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Abstract: The asymptotic behavior for a heriditary recursion

x1 > a and xn+1 =
1
ns

n∑
k=1

f
( xk

k

)
for every n ≥ 1

is studied, where f is decreasing, continuous on (a,∞) (a < 0), and twice differentiable at 0. The result
has been known for the case s = 1. This paper analyzes the case s > 1. We obtain an asymptotic
sequence that is quite different from the case s = 1. Some examples and applications are provided.
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1. Introduction

To the evaluation of sequences, which may be divergent, asymptotic expansions provide a way
to compute sequences with arbitrarily high accuracy [4, 11, 12, 17]. Many researchers have studied
asymptotics of partial sums and related inequalities. One of the most famous examples is the harmonic
sum [10, 15], which has an asymptotic estimate

Hn =

n∑
k=1

1
k

= ln n + γ + εn,
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where γ = limn→∞ (Hn − ln n) = 0.577 . . . is the constant of Euler and εn → 0. Zhu [20] calculated the
asymptotic expansion of the finite sum of some sequences

S n =

n∑
k=1

(
n2 + k

)−1
.

Other well-known examples of asymptotic formulas include the Euler–Maclaurin formula [12], the
Euler–Boole type summation formula [6] and the prime number theorem [1]. Grünberg [7] applied the
Euler–Maclaurin formula to obtain the asymptotic expansions of the sums,

n∑
k=1

(log k)p

kq ,

n∑
k=1

kq(log k)p,

n∑
k=1

(log k)p

(n − k)q ,

n∑
k=1

1
kq(log k)p

in closed form to arbitrary order (p, q ∈ N). Wang and Wong [16] carried out the asymptotic estimation
of the partial sum

∑n
k=0 fn(k)qgn(k). Xu [19] provided an estimate for the partial sum

γn(z) =

n∑
k=1

zk−1
(
1
k
− ln

k + 1
k

)
, where 0 < z < 1.

Blagouchine and Moreau [2] derived the complete asymptotic expansion of the finite sum

S n(ϕ, a) ≡
n−1∑
l=1

csc
(
ϕ +

aπl
n

)
, n ∈ N \ {1} , ϕ +

aπl
n
, πk, k ∈ Z.

Some researchers have also given asymptotic estimates for some recurrences in combinatorial
mathematics and algorithms. For example, Xu [18,19] studied the asymptotic series of the generalized
Somos recurrence. Hwang, Janson, and Tsai [9] gave exact and asymptotic solutions of a divide-
and-conquer recurrence. Heuberger, Krenn, and Lipnik [8] presented some asymptotic analysis of
q-recursive sequences.

However, due to computational complexity and lack of tools or methods, very few papers have
investigated asymptotic expansions of heriditary recursions (refer to [5, Section 6.3, p. 291]). Recently,
Popa [13] investigated a heriditary recursion

x1 > a and xn+1 =
1
n

n∑
k=1

f
( xk

k

)
for every n ≥ 1,

where f : (a,∞) → (0,∞) and a < 0. He gave the first five terms of the asymptotic expansion of
(xn)n≥1. The aim of this paper is to study the generalized form

x1 > a and xn+1 =
1
ns

n∑
k=1

f
( xk

k

)
for every n ≥ 1, (1.1)

where s > 1. Using only elementary techniques, we establish an asymptotic estimate of (xn)n≥1 in (1.1).
We obtain an asymptotic sequence for the case s > 1 that is quite different from the case s = 1. Some
examples and applications are provided.
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2. Preliminaries

In this section we first introduce the Euler–Maclaurin formula (see [3,6,14]), from which asymptotic
expansions of many sequences and sums can be derived.

Lemma 2.1 (Euler–Maclaurin formula). Suppose f is k-times continuously differentiable on the
interval [a, b] with a < b, a, b ∈ Z. Then∑

a<n≤b

f (n) =

∫ b

a

{
f (x) −

(−1)k

k!
ψk(x) f (k)(x)

}
dx

+

k∑
`=1

(−1)`

`!

(
f (`−1)(b) − f (`−1)(a)

)
B`.

