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Abstract: In this research article, we investigated a coronavirus (COVID-19) epidemic model
with random perturbations, which was mainly constituted of five major classes: the susceptible
population, the exposed class, the infected population, the quarantine class, and the population that
has recovered. We studied the problem under consideration in order to derive at least one, and only
one, nonlocal solution within the positive feasible region. The Lyapunov function was used to develop
the necessary result of existence for ergodic stationary distribution and the conditions for the disease’s
extinction. According to our findings, the influence of Brownian motion and noise effects on epidemic
transmission were powerful. The infection may diminish or eradicate if the noise is excessive. To
illustrate our proposed scheme, we numerically simulated all classes’ findings.
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1. Introduction

Coronavirus SARS-CoV-2 (CoV-2) or the acute respiratory syndrome (SARS) is a respiratory
virus. It’s known as COVID-19 because of the virus that causes this disease (coronavirus disease
2019). COVID-19 was found in humans for the first time. During the middle of December, 2019, the
epidemic was identified in the Chinese city of Wuhan in the province of Hubei. On January 30, 2020,
the World Health Organization (WHO) stated that the SARS-CoV-2 outbreak had reached pandemic
proportions and had been declared a global health emergency. Quarantine was put in place on January
23, 2020, by the Chinese government in Wuhan, China, to restrict the spread of the pandemic [1].
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Mathematical modeling is a powerful technique for describing and dealing with diverse phenomena in
nature. Recently, there has been a lot of focus on the development of mathematical models for
understanding infectious diseases [2, 3]. Many authors have established different epidemic models for
the development and control of transmissible disease in communities. When compared to
cardiovascular disease, infection-related diseases rank as the second leading cause of death on the
globe. Mathematical models have become an important part of infectious disease epidemiology. In
the twenty-first century, infectious diseases will become more prominent in both developed and
developing countries. Global health challenges associated to infectious diseases are at an all-time high
on the priority lists of world leaders, public health officials, and philanthropists, and they are expected
to continue to rise in importance. Many researchers have spent the last few years using various ways
to investigate infectious diseases and their mechanisms [4–7]. Aside from controlling the
transmission of infectious diseases, this helps to prevent them in daily life. Epidemiological models
are used to consider the advancement of contagious illnesses in populations. Many researchers have
studied epidemic models to investigate and analyze diseases including avian influenza, hepatitis B,
tuberculosis, and leishmaniasis [8–10]. We cannot use a single model to describe the entire disease
system around the world since the existence or eradication of COVID-19 is dependent on so many
different characteristics of the affected system. Since COVID-19, the human population has been
quarantined, as the spread of the disease has been directly linked to this action. In most cases,
quarantine is divided into two categories: One is infected whereas the other is susceptible quarantine.
In this research work, we use the term “infected quarantine,” which refers to the practice of isolating
those who have been exposed to an infectious disease and placing them in isolation.

Mathematical models have become an important part of infectious disease epidemiology. It has
become popular to use mathematical modeling to study infectious illnesses that are communicable
(see, for example, [11–14]). Mathematical modeling has been observed in the exploration of
preventive mechanisms and propagations dynamics in recent years. Epidemiological models are used
to take the spread of infectious diseases within the population into account [15,16]. One major area of
concern for mathematical models in epidemiology is qualitative analysis. Deterministic and stochastic
models distinguish between two categories of epidemic models. In comparison to its deterministic
counterparts, the stochastic system is the most effective epidemic system for these forms and may
even have a higher level of realism [17, 18]. Because a stochastic model can be run multiple times to
build up a distribution of the predicted results, as opposed to a deterministic model which can only
yield a single predicted value, stochastic models yield more valuable results [19–21]. The stochastic
nature of infectious disease transmission arises from the unpredictable nature of human contact.

Biological phenomena are often influenced by environmental noise in the real world. Beyond
epidemiology, stochastic theory and techniques are widely used in other fields of nonlinear applied
sciences. The stochastic approach has gained popularity due to its ability to accurately represent
randomness and uncertainties in real-world scenarios. As a result, stochastic epidemic systems have
been extensively studied (see [22]). Stochastic variations have long intrigued mathematicians and
researchers because they can lead to significant changes that better align with real-world problems.
For example, Rihan and Alsakaji [23] introduced a stochastic susceptible, infected, asymptomatic,
quarantined, recovered (S IAQR) epidemic model for COVID-19 with time delays. In addition to
qualitative analysis, they used reported data from the United Arab Emirates to predict the disease’s
behavior. Similarly, the authors in [24] proposed a stochastic susceptible-infected-recover-cross
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immune (S IRC) model for COVID-19, establishing sufficient conditions for the existence of an
ergodic stationary distribution. They also showed that while diseases may go extinct under high levels
of white noise, recurrence and periodic outbreaks are still possible due to the time-delayed feedback
in transmission dynamics. The epidemic models can display qualitatively different dynamical
behaviors when the conventional presumption of mass-action law is discarded. Numerous infectious
illnesses like COVID-19 exhibit periodic changes in their prevalence. Such periodicities may be
driven by extrinsic factors, as reflected in periodic transmission rates, e.g., seasonality [25], or may be
caused by time delays (e.g., [26–28]) or nonlinearity of incidence rates. To describe the dynamics of
COVID-19, the authors in [28] used the stochastic epidemic model with bilinear incidence rate and
time-delay. In this study, we investigate the effects of weakening the bi-linearity assumption. As the
disease COVID-19 is spreading at very fast rate with an increasing infected population, it is more
realistic to consider the incidence of the form βS I(δI+1)

N(t) . Here, the notion N(t) is the total population
which is further divided into five disjoint compartments, namely, vulnerable S (t), exposed E(t),
infected I(t), quarantined Q(t), and recovered individuals R(t). To the best of our knowledge, in case
of COVID-19, researchers have given less attention to the stochastic modeling with such type of
incidence rates. Further, the authors discussed the qualitative analysis and controlling strategies that
were completely ignored. Therefore, in this research work, we aim to prove the considerable effect of
a stochastic factor on the dynamics and control of the COVID-19 epidemic model. Our model
assumes that the total population is constant and that the parameters governing disease transmission
and recovery are homogeneous across the entire population. This simplification may not accurately
reflect real-world variations, such as changes in population behavior or differing rates of disease
transmission across regions. The study relies on specific datasets for parameter estimation and model
validation. These datasets are limited to certain regions and time frames, which may not capture all
variations in disease dynamics. Consequently, the results may not be fully generalizable to other
contexts or populations. While our model effectively captures the impact of stochastic noise on
disease dynamics, it is sensitive to the choice of noise intensity parameters. Small changes in these
parameters can lead to significantly different outcomes, which may pose challenges in real-world
applications where precise parameter estimation is difficult. The stochastic nature of the model
requires extensive computational resources for simulations, especially when exploring a wide range of
noise intensities and control strategies. This may limit the model’s applicability in scenarios where
real-time analysis is required. The model and its conclusions are based on certain disease
characteristics and may not be directly applicable to other infectious diseases with different
transmission mechanisms or population structures. Further validation with different diseases and
contexts is necessary to extend the findings.

Chen and Kang [29] presented a stochastic vaccination model with backward bifurcation and
found that under some conditions, the smaller the intensity of the random perturbations is, the smaller
the distance between the solution of the stochastic system and the stable equilibrium of the
corresponding deterministic one. Cai et al. [30] discussed a stochastic susceptible-infected-recover
(S IRS ) epidemic model with nonlinear incidence rate and found stochastic perturbations can suppress
the disease outbreak. Zhang et al. [31] presented a stochastic SIRS model with standard incidence rate
and partial temporary immunity. Chang et al. [32] presented a stochastic SIRS epidemic model with
two different saturated incidence rates and got the thresholds which leads to the extinction or
persistence of the disease. These researches reveal that random fluctuations in the environment can

AIMS Mathematics Volume 9, Issue 11, 30413–30442.



