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Abstract: In this paper, we solved some open problems on general Gutman index. More precisely, we
characterized unicyclic graphs with extremal general Gutman index for some a and b. We presented a
sharp bound on general Gutman index of G in terms of order and vertex connectivity of G. Also, we
obtained some bounds on general Gutman index in terms of order, general Randić index, diameter, and
independence number of graph G. In addition, QSPR analysis on various anticancer drug structures
was carried out to relate their physicochemical properties with the general Gutman index of the
structure for some a and b.
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1. Introduction

Graphs considered in this paper are simple, undirected and connected. Let V(G) and E(G) be
the vertex set and the edge set of a graph G, respectively. The degree dG(v) of a vertex v in G
is the number of vertices adjacent to v. The distance dG(u, v) between two vertices u and v is the
number of edges in a shortest path connecting u and v. A topological index is a numerical quantity
derived from the structure of the graph or molecular graph. It is an important tool in the quantitative
structure-property relationship (QSPR) analysis of chemical compounds and it is used to predict
physicochemical properties of chemical compounds. In recent years, extensive works on topological
indices have been carried out (see [11,12,16,18]) and several new topological indices based on degree,
distance, both degree and distance, eccentricity, eigenvalues, etc. are introduced; see [1,2,10]. For real
constants a and b, the general Gutman index of G is defined as follows:

Guta,b(G) =
∑

{u,v}⊆V(G)
[dG(u)dG(v)]a [dG (u, v)]b .

The definition of general Gutman index was put forward by Das and Vetrı́k in [8]. For a = 1 and
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b = 1, Guta,b(G) is the Gutman index. For a = 0 and b = 1, Guta,b(G) is the classical Wiener index.
For a = 0 and b = −1, Guta,b(G) is the Harary index. Thus, the general Gutman index generalizes
several well-known graph indices so its study would be interesting. Studies on Gutman index can be
found in [4,7,9,14]. Das and Vetrı́k [8] presented sharp bounds on the Guta,b(G) index for multipartite
graphs of given order, graphs of given order and chromatic number, and starlike trees of given order
and maximum degree. The authors also stated the following open problems.
Problem 1. Find a tree with the smallest or a tree having the largest Guta,b index among trees with
given order for some a and b.

Problem 2. Find bounds on the Guta,b index for unicyclic graphs and bicyclic graphs with given order
for some a and b.

Problem 3. Find a sharp lower bound or an upper bound on the Guta,b index for graphs with given
order and vertex connectivity for some a and b.

Problem 4. Find bounds on the general Gutman index for graphs with a given order and the number
of pendant vertices.

After which, Cheng and Li [6] characterized trees of given order with extreme Guta,b index.
In QSPR-analysis, computational methods and topological indices are employed to streamline

the design of fine chemicals by predicting the relationship between molecular structure and their
physicochemical properties. This analysis accelerates drug discovery and reduces the cost and time
in developing targeted therapeutic agents. For some recent works on topological indices and QSPR
modeling, one can refer [3, 13, 15, 17]. Anticancer drugs are those which are used to cure cancer
(malignant disease). The alkalyting agents, hormones, and antimetabolites are some of the anticancer
drugs. Recently, QSPR analysis of anticancer drugs with respect to various degree-based indices was
carried out; see [17].

Motivated by these works, in Section 3 we characterize n-vertex unicyclic graphs, having
minimum general Gutman index and maximum general Gutman index for some values of a and b.
In Section 4, we present a sharp bound on the general Gutman index of graphs of given order and
vertex connectivity. In Section 5, we obtain some bounds on the general Gutman index in terms of
order, general Randić index, diameter, and independence number of graph G. At last, in Section 6,
by employing a linear regression model, we relate the physicochemical properties of some anticancer
drugs with the general Gutman index for some values of a and b. Also, it is observed that for some
specified values of a and b, Guta,b(G) index is found to correlate well with some physicochemical
properties (namely, boiling point, melting point, enthalpy, and molar refractivity) of anticancer drugs.

2. Preliminaries

We need the following lemmas to prove our main results.

Lemma 2.1. [6] Let 0 < u1 < u2, v > 0 and f (u) = ua. Then f (u1 + v) − f (u1) < f (u2 + v) − f (u2) for
a > 1 or a < 0, and f (u1 + v) − f (u1) > f (u2 + v) − f (u2) for 0 < a < 1.

Lemma 2.2. [8] Let a ≥ 0 and b ≤ 0, where at least one of a and b is nonzero. For a connected graph
G, where u1, u2 are any nonadjacent vertices in G, we have Guta,b(G + u1u2) > Guta,b(G).