Suppose f and all its derivatives go to zero as x → ∞. Then we obtain by letting b → ∞ (and
adding f (a) to both sides),

∞∑
n=a

f (n) =

∫ ∞

a
f (x)dx +

1
2

f (a) −
k∑
`=2

(−1)`

`!
f (`−1)(a)B`

−
(−1)k

k!

∫ ∞

a
f (k)(x)ψk(x)dx,

where B`(x)’s are Bernoulli polynomials, B` = B`(0)’s are Bernoulli numbers, and ψk(x) = Bk({x}).

For convenience, let (k − 1)i be Pochhammer’s symbol defined as

(k − 1)0 := 1, (k − 1)i := (k − 1)k(k + 1)(k + 2) · · · (k + i − 2), for i ≥ 1.

Put ci(α) =
(α − 1)i

i!
.

For α > 1, let ζ(α) denote the Riemann zeta function, namely,

ζ(α) =

∞∑
k=1

1
kα
.

In order to compute the asymptotic expansion, we need the following asymptotic estimate of sums
and sequences.

Lemma 2.2. Let α > 1. Then

(i)
∞∑

k=n

1
kα

=
1

(α − 1)nα−1 +
1

2nα
+ o

( 1
nα

)
, n→ ∞.

(ii)
n−1∑
k=1

1
kα

= ζ(α) −
1

(α − 1)nα−1 −
1

2nα
+ o

( 1
nα

)
, n→ ∞.
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(iii)
1

(n − 1)α−1 −
1

nα−1 =

∞∑
i=0

ci+1(α)
nα+i ,

where ci(α) =
(α − 1)i

i!
.

Proof. (i) By the Euler–Maclaurin formula, f (k) =
1
kα

, α > 1, we obtain

∞∑
k=n

1
kα

=

∫ ∞

n

1
yα

dy +
1

2nα
+

∞∑
i=2

Bi

i!
(α)i−1

nα+i−1

=
1

(α − 1)nα−1 +
1

2nα
+ o

( 1
nα

)
.

(ii) It is clear that
n−1∑
k=1

1
kα

=

∞∑
k=1

1
kα
−

∞∑
k=n

1
kα
.

Then the result (ii) immediately follows from (i).
(iii) Using the Maclaurin series (1 + x)β = 1 +

(
β
1

)
x +

(
β
2

)
x2 + o(x2), we have

1
(n − 1)α−1 −

1
nα−1 =

1
nα−1

 1
(1 − 1

n )α−1
− 1


=

1
nα−1

∞∑
i=1

(α−1)i
i!

ni

=

∞∑
i=0

ci+1(α)
nα+i .

�

3. Main results

We first give some asymptotic estimates of the sequence (xn)n≥1, which is defined by (1.1).

Lemma 3.1. Suppose that the sequence (xn)n≥1 is defined by (1.1), f is decreasing, continuous on
(a,∞), a < 0, and twice differentiable at 0 with a Taylor series f (x) = f (0) + f ′(0)x + f ′′(0)x2 + o(x2).
Then the following results hold:

(i) lim
n→∞

xn = 0,

(ii) lim
n→∞

ns−1xn = f (0),
(iii) the finite sum

n−1∑
k=1

(
f (

xk

k
) − f (0)

)
= f (0) f ′(0)

(
ζ(s) −

1
(s − 1)ns−1 −

1
2ns

)
+ o

( 1
ns

)
, n→ ∞.
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Proof. (i) Since f takes positive real numbers, we get xn > 0 for all n ≥ 2. Since the inequality
xk

k
> 0

for all k ≥ 2 and f is decreasing, we get f
( xk

k

)
≤ f (0), and

n∑
k=1

f
( xk

k

)
= f (x1) +

n∑
k=2

f
( xk

k

)
≤ f (x1) + (n − 1) f (0).

We deduce that for every n ≥ 1

0 < xn+1 =
1
ns

n∑
k=1

f
( xk

k

)
≤

f (x1) + (n − 1) f (0)
ns . (3.1)

Since s > 1, it follows from the squeeze theorem that limn→∞ xn = 0.
(ii) Moreover, by (i), we have limn→∞ xn/n = 0. From the Stolz–Cesàro theorem, and the continuity

at 0, we obtain

lim
n→∞

1
n

n−1∑
k=1

f
( xk

k

)
= lim

n→∞
f
( xn

n

)
= f (0).

Let n ≥ 2. It follows from (1.1) that xn =
1

(n − 1)s

n−1∑
k=1

f
( xk

k

)
. Then

lim
n→∞

ns−1xn = lim
n→∞

xn
1

ns−1

= lim
n→∞

1
(n−1)s

n−1∑
k=1

f ( xk
k )

1
ns−1

= lim
n→∞

n
(n−1)s ·

1
n ·

n−1∑
k=1

f ( xk
k )

1
ns−1

= f (0).

(iii) Since f is differentiable at 0, we have

lim
k→∞

f ( xk
k ) − f (0)

xk
k

= f ′(0).

It follows from (ii) and f (x) = f (0) + f ′(0)x + f ′′(0)x2 + o(x2) that

f (
xk

k
) − f (0) = f ′(0)

xk

k
+ f ′′(0)

( xk

k
)2

+ o
(( xk

k
)2
)

=
f (0) f ′(0)

ks +
f 2(0) f ′′(0)

k2s + o
(

1
k2s

)
.

By Lemma 2.2 (ii), we have
n−1∑
k=1

(
f (

xk

k
) − f (0)

)
=

n−1∑
k=1

(
f (0) f ′(0)

ks +
f 2(0) f ′′(0)

k2s + o
(

1
k2s

))
= f (0) f ′(0)

(
ζ(s) −

1
(s − 1)ns−1 −

1
2ns

)
+ o

( 1
ns

)
, n→ ∞.

�
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The following theorem gives the first three terms of the asymptotic expansion of xn.

Theorem 3.1. Suppose that the sequence (xn)n≥1 is defined by (1.1), f is decreasing, continuous on
(a,∞), a < 0, and twice differentiable at 0 with a Taylor series f (x) = f (0) + f ′(0)x + f ′′(0)x2 + o(x2).
Then there exists a constant C ∈ R such that

C = lim
n→∞

ns
(
xn −

f (0)
ns−1

)
= ζ(s) + (s − 1) f (0).

Moreover, the sequence (xn)n≥1 of (1.1) has the following asymptotic expansion:

xn =
f (0)
ns−1 +

C
ns + o

( 1
ns

)
.

Proof. For every n ≥ 2, we have

xn −
f (0)
ns−1 =

1
(n − 1)s

n−1∑
k=1

(
f (

xk

k
) − f (0)

)
+

( 1
(n − 1)s−1 −

1
ns−1

)
f (0).

From Lemma 2.2 (iii) and Lemma 3.1 (iii), we can obtain

xn −
f (0)
ns−1 =

1
(n − 1)s

n−1∑
k=1

(
f (

xk

k
) − f (0)

)
+

( 1
(n − 1)s−1 −

1
ns−1

)
f (0)

∼
ζ(s) + c1(s) f (0)

ns .

It follows that

ns

(
xn −

f (0)
ns−1

)
→ C := ζ(s) + c1(s) f (0) = ζ(s) + (s − 1) f (0). as n→ ∞.

This completes the proof. �

The following theorem gives the first four terms of the asymptotic expansion.

Theorem 3.2. Suppose that the sequence (xn)n≥1 is defined by (1.1), f is decreasing, continuous on
(a,∞), a < 0, and twice differentiable at 0 with a Taylor series f (x) = f (0) + f ′(0)x + f ′′(0)x2 + o(x2).
Let C be defined by Theorem 3.1. Then the sequence (xn)n≥1 of (1.1) has the following asymptotic
expansion:

(i) If 1 < s < 2, then

xn =
f (0)
ns−1 +

C
ns −

1
s − 1

·
1

n2s−1 + o
( 1
n2s−1

)
.

(ii) If s = 2, then

xn =
f (0)
ns−1 +

C
ns +

(s − 1)s f (0) − 2
2(s − 1)ns+1 + o

( 1
ns+1

)
.

(iii) If s > 2, then

xn =
f (0)
ns−1 +

C
ns +

(s − 1)s f (0)
2ns+1 + o

( 1
ns+1

)
.
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Proof. From Lemma 2.2 (iii) and Lemma 3.1 (iii), we deduce that

xn −
f (0)
ns−1 −

C
ns =

1
(n − 1)s

( n−1∑
k=1

f
( xk

k

)
− f (0)

)
+

( 1
(n − 1)s−1 −

1
ns−1

)
f (0) −

C
ns

=
1
ns

(
C1 −

1
(s − 1)ns−1 −

1
2ns

)
+

(c1(s)
ns +

c2(s)
ns+1

)
f (0) −

C
ns + o

( 1
n2s

)
= −

1
(s − 1)n2s−1 +

c2(s) f (0)
ns+1 −

1
2n2s + o

( 1
n2s

)
.

Case 1. Let 1 < s < 2. Then 2s − 1 < s + 1, and

xn −
f (0)
ns−1 −

C
ns ∼ −

1
(s − 1)n2s−1 .

Thus

xn =
f (0)
ns−1 +

C
ns −

1
s − 1

·
1

n2s−1 + o
( 1
n2s−1

)
.

Case 2. Let s = 2. Then 2s − 1 = s + 1 < 2s, and

xn −
f (0)
ns−1 −

C
ns = −

1
(s − 1)n2s−1 +

c2 f (0)
ns+1 + o

( 1
ns+1

)
∼

D
ns+1 ,

where D = c2 f (0) − 1
(s−1) . Thus

xn =
f (0)
ns−1 +

C
ns +

D
ns+1 + o

( 1
ns+1

)
.

Case 3. Let s > 2. Then s + 1 < 2s − 1 < 2s. Hence, we have

xn =
f (0)
ns−1 +

C
ns +

c2 f (0)
ns+1 + o

( 1
ns+1

)
.

�

Below is our main theorem, which gives the first five terms of the asymptotic expansion.

Theorem 3.3. Suppose that the sequence (xn)n≥1 is defined by (1.1), f is decreasing, continuous on
(a,∞), a < 0, and twice differentiable at 0 with a Taylor series f (x) = f (0) + f ′(0)x + f ′′(0)x2 + o(x2).
Let C be defined by Theorem 3.1. Then the sequence (xn)n≥1 of (1.1) has the following asymptotic
expansion:

(i) If 1 < s < 2, then

xn =
f (0)
ns−1 +

C
ns −

1
s − 1

·
1

n2s−1 +
(s − 1)s f (0)

2ns+1 + o
( 1
ns+1

)
.

(ii) If s = 2, then

xn =
f (0)
ns−1 +

C
ns +

(s − 1)s f (0) − 2
2(s − 1)ns+1 +

(s − 1)s(s + 1) f (0) − 3
6ns+2 + o

( 1
ns+2

)
.
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(iii) If 2 < s < 3, then

xn =
f (0)
ns−1 +

C
ns +

(s − 1)s f (0)
2ns+1 −

1
s − 1

·
1

n2s−1 + o
( 1
n2s−1

)
.

(iv) If s = 3, then

xn =
f (0)
ns−1 +

C
ns +

(s − 1)s f (0)
2ns+1 +

(s − 1)s(s + 1) f (0) − 3
6ns+2 + o

( 1
n2s−1

)
.

(v) If s > 3, then

xn =
f (0)
ns−1 +

C
ns +

(s − 1)s f (0)
2ns+1 +

(s − 1)s(s + 1) f (0)
6ns+2 + o

( 1
n2s−1

)
.

Proof. Case 1. Let 1 < s < 2. Then 2s − 1 < s + 1 < 2s. By Lemma 2.2 and Lemma 3.1, we have

xn −
f (0)
ns−1 −

C
ns +

1
(s − 1)

1
n2s−1

=
1

(n − 1)s

( n−1∑
k=1

f
( xk

k

)
− f (0)

)
+

( f (0)
(n − 1)s−1 −

f (0)
ns−1

)
−

C
ns +

1
(s − 1)

1
n2s−1

=
1
ns

(
ζ(s) −

1
(s − 1)ns−1 −

1
2ns

)
+

(c1

ns +
c2

ns+1 +
c3

ns+2

)
f (0)

−
C
ns +

1
(s − 1)

1
n2s−1 + o

( 1
n2s

)
=

c2 f (0)
ns+1 −

1
2n2s +

c3 f (0)
ns+2 + o

( 1
n2s

)
∼

c2 f (0)
ns+1 .