30416

restrain the spread of the disease. In other words, the transmission capacity of infectious diseases
described by the deterministic model that ignores random perturbations is greater than their true
transmission capacity. In this paper, our concern is when random fluctuations are introduced to the
proposed system and whether they can also restrain the spread of the disease.

The paper is organized as follows. We developed the stochastic COVID-19 epidemic model in
Section 2. The existence of global nonnegative solutions as well as an analysis of their uniqueness are
examined in Section 3. Section 4 provides the necessary criteria for a stationary distribution to exist.
In Section 5, we deduce conditions of extinction. Moreover, we discuss optimal control strategies in
Section 6. To bolster our work in Section 7, numerical work in the form of simulations has been done.
Finally, we wrapped up our work in Section 8.

2. Mathematical model

To formulate the model, we will extend the model of Khan et al. [28] by incorporating the incidence
rate of the form βS I(δI+1)

N(t) and we will ignore the delay effect due to the fast spreading nature of the
disease. We introduce noise as a stochastic term in our model, where it plays a critical role in capturing
the random fluctuations in the system. In our normalized population model, the total population is
scaled to unity, meaning that each subpopulation (e.g., susceptible, infected) represents a fraction of the
total population. We define excessive noise as a level of stochastic fluctuation that becomes significant
compared to the size of the subpopulations. Since the total population is normalized, noise that exceeds
the corresponding subpopulation levels can cause unmanageable fluctuations, leading to dynamics that
may no longer be reflective of the real-world scenarios the model aims to capture. For example, if the
susceptible population constitutes 30% of the total population, noise levels approaching or exceeding
this proportion would be deemed excessive. At this point, the noise introduces random fluctuations that
overwhelm the deterministic trends in the model, potentially leading to unrealistic results. To capture
the dynamics of COVID-19, we will use five ordinary differential equations and initially we formulate
a deterministic mathematical model. The overall population is divided into five compartments i.e.,
S (t) + E(t) + I(t) + Q(t) + R(t) = N(t) with t as the independent variable. Following are the equations
that illustrate the model:

dS
dt

= b −
βS (t)I(t)(δI(t) + 1)

N
− (µ + d3 + η)S (t),

dE
dt

=
βS (t)I(t)(δI(t) + 1)

N
− (d2 + λ + µ)E(t),

dI
dt

= λE(t) − (ε + d1 + µ + γ)I(t),

dQ
dt

= d2E(t) + d1I(t) + d3S (t) − (τ + µ)Q(t),

dR
dt

= ηS (t) + γI(t) + τQ(t) − µR(t).

(2.1)

The flow for this model is depicted in Figure 1. We assumed the incidence rate of the form βS I(δI+1)
N

because the infection COVID-19 spread too quickly as the infected population tends to increase. Here,
the notion δ is a positive constant and biologically, it is a balance factor for the infected population.
This incidence function could reduce the mass action law βS I if we set δ = 0, which means the bilinear
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incidence rate is a special case of this function. To make the problem dimensionally homogenous, we
must assume the unit per individual for the parameter δ. The description for the rest of the parameters
are presented in Table 1.

Figure 1. Flowchart for the susceptible-exposed-infected-quarantine-recovered (SEIQR)
epidemic model.

Table 1. Values and units of parameters.

Notations Descriptions unit
b The constant rate of birth individual

unit time
β Coefficient of disease transmission rates 1

unit time
λ, τ, d1, d2, d3 The state transition rates 1

unit time
ε The rate at which people die due to the disease 1

unit time
µ The natural mortality rate 1

unit time
δ Balance factor for the infected individual 1

individual
η The rate at which the susceptible class transmits to the recovered class 1

unit time
γ The rate at which the infected individual moves to the recovered class 1

unit time
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The stochastic form of the deterministic system (2.1) is represented as follows:

dS (t) =

[
b −

βS (t)I(t)(δI(t) + 1)
N

− (d3 + η + µ)S (t)
]
dt + α1S dW1(t),

dE(t) =

[
βS (t)I(t)(δI(t) + 1)

N
− (d2 + λ + µ)E(t)

]
dt + α2EdW2(t),

dI(t) =

[
λE(t) − (ε + d1 + µ + γ)I(t)

]
dt + α3IdW3(t),

dQ(t) =

[
d2E(t) + d1I(t) + d3S (t) − (µ + τ)Q

]
dt + α4QdW4(t),

dR(t) =

[
ηS (t) + τQ(t) + γI(t) − µR

]
dt + α5RdW5(t).

(2.2)

Here, Wi(t), i = 1, ..., 5 are independent standard Brownian motions, and αi, i = 1, ..., 5 are the
intensities of the standard Gaussain white noises, respectively. The interaction between the
environment and individuals are presented by α1S dW1(t), α2EdW2(t), and α3IdW3(t),
α4QdW4(t), and α5RdW5(t).

3. Existence and uniqueness

In Section 3, we now emphasize that Theorem 2 establishes the existence and uniqueness of the
solution to the stochastic differential equations that describe the model. Specifically, the theorem
ensures that under the given assumptions, the stochastic system admits a unique stationary distribution,
which implies long-term persistence or eradication of the disease, depending on the model parameters.

Additionally, we have clarified that the existence of the model refers to the mathematical
formulation of the system, while existence and uniqueness of the solution refer to the behavior of the
system over time under stochastic influences.
Theorem 1. There is a unique solution (S (t), E(t), I(t),Q(t),R(t)) of system (2.2) on t ≥ 0 for any
initial value ζ(0) = (S (0), E(0), I(0),Q(0),R(0)) ∈ R5

+., and the solution will remain in R5
+ with

probability one, namely, (S (t), E(t), I(t),Q(t),R(t)) ∈ R5
+ for all t ≥ 0 almost surely.

Proof. For any ζ(0) ∈ R5
+, the coefficients of our model accurately fulfill the Lipschitz local criterion.

Consequently, ζ(t) represents a unique local solution for t ∈ [0, τe), where τe denotes the explosion
time ( [27]). We shall now demonstrate that the solution is still globally valid and establish τe = ∞

a.s. When k0 is large enough to ensure that k0 ≥ 0, the starting approximation S (0), E(0), I(0), Q(0)
and R(0) are in [ 1

k0
, k0]. We calculate the stopping time for k ≥ k0, as

τk(τe) = inf
{

t ∈ [0, τe) : max{S (t), E(t), I(t),Q(t),R(t)} ≥ k or min{S (t), E(t), I(t),Q(t),R(t)) ≤
1
k
}

}
.

(3.1)
In this study, we employ the concept of in fφ = ∞, where φ represents null set, in accordance with

the work of [33]. Since τk increases whenever k approaches to ∞, thus, limk→∞ τk = τ∞ along the
application of τ∞ ≤ τe a.s showing that τ∞ = ∞ a.s. Accordingly, this will ensure the that solution of
model (2.2) lies in R5

+ a.s., ∀ 0 ≤ t. To show that τe = ∞ a.s, if this assertion is false, then there exist a
pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T } > ε. (3.2)
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As a result, there is an integer k1 ≥ k0 such that

P{T ≥ τk} > ε, ∀ k1 ≤ k.