Lemma 2.3. [8] Let G be a connected graph with n vertices. For a ≤ 0 and b ≥ 0, where at least
one of a and b is nonzero, Guta,b(G) ≥ n(n−1)2a+1

2 . For a ≥ 0 and b ≤ 0, where at least one of a and b is
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nonzero, Guta,b(G) ≤ n(n−1)2a+1

2 . The equalities hold only if G is Kn.

3. General Gutman index of unicyclic graphs

We need the following graph transformations on unicyclic graphs.
Operation 1 on unicyclic graphs: Let G be a unicyclic graph with p ≥ 1 pendant vertices

v1, v2, . . . , vp which are adjacent to v, and u be a non-pendant vertex which is adjacent to v. We
obtain a new graph G1 by moving the vertices v1, v2, . . . , vp to u, i.e., G1 = G −

{
vv1, vv2, . . . , vvp

}
+{

uv1, uv2, . . . , uvp

}
, see Figure 1.
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Figure 1. Graph G and resultant graph G1.

The following results proved in [6] relates the general Gutman index of unicyclic graphs G and G1.

Theorem 3.1. [6] Let 0 ≤ a ≤ 1 and b ≥ 0 such that at least one of a and b is nonzero. Then,
Guta,b(G1) < Guta,b(G).

Theorem 3.2. [6] Let a ≤ b ≤ 0 such that at least one of a and b is nonzero. Then, Guta,b(G1) >
Guta,b(G).

Operation 2 on unicyclic graphs: Let G be a unicyclic graph obtained by attaching pendant vertices
to a cycle. Let u be any non-pendant vertex such that p pendant vertices u1, u2, . . . , up are attached
to u, and v be another vertex on the cycle such that there are q pendant vertices v1, v2, . . . , vq attached
to it. Define G′ = G −

{
vv1, vv2, . . . , vvq

}
+

{
uv1, uv2, . . . , uvq

}
and G′′ = G −

{
uu1, uu2, . . . , uup

}
+{

vu1, vu2, . . . , vup

}
; see Figure 2.
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Figure 2. Graph G and resultant graphs G′ and G′′.

We partition V(G) into sets V1 = {u, v}, V2 =
{
u1, u2, . . . , up

}
, V3 =

{
v1, v2, . . . , vq

}
, and V4 = V(G) −

V1 − V2 − V3. For 1 ≤ i < j ≤ 4, define

E′i =
∑
{w,y}⊆Vi

[
dG′(w)adG′(y)adG′(w, y)b − dG(w)adG(y)adG(w, y)b

]
;

E′i j =
∑

w∈Vi,y∈V j

[
dG′(w)adG′(y)adG′(w, y)b − dG(w)adG(y)adG(w, y)b

]
;

E′′i =
∑
{w,y}⊆Vi

[
dG′′(w)adG′′(y)adG′′(w, y)b − dG(w)adG(y)adG(w, y)b

]
;

E′′i j =
∑

w∈Vi,y∈V j

[
dG′′(w)adG′′(y)adG′′(w, y)b − dG(w)adG(y)adG(w, y)b

]
.

Then,

Guta,b(G′) −Guta,b(G) =

4∑
i=1

E′i +

4∑
j=2

E′1 j +

4∑
j=3

E′2 j + E′34, (3.1)

and

Guta,b(G′′) −Guta,b(G) =

4∑
i=1

E′′i +

4∑
j=2

E′′1 j +

4∑
j=3

E′′2 j + E′′34. (3.2)

Let dG(u, v) = l. For {w, y} ⊆ Vi, i = 2, 3, 4,
dG(w)adG(y)adG(w, y)b = dG′(w)adG′(y)adG′(w, y)b = dG′′(w)adG′′(y)adG′′(w, y)b as the degrees and
distance between w and y does not change in G′ and G′′. Hence,

E′2 = E′3 = E′4 = E′′2 = E′′3 = E′′4 = 0.

Note that for any y ∈ V4, dG′(y) = dG′′(y) = dG(y), dG′(u, y) = dG′′(u, y) = dG(u, y) and
dG′(v, y) = dG′′(v, y) = dG(v, y). Also, dG(u) = p + 2, dG(v) = q + 2 , dG′(u) = p + q + 2,
dG′(v) = 2, dG′′(u) = 2, and dG′′(v) = p + q + 2. Thus,

E′1 = (p + q + 2)a2alb − (p + 2)a(q + 2)alb;

E′12 = p
[[

(p + q + 2)a − (p + 2)a] + (l + 1)b [
2a − (q + 2)a]] ;

