, 15 (2019), 2043–2055. https://doi.org/10.1142/S1793042119501112 doi: 10.1142/S1793042119501112
    [20] L. Zhu, Asymptotic expansion of a finite sum involving harmonic numbers, AIMS Mathematics, 6 (2021), 2756–2763. https://doi.org/10.3934/math.2021168 doi: 10.3934/math.2021168
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(193) PDF downloads(49) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog