In this research article, we investigated a coronavirus (COVID-19) epidemic model with random perturbations, which was mainly constituted of five major classes: the susceptible population, the exposed class, the infected population, the quarantine class, and the population that has recovered. We studied the problem under consideration in order to derive at least one, and only one, nonlocal solution within the positive feasible region. The Lyapunov function was used to develop the necessary result of existence for ergodic stationary distribution and the conditions for the disease's extinction. According to our findings, the influence of Brownian motion and noise effects on epidemic transmission were powerful. The infection may diminish or eradicate if the noise is excessive. To illustrate our proposed scheme, we numerically simulated all classes' findings.
Citation: Rukhsar Ikram, Ghulam Hussain, Inayat Khan, Amir Khan, Gul Zaman, Aeshah A. Raezah. Stationary distribution of stochastic COVID-19 epidemic model with control strategies[J]. AIMS Mathematics, 2024, 9(11): 30413-30442. doi: 10.3934/math.20241468
In this research article, we investigated a coronavirus (COVID-19) epidemic model with random perturbations, which was mainly constituted of five major classes: the susceptible population, the exposed class, the infected population, the quarantine class, and the population that has recovered. We studied the problem under consideration in order to derive at least one, and only one, nonlocal solution within the positive feasible region. The Lyapunov function was used to develop the necessary result of existence for ergodic stationary distribution and the conditions for the disease's extinction. According to our findings, the influence of Brownian motion and noise effects on epidemic transmission were powerful. The infection may diminish or eradicate if the noise is excessive. To illustrate our proposed scheme, we numerically simulated all classes' findings.
[1] | C. C. Lai, T. P. Shih, W. C. Ko, H. J. Tang, P. R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Agents, 55 (2020), 105924. http://doi.org/10.1016/j.ijantimicag.2020.105924 doi: 10.1016/j.ijantimicag.2020.105924 |
[2] | R. J. de Groot, S. C. Baker, R. S. Baric, C. S. Brown, C. Drosten, L. Enjuanes, et al., Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group, J. virol., 87 (2013), 7790–7792. http://doi.org/10.1128/JVI.01244-13 doi: 10.1128/JVI.01244-13 |
[3] | The WHO MERS-CoV Research Group, State of knowledge and data gaps of Middle East respiratory syndrome coronavirus (MERS-CoV) in humans, PLoS Curr., 2013. |
[4] | L. Arnold, Stochastic differential equations: Theory and applications, Wiley Interscience, 1974. |
[5] | Z. Wu, J. M. McGoogan, Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention, JAMA, 323 (2020), 1239–1242. http://doi.org/10.1001/jama.2020.2648 doi: 10.1001/jama.2020.2648 |
[6] | A. Din, Y. Li, Q. Liu, Viral dynamics and control of hepatitis B virus (HBV) using an epidemic model, Alex. Eng. J., 59 (2020), 667–679. https://doi.org/10.1016/j.aej.2020.01.034 doi: 10.1016/j.aej.2020.01.034 |
[7] | A. Khan, G. Hussain, A. Yusuf, A. H. Usman, U. W. Humphries, A hepatitis stochastic epidemic model with acute and chronic stages, Adv. Differ. Equ., 2021 (2021), 181. https://doi.org/10.1186/s13662-021-03335-7 doi: 10.1186/s13662-021-03335-7 |
[8] | S. Qureshi, Z. Memon, Monotonically decreasing behavior of measles epidemic well captured by Atangana-Baleanu-Caputo fractional operator under real measles data of Pakistan, Chaos Soliton. Fract., 131 (2020), 109478. https://doi.org/10.1016/j.chaos.2019.109478 doi: 10.1016/j.chaos.2019.109478 |
[9] | T. Khan, A. Khan, G. Zaman, The extinction and persistence of the stochastic hepatitis B epidemic model, Chaos Soliton. Fract., 108 (2018), 123–128. https://doi.org/10.1016/j.chaos.2018.01.036 doi: 10.1016/j.chaos.2018.01.036 |
[10] | A. Gray, D. Greenhalgh, L. Hu, X. Mao, J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876–902. https://doi.org/10.1137/10081856X doi: 10.1137/10081856X |
[11] | G. Zaman, Y. H. Kang, I. H. Jung, Stability analysis and optimal vaccination of an SIR epidemic model, Biosystems, 93 (2008), 240–249. https://doi.org/10.1016/j.biosystems.2008.05.004 doi: 10.1016/j.biosystems.2008.05.004 |
[12] | L. Zou, W. Zhang, S. Ruan, Modeling the transmission dynamics and control of hepatitis B virus in China, J. Theor. Biol., 262 (2010), 330–338. https://doi.org/10.1016/j.jtbi.2009.09.035 doi: 10.1016/j.jtbi.2009.09.035 |
[13] | S. Thornley, C. Bullen, M. Roberts, Hepatitis B in a high prevalence New Zealand population: A mathematical model applied to infection control policy, J. Theor. Biol., 254 (2008), 599–603. https://doi.org/10.1016/j.jtbi.2008.06.022 doi: 10.1016/j.jtbi.2008.06.022 |
[14] | S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2020), 744–752. https://doi.org/10.1093/ije/29.4.744 doi: 10.1093/ije/29.4.744 |
[15] | V. E. Papageorgiou, G. Vasiliadis, G. Tsaklidis, Analyzing the asymptotic behavior of an extended SEIR model with vaccination for COVID-19, Mathematics, 12 (2023), 55. https://doi.org/10.3390/math12010055 doi: 10.3390/math12010055 |
[16] | S. I. Araz, Analysis of a Covid-19 model: Optimal control, stability and simulations, Alex. Eng. J., 60 (2021), 647–658. https://doi.org/10.1016/j.aej.2020.09.058 doi: 10.1016/j.aej.2020.09.058 |
[17] | A. Mwasa, J. M. Tchuenche, Mathematical analysis of a cholera model with public health interventions, Biosystems, 105 (2011), 190–200. https://doi.org/10.1016/j.biosystems.2011.04.001 doi: 10.1016/j.biosystems.2011.04.001 |
[18] | Y. Zhou, W. Zhang, S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244 (2014), 118–131. https://doi.org/10.1016/j.amc.2014.06.100 doi: 10.1016/j.amc.2014.06.100 |
[19] | V. E. Papageorgiou, Commentary on "Stochastic modeling of computer virus spreading with warning signals", J. Franklin I., 361 (2024), 106916. https://doi.org/10.1016/j.jfranklin.2024.106916 doi: 10.1016/j.jfranklin.2024.106916 |
[20] | J. R. Artalejo, M. J. Lopez-Herrero, Stochastic epidemic models: New behavioral indicators of the disease spreading, Appl. Math. Model., 38 (2014), 4371–4387. https://doi.org/10.1016/j.apm.2014.02.017 doi: 10.1016/j.apm.2014.02.017 |
[21] | G. Hussain, T. Khan, A. Khan, M. Inc, G. Zaman, K. S. Nisar, A. Akgül, Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Alex. Eng. J., 60 (2021), 4121–4130. https://doi.org/10.1016/j.aej.2021.02.036 doi: 10.1016/j.aej.2021.02.036 |
[22] | F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response, 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264 |
[23] | F. A. Rihan, H. J. Alsakaji, Dynamics of a stochastic delay differential model for COVID-19 infection with asymptomatic infected and interacting people: Case study in the UAE, Results Phys., 28 (2021), 104658. https://doi.org/10.1016/j.rinp.2021.104658 doi: 10.1016/j.rinp.2021.104658 |
[24] | F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equ., 2020 (2020), 502. https://doi.org/10.1186/s13662-020-02964-8 doi: 10.1186/s13662-020-02964-8 |
[25] | W. P. London, J. A. Yorke, Recurrent outbreak of measles, chickenpox, and mumps. Ⅰ. Seasonal variation in contact rates, Am. J. Epidemiol., 98 (1973), 458–468. https://doi.org/10.1093/oxfordjournals.aje.a121575 doi: 10.1093/oxfordjournals.aje.a121575 |
[26] | H. W. Hethcote, H. W. Stech, P. Van den Driessche, Nonlinear oscillations in epidemic models, SIAM J. Appl. Math., 40 (1981), 1–9. |
[27] | X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997 |
[28] | A. Khan, R. Ikram, A. Din, U. W. Humphries, A. Akgul, Stochastic COVID-19 SEIQ epidemic model with time-delay, Results Phys., 30 (2021), 104775. https://doi.org/10.1016/j.rinp.2021.104775 doi: 10.1016/j.rinp.2021.104775 |
[29] | C. Chen, Y. Kang, The asymptotic behavior of a stochastic vaccination model with backward bifurcation, Appl. Math. Model., 40 (2016), 6051–6068. https://doi.org/10.1016/j.apm.2016.01.045 doi: 10.1016/j.apm.2016.01.045 |
[30] | Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003 |
[31] | X. B. Zhang, X. D. Wang, H. F. Huo, Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity, Physica A, 531 (2019), 121548. https://doi.org/10.1016/j.physa.2019.121548 doi: 10.1016/j.physa.2019.121548 |
[32] | Z. Chang, X. Meng, X. Lu, Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates, Physica A, 472 (2017), 103–116. https://doi.org/10.1016/j.physa.2017.01.015 doi: 10.1016/j.physa.2017.01.015 |
[33] | F. Wei, F. Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Physica A, 453 (2016), 99–107. https://doi.org/10.1016/j.physa.2016.01.059 doi: 10.1016/j.physa.2016.01.059 |
[34] | R. Khashminski, Stochastic stability of differential equations, Berlin: Springer-Verlag, 1980. |
[35] | C. Ji, D. Jiang, N. Shi, Multigroup SIR epidemic model with stochastic perturbation, Physica A, 390 (2011), 1747–1762. https://doi.org/10.1016/j.physa.2010.12.042 doi: 10.1016/j.physa.2010.12.042 |
[36] | A. Ríos-Gutiérrez, S. Torres, V. Arunachalam, Studies on the basic reproduction number in stochastic epidemic models with random perturbations, Adv. Differ. Equ., 2021 (2021), 288. https://doi.org/10.1186/s13662-021-03445-2 doi: 10.1186/s13662-021-03445-2 |
[37] | X. B. Zhang, X. D. Wang, H. F. Huo, Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity, Physica A, 531 (2019), 121548. https://doi.org/10.1016/j.physa.2019.121548 doi: 10.1016/j.physa.2019.121548 |
[38] | M. Zahri, Multidimensional Milstein scheme for solving a stochastic model for prebiotic evolution, J. Taibah. Univ. Sci., 8 (2014), 186–198. https://doi.org/10.1016/j.jtusci.2013.12.002 doi: 10.1016/j.jtusci.2013.12.002 |