E′13 = q
[[

(p + q + 2)a − (q + 2)a] + (l + 1)b [
2a − (p + 2)a]] ;
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E′14 =
[
(p + q + 2)a − (p + 2)a] ∑

y∈V4

dG(y)adG(u, y)b −
[
(q + 2)a − 2a] ∑

y∈V4

dG(y)adG(v, y)b;

E′23 = pq
[
2b − (l + 2)b

]
;

E′24 =
∑

w∈V2,.y∈V4

dG′(y)a [
dG′(y, u) + 1

]b
−

∑
w∈V2,y∈V4

dG(y)a [
dG(y, u) + 1

]b
= 0;

E′34 = q
[ ∑

y∈V4

dG(y)a (dG(u, y) + 1)b
−

∑
y∈V4

dG(y)a (dG(v, y) + 1)b
]
.

Similarly, E′1 = E′′1 , E′12 = E′′12, E′13 = E′′13 and E′23 = E′′23 and E′′34 = 0;

E′′14 =
[
(p + q + 2)a − (q + 2)a] ∑

y∈V4

dG(y)adG(v, y)b −
[
(p + 2)a − 2a] ∑

y∈V4

dG(y)adG(u, y)b;

E′′24 = p
[ ∑

y∈V4

dG(y)a (dG(v, y) + 1)b
−

∑
y∈V4

dG(y)a (dG(u, y) + 1)b
]
.

The following theorem gives the relations between Guta,b(G), Guta,b(G′), and Guta,b(G′′) for
some values of a and b.

Theorem 3.3. Let G be a unicyclic graph of girth k and let 0 ≤ a ≤ 1. Then, Guta,b(G) > Guta,b(G′)
or Guta,b(G) > Guta,b(G′′) for b = 0 or b = 1. Furthermore, if k = 3, then Guta,b(G) > Guta,b(G′) or
Guta,b(G) > Guta,b(G′′) for b ≥ 0 and at least one of a and b is nonzero.

Proof. For 0 ≤ a ≤ 1 and b ≥ 0, E′1 = (p + q + 2)a2alb − (p + 2)a(q + 2)alb ≤ 0. By Lemma 2.1,
we get

[
(p + q + 2)a − (p + 2)a] + (l + 1)b [

2a − (q + 2)a] ≤ 0 and
[
(p + q + 2)a − (q + 2)a] + (l +

1)b [
2a − (p + 2)a] ≤ 0. Thus, E′12 ≤ 0 and E′13 ≤ 0. Also, since b ≥ 0, E′23 = pq

[
2b − (l + 2)b

]
≤ 0.

Case 1. Suppose
∑

y∈V4

dG(y)adG(u, y)b ≤
∑

y∈V4

dG(y)adG(v, y)b. By Lemma 2.1, (q + 2)a − 2a ≥

(p + q + 2)a − (p + 2)a. Thus, E′14 ≤ 0. If b = 0 or 1, then E′34 ≤ 0. Further, if G is of girth 3,
then E′34 = 0. Hence, from Eq (3.1), we get Guta,b(G′) ≤ Guta,b(G), and the equality holds only if both
a and b are zero.

Case 2. Suppose
∑

y∈V4

dG(y)adG(u, y)b >
∑

y∈V4

dG(y)adG(v, y)b. By Lemma 2.1,
[
(p + 2)a − 2a] ≥[

(p + q + 2)a − (q + 2)a]. Thus, E′′14 ≤ 0. If b = 0 or 1, then E′′24 ≤ 0. Further, if G is of girth 3,
then E′′24 = 0. Hence, from Eq (3.2), we get Guta,b(G′′) ≤ Guta,b(G), and the equality holds only if both
a and b are zero. �

The proof of the following theorem is similar to that of Theorem 3.3.

Theorem 3.4. Let G be a unicyclic graph of girth k. Then, Guta,b(G) < Guta,b(G′) or Guta,b(G) <
Guta,b(G′′) for a < 0 and b = 0. Furthermore, if k = 3, then Guta,b(G) < Guta,b(G′) or Guta,b(G) <
Guta,b(G′′) for a ≤ b ≤ 0 and at least one of a and b is nonzero.

We denote by Hn,k- the graph obtained from the cycle Ck by attaching n − k pendant vertices to
a vertex of Ck. The following theorems give the extremal graphs for the general Gutman index of
unicyclic graphs.

Theorem 3.5. Let G be a unicyclic graph of order n with girth k. Then, Guta,b(G) ≥ Guta,b(Hn,k) for
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0 ≤ a ≤ 1 and b = 0 or b = 1. Further, if k = 3, then Guta,b(G) ≥ Guta,b(Hn,3) for 0 ≤ a ≤ 1 and b ≥ 0
such that at least one of a and b is nonzero. The equality holds if, and only if, G � Hn,k.