Consider a C2-mapping H : R5
+ → R̄+, where R̄+ = {x ∈ R : x ≥ 0}, by

H(S , E, I,Q,R) = (S −log S −1)+(E−log E−1)+(I−log I−1)+(Q−log Q−1)+(R−log R−1). (3.3)

Using the Itô′s formula in Eq (3.3) gives us

dH(S , E, I,Q,R) = LH(S , E, I,Q,R) + α1(S − 1)dW1(t) + α2(E − 1)dW2(t)
+ α3(I − 1)dW3(t) + α4(Q − 1)dW4(t) + α5(R − 1)dW5(t).

(3.4)

The differential operator L associated to H in the above relation is given by

L =
∂

∂t
+ (

∂

∂S
,
∂

∂E
,
∂

∂I
,
∂

∂Q
,
∂

∂R
) · h(S , E, I,Q,R),

where

H(S , E, I,Q,R) =

[
b −

βS I(δI + 1)
N

− (d3 + η + µ)S ,
βS I(δI + 1)

N
− (d2 + λ + µ)E, λE

−(ε + d1 + µ + γ)I, d2E + d1I(t) + d3S − (µ + τ)Q, γI + ηS + τQ(t) − µR
]T

.

Thus in Eq (3.4), LH : R5
+ → R+, and we can write

LH(S , E, I,Q,R) =

(
1 −

1
S

)(
b −

βS I(δI + 1)
N

− (η + µ + d3)S
)

+
α2

1

2

+

(
1 −

1
E

)(
βS I(δI + 1)

N
− (d2 + λ + µ)E

)
+
α2

2

2

+

(
1 −

1
I

)(
λE − (µ + ε + γ + d1)I

)
+
α2

3

2

+

(
1 −

1
Q

)(
d2E(t) + d1I + d3S − (µ + τ)Q

)
+
α2

4

2

+

(
1 −

1
R

)(
γI + τQ + ηS − µR

)
+
α2

5

2
.

(3.5)

LH(S , E, I,Q,R) = b − µ(S + E + I + Q + R) − εI −
b
S

+
βI(δI + 1)

N
+ (d3 + η + µ) −

βS I(δI + 1)
EN

+ (λ + µ + d2) −
λE
I

+ (µ + ε + γ + d1)

−
d2E
Q
−

d3S
Q
−

d1I
Q

+ (τ + µ) −
ηS
R
−
τQ
R
−
γI
R

+
α1

2 + α2
2 + α3

2 + α4
2 + α5

2

2

≤ b + β(1 + δ) + η + 5µ + d3 + λ + d2 + ε + γ + d1 + τ +
α1

2 + α2
2 + α3

2 + α4
2 + α5

2

2
:= K.
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Since K is a positive constant therein independent of S , E, I,Q,R, and t, we can get

dV(S , E, I,Q,R) ≤ Kdt + α1(S − 1)dW1(t) + α2(E − 1)dW2(t)
+ α3(I − 1)dW3(t) + α4(Q − 1)dW4(t) + α5(R − 1)dW5(t).

(3.6)

Integrating both sides (3.6) from 0 to T ∧ τk and taking expectations, we can obtain

EH(S (τk), E(τk), I(τk),Q(τk),R(τk)) ≥ H(S (0), E(0), I(0),Q(0),R(0)) < ∞, (3.7)

∀ k ≥ k1, assume T = Ωk & T ≥ τk, then P(Ωk) ≥ ε. Utilizing ω ∈ Ωk, for each, we find S (ω, τk),
E(ω, τk), I(ω, τk), Q(ω, τk), R(ω, τk) values of which are based on k or 1

k . Therefore, H(S (τk),E(τk, ω)),
I(τk),Q(τk), R(τk) is not less than

logk +
1
k
− 1orK − 1 − logk.

Consequently,

H(S (τk), E(τk), I(τk),Q(τk),R(τk)) ≥
(
logk +

1
k
− 1

)
∧

(
K − 1 − logk

)
. (3.8)

From Eqs (3.7) and (3.8), we have

KT + H(ζ(0)) ≥ E
[
1Ω(ω)H

(
S (τk), E(τk), I(τk,Q(τk),R(τk))

)]
≥ ε

[(
logk − 1 +

1
k

)
∧ (K − 1 − logk)

]
.

Here, 1Ω(ω) is used to represent the function indicator for Ωk. The contradiction develops when k
approaches infinity, that is,∞ > H

(
S (0), E(0), I(0),Q(0),R(0))

)
+ KT = ∞, showing that τ∞ = ∞ a.s.

4. The stationary distribution and extinction

We investigate the system’s proposed problem of stationary distribution (1). It really is easy to
make a deterministic system by putting α1 = α2 = α3 = α4 = α5 = 0, the present version; on the
other hand, is separate from its deterministic counterpart. Furthermore, we are aware that there is no
endemic equilibrium in the stochastic system. Because of this, a linear stability analysis cannot be
used to investigate the disease’s permanence; instead, we look at the system’s stationary distribution.
Finally, this indicates that the illness will continue to exist. We shall use a well-known Khasminskii
outcome for this [34]. Suppose

1
t

∫ t

0
x(r)dr =

〈
X(t)

〉
, (4.1)

and for M =
∫ t

0
u(s)dB(s), we have

〈M,M〉t =

∫ t

0
(u(s))2ds. (4.2)
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Lemma 1. By (Strong Law for large numbers) [35], if F = {F}t≥0 is a real-valued continuous local
martingale which goes away at t = 0, then

lim
t→∞

〈
F, F

〉
t = ∞,

⇒ lim
t→∞

Ft〈
F, F

〉
t

= 0, a.s.

and also,

lim
t→∞

sup
〈
F, F

〉
t

t
= 0,

⇒ lim
t→∞

Ft

t
= 0, a.s.

(4.3)

4.1. Stationary distribution

Different from the deterministic system (1.1), the stochastic system does not have the endemic
equilibrium. Hence, we cannot study the persistence of the disease by studying their stability of the
endemic equilibrium, and we turn to research the existence and uniqueness of the stationary distribution
for the system (1.2) which implies the persistence of the disease in some sense. To this end, we cite a
well-known result from Hasminskii [34]. Let X(t) be a regular time-homogeneous Markov process in
Rn + described by

b(X)dt +

k∑
r

σrdWr(t) = dX(t).

This is the display of the diffusion matrix:

k∑
r=1

σi
r(x)σr

j(x) = A(X) = (ai j(x)), ai j(x).

Lemma 2. By [34], the unique stationary distribution m(·) of the Markov process X(t) is dependent
upon the existence of a bounded domain U ∈ Rd with a regular boundary and its closure U ∈ Rd,
satisfying the following properties:

1) Within the open domain U and its surrounding areas, the diffusion matrix A(t)’s smallest
eigenvalue is bounded away from zero.

2) If x ∈ RdU, then S upx∈kExτ < ∞ for each compact subset K ⊂ Rn, and the time average “τ” at
which a region originating from x goes to the finite set U. Furthermore, if f (.) is a function that
can be integrated with respect to π, then∫

Rd
f (x)π(dx)

)
= 1 = P

(
lim
T→∞

1
T

∫ T

0
f (Xx(t))dt.