Thus

xn =
f (0)
ns−1 +

C
ns −

1
s − 1

·
1

n2s−1 +
c2 f (0)
ns+1 + o

( 1
ns+1

)
.

Case 2. Let s = 2. Then s + 2 = 2s, and

xn −
f (0)
ns−1 −

C
ns −

D
ns+1 = −

1
2n2s +

c3 f (0)
ns+2 + o

( 1
n2s

)
∼

E
ns+2 ,

where
D = c2 f (0) −

1
(s − 1)

, E = c3 f (0) −
1
2
.

Case 3. Let 2 < s < 3. Then s + 1 < 2s − 1 < s + 2 < 2s, and

xn −
f (0)
ns−1 −

C
ns −

c2 f (0)
ns+1 ∼ −

1
(s − 1)

1
n2s−1 .

Case 4. Let s = 3. Then 2s − 1 = s + 2 < 2s, and

xn −
f (0)
ns−1 −

C
ns −

c2 f (0)
ns+1 = −

1
(s − 1)

1
n2s−1 +

c3 f (0)
ns+2 + o

( 1
n2s

)
∼

F
ns+2 ,

where
F = c3 f (0) −

1
(s − 1)

.

Case 5. Let s > 3. Then s + 2 < 2s − 1 < 2s, and

xn −
f (0)
ns−1 −

C
ns −

c2 f (0)
ns+1 ∼

c3 f (0)
ns+2 .

�
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4. Some examples

In this section, we give some applications of our results to several specific examples and a
comparison with Popa’s results.

Example 4.1. Let (xn)n≥1 be a sequence of the real numbers defined by

xn+1 =
1
ns

n∑
k=1

e−
xk
k , x1 ∈ R, ∀n ≥ 1.

Note that f (x) = e−x and f (0) = 1.
When s = 3

2 , it follows from Theorem 3.3 (i) that lim
n→∞

xn = 0. Moreover,

√
nxn = 1 +

C
n
−

1

n
3
2

+
3

8n2 + o
(

1
n2

)
.

When s = 1, it follows from in [13, Theorem 5] that

xn = 1 −
ln n
n

+
A
n
−

2 ln n
n2 +

2A − 1
n2 + o

(
1
n2

)
,

since f ′(0) = −1.
This example corrects some printing errors in [13, Corollary 6]. And it is easy to see that when

s > 1, the asymptotic sequence for the case s > 1 is completely different from the case s = 1.

Example 4.2. Let (xn)n≥1 be a sequence of the real numbers defined by x1 > 1 − e2 and

xn+1 =
1
ns

n∑
k=1

1
ln(e2 + xk

k )
, ∀n ≥ 1.

Note that f (x) = 1
ln(e2+x) , and f (0) =

1
2

.

When s = 3
2 , by Theorem 3.3 (i), we have lim

n→∞
xn = 0, and

2
√

nxn = 1 +
2C
n
−

4
n3/2 +

3
8n2 + o

(
1
n2

)
.

When s = 4, by Theorem 3.3 (v), we have lim
n→∞

xn = 0, and

2n3xn = 1 +
2C
n

+
6
n2 +

10
n3 + o

(
1
n3

)
.

5. Conclusions

Our analysis shows that this heriditary recursion can be further expanded according to the residual
terms. By comparing asymptotic sequences, depending on the value of s, more and more terms of the
asymptotic expansion are obtained.
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Our results show that, for the case s > 1, Eq (1.1) has the asymptotic expansion of the form

xn =

k∑
j=0

a j

n j + o
(

1
nk

)
, as n→ ∞,

while, for the case s = 1, Eq (1.1) has the asymptotic expansion of the form

xn =

k∑
j=1

al
lnp j n
nq j

+ o
(
lnpk n
nqk

)
,

where q j ∈ [0,∞), p j ∈ R and where some of the constants a j may depend on the initial values.
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