Proof. By Theorems 3.1 and 3.3, we get the desired result. �

Theorem 3.6. Let G be a unicyclic graph of order n with girth k. Then, Guta,b(G) ≤ Guta,b(Hn,k) for
a < 0 and b = 0. Further, if k = 3, then Guta,b(G) ≤ Guta,b(Hn,3) for a ≤ b ≤ 0, and at least one of a
and b is nonzero. The equality holds if, and only if, G � Hn,k.

Proof. By Theorems 3.2 and 3.4, we get the desired result. �

4. General Gutman index of graphs of given order and vertex connectivity

The union of two graphs G1 and G2 is the graph with vertex set V(G1) ∪ V(G2) and edge set
E(G1)∪E(G2). It is denoted by G1∪G2. The join of two graphs G1 and G2 is obtained from G1 and G2

by joining each vertex of G1 with every vertex in G2. It is denoted by G1 + G2. As usual, we denote by
Kn- the complete graph on n vertices. Kn denotes the complement graph of Kn. The vertex connectivity
of G is the minimum number of vertices whose removal disconnects the graph G.

In this section, we show that for graphs with given vertex connectivity, Guta,b(G) (a > 1 and b ≤ 0)
is extreme for the graph (Kn−κ−1 ∪ K1) + Kκ.

The following lemma gives the general Gutman index of (Kn−κ−1 ∪ K1) + Kκ. We omit the proof
as it is direct.

Lemma 4.1. Let G � (Kn−κ−1 ∪ K1) + Kκ. Then
Guta,b(G) = (n − κ − 1)(n − 2)a

[
n−κ−2

2 (n − 2)a + κ(n − 1)a + κa2b
]

+ κ(n − 1)a
[

(κ−1)
2 (n − 1)a + κa

]
.

Theorem 4.2. Let G be a graph of order n and vertex connectivity κ, where 1 ≤ κ ≤ n − 2. Then, for

a > 1, b ≤ 0, and |b| ≤
log 4κ

(n−κ−1)2

log 2 ,

Guta,b(G) ≤ (n − κ − 1)(n − 2)a

[
n − κ − 2

2
(n − 2)a + κ(n − 1)a + κa2b

]
+κ(n − 1)a

[
(κ − 1)

2
(n − 1)a + κa

]
,

with equality holding only if G � (Kn−κ−1 ∪ K1) + Kκ.

Proof. Let Γ be a graph with the maximum Guta,b with respect to order n and vertex connectivity κ.
Let V0 ⊆ V(Γ) such that |V0| = κ and the graph Γ\V0 is disconnected.

We assert that- Γ\ V0 has exactly two components. On the contrary, suppose that Γ\V0 consists of
at least three components. Let Γ1 and Γ2 be two components of Γ\V0, then for any u1 ∈ V(Γ1) and u2 ∈

V(Γ2), as Γ\V0 consists of at least three components, the graph Γ+u1u2 has vertex connectivity κ. Then,
by Lemma 2.2, Guta,b(Γ + u1u2) > Guta,b(Γ), a contradiction. Thus, Γ\V0 has exactly two components.

Let V1 and V2 be the vertex sets of the two components of Γ\V0. By Lemma 2.2, any two vertices
of V1 and any two vertices of V2 are adjacent and dΓ(x) = n − 1 for all x ∈ V0. Let |V1| = n1, |V2| = n2

with n1 ≥ n2 ≥ 1. Then, n = n1 + n2 + κ and Γ � (Kn1 ∪ Kn2) + Kκ.
Claim: n2 = 1. Assume that n1 ≥ n2 ≥ 2. We now compare the Guta,b indices of Γ = (Kn1 ∪Kn2) +

Kκ and Γ′ = (Kn1+1 ∪ Kn2−1) + Kκ.
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Let V ′0 = V0 = {w1,w2, . . . ,wκ}, V ′1 = V1 =
{
v1, v2, . . . , vn1

}
, and V2 = V ′2 ∪ V ′3, where V ′2 ={

u2, u3, . . . , un2

}
and V ′3 = {u1}. Now, in the graph Γ′, we can assume that V(Kκ) = V ′0, V(Kn1+1) = V ′1∪V ′3

and V(Kn2−1) = V ′2. For 0 ≤ i < j ≤ 3, define

Ei =
∑
{w,y}⊆V′i

[
dΓ(w)adΓ(y)adΓ(w, y)b − dΓ′(w)adΓ′(y)adΓ′(w, y)b

]
;

Ei j =
∑

w∈V′i ,y∈V
′
j

[
dΓ(w)adΓ(y)adΓ(w, y)b − dΓ′(w)adΓ′(y)adΓ′(w, y)b

]
.