Disease-free equilibrium in the deterministic model & the concerned stochastic system has a
threshold value is given by

Rd
0 =

µβλ(
d3 + η + µ

)(
d2 + λ + µ

)(
γ + µ + ε + d1

) . (4.4)
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Following [36] and keeping in view the expression from Rd
0, we can define a threshold parameter

for the stochastic system of the form

Rs
0 =

µβλ(
d3 + η + µ +

α2
1

2

)(
d2 + λ + µ +

α2
2

2

)(
γ + µ + ε + d1 +

α2
3

2

) . (4.5)

Theorem 2. If RS
0 > 1, then the root (S (t), E(t), I(t),Q(t),R(t)) of model (2.2) is ergodic and there is

only one stationary distribution π(.).
Proof. We demonstrate that, under condition (2) of Lemma 2, we need to construct a nonnegative
C2−function V : R5

+ → R+. To this end, we first define

V1 = N + c1(− ln S ) + c2(− ln E) + c3(− ln I),

where it is necessary to identify the values of the three constants referred to in the problem, namely,
c1, c2, and c3. We can calculate system (2.2) using Itô’s formula.

L(S + E + I + Q + R) =b − µ(N(t)) − εI,

L(− ln S ) = −
b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
,

L(− ln E) = −
βS I(δI + 1)

NE
+ λ + µ + d2 +

α2
2

2
,

L(− ln I) = −
λE
I

+ (µ + ε + γ + d1) +
α2

3

2
,

L(− ln Q) = −
d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
,

L(− ln R) = −
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
.

(4.6)

Therefore, we have

LV1 = b − µ(S , E, I,Q,R) − εI −
c1b
S

+
c1βI(1 + δI)

N
+ c1(η + µ + d3) + c1

α2
1

2

−
c2βS I(1 + δI)

NE
+ c2(λ + µ + d2) +

c2α
2
2

2
−

c3λE
I

+ c3(µ + ε + γ + d1) +
c3α

2
3

2
.

The above implies that

LV1 ≤ − 4
[
µ(N(t)) ×

c1b
S
×

c2βS I
(N(t))E

× c3
λE
I

] 1
4

b − εI +
c1βI(δI + 1)

N
+ c1

(
η + µ + d3) +

α2
1

2

)
−

c2βS I2

NE
+ c2

(
λ + µ + d2 +

α2
2

2

)
+ c3

(
µ + ε + γ + d1 +

α2
3

2

)
.
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Let

c1

(
d3 + η + µ) +

α2
1

2

)
= c2

(
d2 + λ + µ +

α2
2

2

)
= c3

(
µ + ε + γ + d1 +

α2
3

2

)
= b,

namely,

c1 =
b(

d3 + η + µ +
α2

1
2

) ,
c2 =

b(
d2 + λ + µ +

α2
2

2

) ,
c3 =

b(
µ + ε + γ + d1 +

α2
3

2

) .
(4.7)

Consequently,

LV1 ≤ −4


 b4µβλ(

d3 + η + µ +
α2

1
2

)(
µ + λ + d2 +

α2
2

2

)(
µ + ε + γ + d1 +

α2
3

2

)


1
4

− b


+ c1

βI(1 + δI)
N

− c2
βS I2

NE
− εI(t) (4.8)

LV1 ≤ −4b
[
(RS

0 )1/4 − 1
]

+ c1
βI(δI + 1)

N
.

Furthermore, we acquire

V2 = c4(N + c2(− ln E) + c3(− ln I) + c1(− ln S )) − (ln S + ln R + ln Q) + N(t)
= (1 + c4)(S + E + I + Q + R) − [ln R + c3c4 ln I + ln Q + c2c4 ln E + (1 + c1c4) ln S ],

where c4 > 0 represents a constant to be determined later. It can be readily obtained that

lim inf
(S ,E,I,Q,R)∈R5

+\Up

V2(S , E, I,Q,R) = +∞, as p→ ∞, (4.9)

where ( 1
p , p) × ( 1

p , p) × ( 1
p , p) = Up.

Following that, we will show that V2(S , E, I,Q,R) has unique minimum value V2(S 0, E0, I0,Q0,R0).
With respect to Q,R, I, S , E, the partial derivative of V2(S , E, I,Q,R) is as follows:

∂V2(S , E, I,Q,R)
∂S

= c4 −
1 + c1c4

S
+ 1,

∂V2(S , E, I,Q,R)
∂E

= −
c2c4

E
+ 1 + c4,

∂V2(S , E, I,Q,R)
∂I

= 1 −
c3c4

I
+ c4,

∂V2(S , E, I,Q,R)
∂Q

= −
1
Q

+ 1 + c4,

∂V2(S , E, I,Q,R)
∂R

= 1 −
1
R

+ c4.

AIMS Mathematics Volume 9, Issue 11, 30413–30442.



30424

It is easy to demonstrate that V2 has a only one stagnation point.

(S (0), E(0), I(0),Q(0),R(0)) =

[
(
1 + c1c4

1 + c4
,

c2c4

c4 + 1
,

c4c3

c4 + 1
,

1
c4 + 1

,
1

c4 + 1

)
].

Furthermore, the Hessian matrix of V2(S , E, I,Q,R) at (S (0), E(0), I(0),Q(0),R(0)) is

Λ =



1+c1c4
S 2(0) 0 0 0 0

0 c2c4
E2(0) 0 0 0

0 0 c3c4
I2(0) 0 0

0 0 0 1
Q2(0) 0

0 0 0 0 1
R2(0)


.

This shows that Λ is obviously a nonnegative definite matrix. Therefore, V2(S ,Q, E, I,R) has a
minimum value V2(S 0, E0, I0,Q0,R0).

According to Eq (4.9), and the continuity of V2(S , E, I,Q,R), we can conclude that in the interior
of V2(S , E, I,Q,R) has a only one minimum value V2(S (0), E(0), I(0),Q(0),R(0)) belonging to R5

+.
Moreover, we take into account a nonnegative C2− mapping V : R5

+ → R+ as follows:

V(S , E, I,Q,R) = V2(S , E, I,Q,R) − V2(S (0), E(0), I(0),Q(0),R(0)).

Ito’s formula can be used to derive the proposed model.

L(V) ≤ c4

{
− 4b

[
− 1 + (R̃S

0 )1/4
]

+ c1
βI(δI + 1)

N

}
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2

−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN(t),

(4.10)

the conclusion of which is as follows

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µ(Q + E + S + I + R),

(4.11)

where
C5 = 4b

[
− 1 + (RS

0 )1/4
]
> 0.

The set Di represents a sequence of domains used to control the behavior of the solution and ensure
it remains within a feasible region. The set Di is chosen based on the dynamics of the system to
prevent the solution from approaching critical boundaries, such as zero or infinity. The following step
is to define the set.

D = {ε1 < S <
1
ε2
, ε1 < E <

1
ε2
, ε1 < I <

1
ε2
, ε1 < Q <

1
ε2
, ε1 < R <

1
ε2
},
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where εi > 0(i = 1, 2, 3, ......10) indicate small constants that will be evaluated hereafter.
To investigate the convenience, R5

+\D can be divided into the ten domains listed below,

D1 =

{
(S , E, I,Q,R) ∈ R5

+, 0 < S ≤ ε1

}
,

D2 =

{
(S , E, I,Q,R) ∈ R5

+, 0 < E ≤ ε1, S > ε2

}
,

D3 =

{
(S , E, I,Q,R) ∈ R5

+, 0 < I ≤ ε1, E > ε2

}
,

D4 =

{
(S , E, I,Q,R) ∈ R5

+, 0 < Q ≤ ε1, I > ε2

}
,

D5 =

{
(S , E, I,Q,R) ∈ R5

+, 0 < R ≤ ε1,Q > ε2

}
,

D6 =

{
(S , E, I,Q,R) ∈ R5

+, S ≥
1
ε2

}
,

D7 =

{
(S , E, I,Q,R) ∈ R5

+, E ≥
1
ε2

}
,

D8 =

{
(S , E, I,Q,R) ∈ R5

+, I ≥
1
ε2

}
,

D9 =

{
(S , E, I,Q,R) ∈ R5

+,Q ≥
1
ε2

}
,

D10 =

{
(S , E, I,Q,R) ∈ R5

+,R ≥
1
ε2

}
.

Next, we will demonstrate that LV(S , E, I,Q,R) < 0 on R5
+\D using the same method from the ten

domains mentioned above.
Case 1. According to Eq (4.11), if (S , E, I,Q,R) ∈ D1, we acquire

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN

≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
ε1

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN.

Choosing ε1 > 0 yields

LV < 0 whenever (S , E, I,Q,R) ∈ D1. (4.12)

Case 2. By Eq (4.11), if (S , E, I,Q,R) ∈ D2, we acquire

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN
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≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (d3 + η + µ) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µ

ε2

ε1
.

Let ε2
1 = ε2. We can chose sufficiently enough large c4 > 0 and a small enough ε1 > 0 so that we

can obtain

LV < 0 whenever (S , E, I,Q,R) ∈ D2. (4.13)

Case 3. By Eq (4.11), if (S , E, I,Q,R) ∈ D3, we acquire

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN

≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µ

ε1

ε2
.

We can set a small enough ε1 > 0 so that we can obtain

LV < 0 whenever (S , E, I,Q,R) ∈ D3. (4.14)

Case 4. By Eq (4.11), if (S , E, I,Q,R) ∈ D4, we acquire

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN

≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1ε2

ε1

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN.

We can set a small enough ε2 > 0 so that we can obtain

LV < 0 whenever (S , E, I,Q,R) ∈ D4. (4.15)

Case 5. According to Eq (4.11), if (S , E, I,Q,R) ∈ D5, we acquire

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN
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≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τε2

ε1
−
γI
R

+
α2

5

2
+ b − µN.

We choose a small ε2 > 0 so that we can obtain

LV < 0 whenever (S , E, I,Q,R) ∈ D5. (4.16)

Case 6. By Eq (4.11), if (S , E, I,Q,R) ∈ D6, we acquire

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN

− c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b −

µ

ε2
.

We may select a small enough ε2 > 0 so that we can obtain

LV < 0 whenever (S , E, I,Q,R) ∈ D6. (4.17)

Case 7. By Eq (4.11), if (S , E, I,Q,R) ∈ D7, we acquire

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (d3 + η + µ) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN

≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (d3 + η + µ) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b −

µ

ε2
.

We choose a small ε2 > 0 so that we can obtain

LV < 0 whenever (S , E, I,Q,R) ∈ D7. (4.18)

Case 8. If (S , E, I,Q,R) ∈ D8, from Eq (4.11), we have

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (d3 + η + µ) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN
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≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (d3 + η + µ) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b −

µ

ε2
.

We can choose a small ε2 > 0 so that we can obtain

LV < 0 whenever (S , E, I,Q,R) ∈ D8. (4.19)

Case 9. By Eq (4.11), if (S , E, I,Q,R) ∈ D9, we acquire

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN

≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (d3 + η + µ) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b −

µ

ε2
.

If ε1 > 0, then we can find

LV < 0 whenever (S , E, I,Q,R) ∈ D9. (4.20)

Case 10. If (S , E, I,Q,R) ∈ D10, from Eq (4.11), we have

LV ≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (d3 + η + µ) +

α2
1

2
−

d2E
Q
−

d3S
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b − µN

≤ −c4c5 + (c1c4 + 1)
βI(δI + 1)

N
−

b
S

+
βI(δI + 1)

N
+ (η + µ + d3) +

α2
1

2
−

d3S
Q
−

d2E
Q
−

d1I
Q

+ (µ + τ) +
α2

4

2
−
ηS
R
−
τQ
R
−
γI
R

+
α2

5

2
+ b −

µ

ε2
.

We can choose sufficiently small ε2 > 0 so we can obtain

LV < 0 whenever (S , E, I,Q,R) ∈ D1. (4.21)

In conclusion, from 4.13 to 4.21, we can see that there exists a positive constant W > 0 such that

LV(S , E, I,Q,R) < −W < 0 for all (S , E, I,Q,R) ∈ R5
+\D.

Hence,

dV(S , E, I,Q,R) < [(1 + c4)S − (1 + c4c1)α1]dW1(t) + [(1 + c4)E − c2c4α2]dW2(t)
+ [(1 + c4)I − c3c4α3]dW3(t) + [(1 + c4)Q − α4]dW4(t)
+ [(1 + c4)R − α5]dW5(t) −Wdt.

(4.22)
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Let (S (0), E(0), I(0),Q(0),R(0)) = (x1, x2, x3, x4, x5) = x ∈ R5
+\D, the time τx when a region

originating from x approaches to D, min{τx, t, τk} = τ(k)(t), and τk = inf{t suchthat |X| = k}.

τk = in f {t suchthat |X| = k}

and

τ(k)(t) = min{t, τk, τ
x}.

Using Dynkins formula, we take expectation and integrate both sides of the Eq (4.22) from zero to
τ(k)(t),

EV(Q(τ(k)(t)),R(τ(k)(t)), I(τ(k)(t)) − V(x)S (τ(k)(t)), E(τ(k)(t)))

= E

∫ τ(k)(t)

0
LV(R(u), I(u),Q(u), E(u),

S (u))du

≤ E

∫ τ(k)(t)

0
−Wdu = −WEτ(k)(t).

Since V(x) is positive, hence
V(x)
W
≥ Eτ(k)(t).

The proof of the outcome from Theorem 2 implies that P(τe = ∞) = 1. In other words, the
system (2.2) is regular.

Therefore, we have that τ(k)(t) tends to τxalmost surely as k tends to ∞ and t → ∞. As a result,
with the assistance of Fatou’s lemma, we arrive at

∞ >
V(x)
W
≥ Eτ(n)(t).

Obviously, supx∈K Eτ
x < ∞, where K denotes a compact subset of R5

+. Consequently, condition (2)
of Lemma 2 holds. Moreover, the model (2.2) diffusion matrix is provided by

B =


α2

1S 2 0 0 0 0
0 α2

2E2 0 0 0
0 0 α2

3I2 0 0
0 0 0 α2

4Q2 0
0 0 0 0 α2

5R2


.

Consider M = min(S ,E,I,Q,R)∈D∈R5
+
{σ2

1Q2, σ2
2E2, σ2

3I2, α2
4S 2, α2

5R2}, and we have

5∑
i, j=1

ai j(S , E, I,Q,R)ξiξ j = α2
1S 2ξ2 + α2

2E2ξ2
2 + α2

3I2ξ2 + α2
4ξ

2
4Q2 + α2

5ξ
2
5R2 ≥ M|ξ|2, (Q, S , I, E,R) ∈ D,

where ξi, i = 1, 2, 3, 4, 5 = ξ ∈ R5
+.

By applying Lemma 2 and verifying that condition (1) of Lemma 2 holds, we have established that
the diffusion matrix of the system is nondegenerate and bounded away from zero in the domain D.
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Furthermore, we have shown that the stopping time is τk → ∞ as k → ∞, ensuring that the system’s
solution remains in the positive region R5

+ with probability one. Thus, conditions (1) and (2) of
Lemma 2 are satisfied, implying the existence of a unique stationary distribution for the stochastic
system. This stationary distribution reflects the long-term persistence of the disease within the
population. Therefore, the statement of Theorem 2 is fully proved.

5. Extinction

Concerning the disease’s extinction, the following information is available to us.
Lemma 3. Assume a solution (s(t), E(t), I(t),Q(t),R(t)) of system (2.2) with starting condition
(S (0), E(0), I(0),Q(0),R(0)) ∈ R5

+, then

lim
t→∞

(S (t), E(t), I(t),Q(t),R(t)) < ∞, a.s.

Further, the root of the model has the following properties:
limt→∞

S (t)
t =: 0, limt→∞

E(t)
t =: 0,

limt→∞
I(t)

t =: 0, limt→∞
Q(t)

t =: 0,
limt→∞

R(t)
t =: 0 a.s.,

(5.1)

and 
limt→∞

ln S (t)
t = 0, limt→∞

ln E(t)
t = 0,

limt→∞
ln I(t)

t = 0, limt→∞
ln Q(t)

t = 0,
limt→∞

ln R(t)
t = 0 a.s.

(5.2)

Furthermore, when µ > 1
2 (α2

1 ∨ α
2
2 ∨ α

2
3 ∨ α

2
4 ∨ α

2
5) holds, then

lim
t→∞

1
t

∫ t

0
S (r)dW1(r) = 0, lim

t→∞

1
t

∫ t

0
E(r)dW2(r) = 0,

lim
t→∞

1
t

∫ t

0
I(r)dW3(r) = 0, lim

t→∞

1
t

∫ t

0
Q(r)dW4(r) = 0,

lim
t→∞

1
t

∫ t

0
R(r)dW5(r) = 0 a.s.

(5.3)

Proof. The proof follows the same approach as the proof of Lemma 4.1 in [37]. Therefore, we omit
the details here.
Theorem 3. Let µ > ( 1

2 )(α2
1 ∨ α

2
2 ∨ α

2
3 ∨ α

2
4 ∨ α

2
5), then (R(0), S (0),Q(0), I(0), E(0)) ∈ R5

+, and if

R̃s
0 =

2λβ(1 + δ)(λ + µ + d2)

(d2 + µ + ε + γ +
α2

3
2 )(d2 + λ + µ)2 ∧ (λ2 α

2
2

2 )
(5.4)

holds, then
lim
t→∞

I(t) = 0 = lim
t→∞

E(t) a.s. (5.5)
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Moreover,

lim
t→∞
〈S 〉 =

b
η + µ + d3

= S 0,

lim
t→∞
〈Q〉 =

bd3

(η + µ + d3)(µ + τ)
= Q0,

lim
t→∞
〈R〉 =

b(η(µ + τ) + τd3)
µ(η + µ + d3)(µ + τ)

= R0 a.s.

(5.6)

Proof. Define a function W0, which is differentiable as follows:

W0 = ln[λE(t) + (λ + µ + d2)I(t)]. (5.7)

According to Ito’s formula and model (2), we acquire

dW0 =

{
λβS I(1 + δI)

N[λE(t) + (λ + µ + d2)I(t)]
+

(λ + µ + d2)(µ + ε + γ + d1)
N[λE(t) + (λ + µ + d2)I(t)]

−
λ2α2

2E2 + (λ + µ + d2)α2
3I2

2(λE(t) + (λ + µ + d2)I(t))2

}
dt

+
λα2E

λE(t) + (λ + µ + d2)I(t)
dW2 +

(λ + µ + d2)α3I
λE(t) + (λ + µ + d2)I(t)

dW3

=

{
λβ(1 + δI)

(λ + µ + d2)
−

(µ + ε + γ + d2 +
α2

3
2 )(λ + µ + d2)2I2 + (λ2 α

2
2

2 E2)
[λE(t) + (d2 + λ + µ)I(t)]2

}
dt

+
λα2E

λE(t) + (λ + µ + d2)I(t)
dW2 +

(d2 + λ + µ)α3I
λE(t) + (d2 + λ + µ)I(t)

dW3

(5.8)

=

{
λβ(1 + δ)

(λ + µ + d2)
−

(µ + ε + γ + d2 +
α2

3
2 )(λ + µ + d2)2 ∧ (λ2 α

2
2

2 )
(λ + µ + d2)2

}
dt

+
λα2E

λE(t) + (d2 + λ + µ)I(t)
dW2 +

(d2 + λ + µ)α3I
λE(t) + (d2 + λ + µ)I(t)

dW3.

Divide by t on both sides of (5.8) and integrate from 0 to t. Also by Lemma 3, we have

lim sup
t→∞

ln[αE(t) + (α + µ)I(t)]
t

≤
λβ(1 + δ)

(λ + µ + d2)
−

(µ + ε + γ + d2 +
α2

3
2 )(λ + µ + d2)2 ∧ (λ2 α

2
2

2 )
2(d2 + λ + µ)2 < 0 a.s.,

(5.9)

which illustrates that

lim
t→∞

I(t) = 0 = lim
t→∞

E(t) a.s. (5.10)

Furthermore, the first equation of system (2) can be divided by t on both sides and integrated from
zero to t to get a solution.

S (t) − S (0)
t

= Π − β
〈S I

N

〉
− (ξ + µ) 〈S 〉 +

α1

t

∫ t

0
S (r)dW1(r), (5.11)
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which follows if we examine (5.10) and Lemma 3

lim
t→∞
〈S 〉 =

b
η + µ + d3

= S 0 a.s. (5.12)

lim
t→∞
〈Q〉 =

bd3

(η + µ + d3)(µ + τ)
= Q0 a.s. (5.13)

lim
t→∞
〈R〉 =

b(η(µ + τ) + τd3)
µ(η + µ + d3)(µ + τ)

= R0 a.s. (5.14)

The proof for Theorem 3 has been completed.

6. Optimal control

Stochastic control of system (2) will take the same form as before, taking the same control
variables into account.

dS =

[
b −

βS I(δI + 1)
N

− (d3 + η + µ + u1)S
]
dt + α1S dW1(t),

dE =

[
βS I(δI + 1)

N
− (d2 + λ + µ)E

]
dt + α2EdW2(t),

dI =

[
λE − (d1 + µ + ε + γ + u2)I

]
dt + α3IdW3(t),

dQ =

[
(u1 + d3)S + (u2 + d1)I + d2E − (µ + τ)Q

]
dt + α4QdW4(t),

dR =

[
τQ + γI + ηS − µR

]
dt + α5RdW5(t).

(6.1)

with the initial data

S (0) > 0, E(0) ≥ 0, I(0) ≥ 0,Q(0) ≥ 0,R(0) > 0.

We establish a vector of the form for the purpose of simplicity.

[z1, z2, z3, z4, z5]′ = z(t), u(t) = [u2, u1]′,

and

dz(t) − g(z)dw(t) = f (z, u)dt,

where the time functions zi and ui are used. It is also possible to represent the initial data in the form
of

z(0) = [z1, z2, z3, z4, z5]′(0) = z0.
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The following vector components are represented by the functions g and f.

f1(x(t), u(t)) =

[
b −

βS I(δI + 1)
N

− (d3 + η + µ + u1)S
]
dt + α1S dW1(t),

f2(x(t), u(t)) =

[
(
βS I(δI + 1)

N
− (d2 + µ + λ)E

]
dt + α2EdW2(t),

f3(x(t), u(t)) =

[
λE − (d1 + µ + u2 + ε + γ)I

]
dt + α3IdW3(t),

f4(x(t), u(t)) =

[
(u1 + d3)S (t) + d2E(t) + (u2 + d1)I − (τ + µ)Q

]
dt + α4QdW4(t),

f5(x(t), u(t)) =

[
γI + ηS + τQ − µR

]
dt + α5RdW5(t),

(6.2)

g1 = α1S , g2 = α2E, g3 = α3I, g4 = α4Q, g5 = α5R. In addition, we take into account the quadratic
cost functional

J(u) =
1
2

E
{ ∫ t f

0

(
A1I + A2

u2
1(t)
2

+ A3
u2

2(t)
2

)
dt +

k1

2
S 2 +

k2

2
E2 +

k3

2
I2 k4

2
Q2 +

k5

2
R2

}
,

where A1, A2, A3, ki f ori = 1, 2, ...5 are nonnegative constants. In order to achieve our main objective,
we must find a control u∗(t) = (u∗2(t), u∗1(t)) that allows us to perform this.

J(u) ≥ J(u∗), f or every u ∈ U.

In this case, the set U denotes permissible controls.

{u j(t) : u j(t) ∈ [0, umax
j ] = U, t ∈ (0, t f ] ∀u j ∈ L2[0, t f ], where j = 1, 2}.

Here, umax
j , where j = 1, 2 is real and nonnegative. ˜Hamiltoniana for the given system must first

be defined before the stochastic maximum principle can be applied to the system.

G(z, u,m, n) = 〈g(z), n〉 − l(z, u) + 〈 f (z, u),m〉 , (6.3)

where the inner product space of Euclidean is represented by 〈., .〉 while the adjoint vectors systems
[m1,m2,m3,m4,m5]′ = m and [n1, n2, n3, n4, n5]′ = n are different. The following is a direct expansion
of the maximum principle

−g(z∗(t))dW(t) + dz∗(t) =
∂G(u∗, z∗,m, n)

∂m
dt. (6.4)

−n(t)dW(t) + dm∗(t) =
∂G(z∗, u∗,m, n)

∂z
dt. (6.5)

min
u∈U

Gm(z∗, u∗,m, n) = Gm(z∗, u∗,m, n), (6.6)

where z∗(t) represent the optimal path for z(t). The conditions for the start and end of Eqs (6.4) and
(6.5) are

z0 = z∗(0) (6.7)

−
∂h(z∗(t f ))

∂z
= m(t f ), (6.8)
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respectively. There is a mapping between “m(t), n(t),” and “z*(t)” in the optimal control, as shown in
the Eq (6.6).

u∗(t) = φ(z∗,m, n). (6.9)

As a result, the Hamiltonian in the given case is

H =

(
A1I + A2

u2
1(t)
2

+ A3
u2

2(t)
2

+
k1

2
S 2 +

k2

2
V2 +

k3

2
E2 k4

2
I2 +

k5

2
R2

)
+ p1

(
b −

βS I(δI + 1)
N

− (η + µ + d3 + u1)S
)

+ p2

(
βS I(δI + 1)

N
− (d2 + λ + µ)E

)
+ p3

(
λE − (d1 + u2 + µ + ε + γ)I

)
+ p4

(
(u1 + d3)S + d2E(t) + (u2 + d1)I − (τ + µ)Q

)
+ p5

(
ηS + τQ + γI − µR

)
+ α1S q1 + α2Eq2 + α3Iq3 + α4Qq4 + α5Rq5.

(6.10)

It is suggested by the stochastic maximum principle that

−n(t)dW(t) + dm∗(t) =
∂G(m, x∗, u∗, n)

∂x
dt. (6.11)

We obtain

dm1

dt
= (m1(t) − m2(t))

βI(δI + 1)
N

+ (d3 + µ + u1(t) + η)m1(t) − (u1(t) + d3)m4(t) − ηm5 + α1n1,

dm2

dt
= m2(t)(d2 + λ + µ) − m3(t)λ − d2m4(t) + α2n2,

dm3

dt
= −A1 + (m1(t) − m2(t))

βS (1 + δ)
N

+ n3(t)(µ + ε + γ + d1 + u2) − m4(u2 + d1) − γm5 + α3n3,

dm4

dt
= m4(t)(µ + τ) − τp5(t) + α4n4,

dm5

dt
= µm5(t) + α5n5.

(6.12)

The auxiliary starting and ending criteria are also listed.

S ∗(0) = Ŝ , E∗(0) = Ê, I∗(0) = Î, Q∗(0) = Q̂, R∗(0) = R̂, m(t f ) = −
∂h(x∗(t f ))

∂x
, (6.13)

and

h(S , E, I,Q,R) =
k1

2
S 2 +

k2

2
E2 +

k3

2
I2 k4

2
Q2 +

k5

2
R2, (6.14)
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where m1(t f ) = −k1S , m2(t f ) = −k2E, m3(t f ) = −k3I, m4(t f ) = −k4Q, m5(t f ) = −k5R, . Now,
by differentiating the Hamiltonian equation with respect to u1 and u2, we get the following optimal
controls u∗1 and u∗2:

max
{

min
{
1,

1
W1

(m1 − m4)S ∗
}
, 0

}
= u∗1

max
{

min
{
1,

1
W2

(m3 − m4)I∗
}
, 0

}
= u∗2.

(6.15)

7. Numerical simulation

In the context of our stochastic modeling, we recognize the importance of providing a more
comprehensive view of the inherent variability in our system. As such, we have incorporated
confidence intervals in the figures to quantify the uncertainty around our estimates. Confidence
intervals represent the range within which the system’s state variables are expected to fluctuate due to
the stochastic effects present in the model.

We will include a detailed explanation of how the level of noise is quantified relative to the sub-
populations. Specifically:

• Low noise: Minor fluctuations that don’t significantly affect the deterministic dynamics.
• Moderate noise: Fluctuations that introduce variability but still allow the population to follow

predictable patterns over time.
• Excessive noise: Fluctuations on the same order of magnitude as the subpopulations (or higher),

where random events can push the infected population toward extinction or cause erratic behavior.

For each simulated trajectory, we computed confidence intervals based on multiple realizations of
the stochastic process. These intervals offer a visual representation of the range of potential outcomes,
allowing for a better understanding of the variability in the disease dynamics. Specifically, 95%
confidence intervals have been included in all figures to indicate the range in which the true values of
the state variables lie, with 95% certainty.

Additionally, we have added stationary distributions to represent the long-term behavior of the
system under stochastic influences. The stationary distribution reflects the equilibrium state that the
system tends to settle into over time, despite random fluctuations. This distribution is crucial for
understanding the persistent nature of the epidemic under stochastic dynamics.

The inclusion of both confidence intervals and stationary distributions enriches the analysis by
highlighting the impact of stochasticity on the system’s behavior, providing a clearer picture of both the
short-term dynamics and the long-term tendencies of the epidemic model. In the following simulations,
we consider three distinct cases to explore the different behaviors of the epidemic model under varying
parameter settings. Each case corresponds to different combinations of the infection rate, recovery rate,
and other model parameters:

• Case 1: Low infection rate and high recovery rate, simulating conditions leading to disease
eradication.
• Case 2: Moderate infection rate and recovery rate, representing an endemic scenario where the

disease persists.
• Case 3: High infection rate and low recovery rate, modeling a severe outbreak scenario.
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These cases allow us to study the impact of different epidemiological factors on the dynamics of
disease spread and control. Based on the deterministic S EIQR system, this stochastic system is a
coupled system (2.1). Stochastic first order Runge Kutta approach is used to simulate numerical
solution for system (2.2). Initially, in this section, we will show how to derive the stochastic Runge
Kutta scheme for the system (2.2).

S tn+1 = S tn +
[
b − β

N S tn Itn(1 + δItn) − (η + µ + d3)S tn

]
∆tn + α1S tn∆W1,tn +

α2
1S tn

(
(∆W1,tn)

2 − ∆tn

)
2
√

∆tn
,

Etn+1 = Etn +
[
β

N S tn Itn(1 + δItn) − (λ + µ + d2)Etn

]
∆tn + α2tn∆W2,tn +

α2
2Itn

(
(∆W2,tn)

2 − ∆tn

)
2
√

∆tn
,

Itn+1 = Itn +
[
λEtn − (µ + ε + γ + d1)Itn

]
∆tn + α3tn∆W3,tn +

α2
3Itn

(
(∆W3,tn)

2 − ∆tn

)
2
√

∆tn
,

Qtn+1 = Qtn +
[
d3S tn + d2Etn + d1Itn − (µ + τ)Qtn

]
∆tb + α4Qtn∆W4,tn +

α2
4Qtn

(
(∆W4,tn)

2 − ∆tn

)
2
√

∆tn
,

Rtn+1 = Rtn +
[
ηS tn + τQtn + γItn − µRtn

]
∆tn + α5RtndW5,tn +

α2
5Rtn

(
(∆W5,tn)

2 − ∆tn

)
2
√

∆tn
.

(7.1)
Here, ∆Wi,tn = Wi,tn+1 −Wi,tn , for i = 1, ..., 5 represents the independent increments of the Gaussian

Brownian motion and ∆tn = tn+1 − tn represents the time increment. In our case, we restrict ourself to
a constant time step ∆tn = ∆t. 1000 equally spaced time increments are used to divide the interval. We
numerically solve the S EIQR system (2) using the theoretical results shown above, with a number of
randomly generated initial conditions. We run our code for generating three simulations. The first one
is based on the choice of the parameter used in [28]. Similar choices of the parameter are used for the
second and the third tests up to the parameter β. A list of the parameters that were used is provided in
Table 2. For the mean solution, we generate 1000 realizations. The following correlation coefficients
αi for i = 1, 2, ..., 5 with values in the range (0, 1) are set for the three simulations by applying randomly
chosen values to the uniform random generator. The following three scenarios are examined (see Table
2).

AIMS Mathematics Volume 9, Issue 11, 30413–30442.



30437

Table 2. List of parameters.

Case 1 Case 2 Case 3
b 0.028 0.028 0.028
β 0.5 0.25 0.25
η 0.6 0.6 0.6
µ 0.011 0.011 0.011
λ 0.3 0.3 0.3
d1 0.2 0.2 0.1
d2 0.08 0.08 0.08
d3 0.06 0.06 0.06
γ 0.3 0.3 0.3
τ 0.1 0.1 0.1
ε 0.3 0.3 0.3
α1 0.18246 0.21812 0.21812
α2 0.02604 0.24036 0.24036
α3 0.05651 0.01435 0.01435
α4 0.10657 0.14235 0.14235
α5 0.03730 0.22544 0.22544
S 0 0.14387 0.13228 0.13228
Q0 0.27990 0.08732 0.08732
I0 0.16027 0.27961 0.27961
R0 0.27943 0.22923 0.22923
E0 0.13645 0.27153 0.27153

All of the individuals’ initial values are chosen at random in the range of zero to one in the closed
region [0, 1]. For each step time, we establish the normatization

1 = N(t), for every t > 0.

It should be noted that model (2) operates based on five distinct independent white noises denoted
as ∆Wi(t) for i = 1, 2, ..., 5. The fourier series is being used to approximate the multiple stochastic
integrals in order to assure the first order of our numerical approach [38].

Based on these values of parameters, we estimated both the parameters Rd
0 and Rs

0. It was obsreved
that both the parameters are greater than one, therefore, the endemic equilibrium must exist in case of
the deterministic model and the stochastic model should have a unique stationary distribution. To verify
these facts numerically, we plotted Figures 2–4, which shows sample realizations of the stochastic
S EIQR model (2.2). The corresponding mean solution is generated out of 1000 realizations. In the
end, we concluded that outcomes in system (2.1) were satisfied by the simulations of Tests 1–3, namely,
(S (t), E(t), I(t),Q(t),R(t)) ∈ R5

+ for some 0 ≤ t. In addition, all S EIQR numerical stability has been
verified in a series of tests (2.2). One can notice from the figures that the stochastic curves fluctuate
around the endemic equilibrium, which in turns, shows the global stability of the endemic equilibrium
of the associated deterministic system. Simulated trajectories of the infected population with 95%
confidence intervals (shaded area) and corresponding stationary distribution, and simulated trajectories
of the recovered population with 95% confidence intervals and stationary distribution are shown.
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Figure 2. Simulation of Case 1.
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Figure 3. Simulation of Case 2.
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Figure 4. Simulation of Case 3.

8. Conclusions

In this study, we have developed a novel stochastic epidemic model and demonstrated the
existence of an ergodic stationary distribution, highlighting the role of noise in affecting disease
dynamics. Unlike traditional deterministic models, our stochastic approach provides a more realistic
representation of real-world uncertainties by capturing the randomness in disease transmission and
recovery processes. This novel framework shows that noise can significantly influence the persistence
of an epidemic and, in extreme cases, lead to extinction or recurrence of outbreaks. These findings
contribute to the growing body of research on stochastic epidemic models, offering new perspectives
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on how randomness shapes epidemic outcomes.
Our study builds upon the extensive work done in epidemic modeling, particularly on the stochastic

S EIR and S EIQR models. Previous works, such as those by Rihan and Alsakaji [23], Zhang et al. [31],
and Cai et al. [30], introduced stochastic perturbations and nonlinear incidence rates to capture the
uncertainties in disease transmission. However, these models often did not incorporate quarantine
dynamics, which are crucial for COVID-19.

In contrast, our model extends this body of work by incorporating a quarantine class alongside
stochastic perturbations driven by Brownian motion. The addition of quarantine in our S EIQR model
provides a more realistic framework for understanding the feedback loop between noise intensity,
infection rates, and quarantine measures. Similar to the findings by Zhang et al. [31], where stochastic
noise could suppress disease spread, our results indicate that high noise levels can lead to disease
extinction. However, our study goes further by illustrating the pivotal role of quarantine in this
dynamic, which has not been explored in-depth in previous models.

By using the Lyapunov function, we also provide mathematical guarantees for the existence of
ergodic stationary distributions, adding a layer of robustness to our results. This advances the field by
offering more concrete tools for understanding the long-term behavior of epidemic systems under
stochastic influences. Our findings suggest that noise and quarantine strategies, when properly
managed, can significantly alter the trajectory of an epidemic, offering valuable insights for public
health policymakers.
Future work: Moving forward, several extensions to this study can be explored. First, future work
could investigate the impact of different types of noise, such as discrete-event noise or environmental
fluctuations, which may offer a more accurate representation of real-world uncertainties. Additionally,
the model could be expanded to consider heterogeneous populations or spatially structured networks,
where the contact patterns between individuals vary based on factors like age, location, or social
behavior. This would provide a more nuanced understanding of how epidemics spread in complex
social systems.

Moreover, future research could focus on the transient dynamics of the model, particularly during
the early stages of an outbreak, to better inform intervention strategies. Finally, validating the model
with more case studies from different epidemic scenarios and diseases would enhance its applicability
and robustness. By addressing these avenues in future work, the current model could be further refined
to provide more comprehensive insights into epidemic dynamics under uncertainty.
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