Thus, Guta,b(Γ) −Guta,b(Γ′) =

2∑
i=0

Ei +

3∑
i=0

3∑
j=i+1

Ei j. Note that, dΓ(vi) = κ + n1 − 1, dΓ′(vi) = k + n1 for

i = 1, 2, . . . , n1, dΓ(u1) = κ + n2 − 1, dΓ′(u1) = κ + n1, dΓ(ui) = κ + n2 − 1, dΓ′(ui) = κ + n2 − 2 for
i = 2, 3, . . . , n2, and dΓ(wi) = dΓ′(wi) = n − 1 for i = 1, . . . , κ. Therefore,

E0 = 0;
E1 =

n1(n1−1)
2

[
(κ + n1 − 1)2a − (κ + n1)2a

]
;

E2 =
(n2−1)(n2−2)

2

[
(κ + n2 − 1)2a − (κ + n2 − 2)2a

]
;

E01 = κn1(n − 1)a [(κ + n1 − 1)a − (κ + n1)a] ;
E02 = κ(n2 − 1)(n − 1)a [(κ + n2 − 1)a − (κ + n2 − 2)a] ;
E03 = κ(n − 1)a [(κ + n2 − 1)a − (κ + n1)a] ;
E12 = n1(n2 − 1)2b [(κ + n1 − 1)a(κ + n2 − 1)a − (κ + n1)a(κ + n2 − 2)a] ;
E13 = n1

[
(κ + n1 − 1)a(κ + n2 − 1)a2b − (κ + n1)2a

]
;

E23 = (n2 − 1)
[
(κ + n2 − 1)2a − (κ + n1)a(κ + n2 − 2)a2b

]
.

Now,

E1 + E2 =
n1(n1 − 1)

2

[
(κ + n1 − 1)2a − (κ + n1)2a

]
+

(n2 − 1)(n2 − 2)
2

[
(κ + n2 − 1)2a − (κ + n2 − 2)2a

]
.

For n1 ≥ n2 ≥ 2 and a > 1, by Lemma 2.1, we have,
(κ + n1)a − (κ + n1 − 1)a > (κ + n2 − 1)a − (κ + n2 − 2)a. Thus, E1 + E2 < 0.

Similarly,

E01 + E02 = κn1(n − 1)a [(κ + n1 − 1)a − (κ + n1)a]
+ κ(n2 − 1)(n − 1)a [(κ + n2 − 1)a − (κ + n2 − 2)a]
< 0.

Consider

E13 + E23 = 2b [n1(κ + n1 − 1)a(κ + n2 − 1)a − (n2 − 1)(κ + n2 − 2)a(κ + n1)a]

+
[
(n2 − 1)(κ + n2 − 1)2a − n1(κ + n1)2a

]
< 2b

[
n1(κ + n1 − 1)2a − (n2 − 1)(κ + n2 − 2)2a

]
+

[
(n2 − 1)(κ + n2 − 1)2a − n1(κ + n1)2a

]
.
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Since a > 1 and n1 ≥ n2, by Lemma 2.1, we get

n1

[
(κ + n1)2a − (κ + n1 − 1)2a

]
> (n2 − 1)

[
(κ + n2 − 1)2a − (κ + n2 − 2)2a

]
.

Therefore,

n1(κ + n1)2a − (n2 − 1)(κ + n2 − 1)2a > n1(κ + n1 − 1)2a − (n2 − 1)(κ + n2 − 2)2a.

Thus, E13 + E23 < 0 as 2b ≤ 1.
Next, consider

E03 + E12 = κ(n − 1)a [(κ + n2 − 1)a − (κ + n1)a]
+ n1(n2 − 1)2b [(κ + n1 − 1)a(κ + n2 − 1)a − (κ + n1)a(κ + n2 − 2)a]
≤ κ(n − 1)a [(κ + n1 − 1)a − (κ + n1)a]
+ n1(n2 − 1)2b(κ + n1 − 1)a [(κ + n2 − 1)a − (κ + n2 − 2)a] . (4.1)

Since b ≤ 0 and |b| ≤
log 4k

(n−κ−1)2

log 2 , κ ≥ n1(n2 − 1)2b. Hence, E03 + E12 < 0 by Lemma 2.1. Thus,
Guta,b(Γ) −Guta,b(Γ′) < 0, a contradiction.

Therefore, our claim is true, i.e., n2 = 1, and consequently, Γ � (Kn−κ−1 ∪ K1) + Kκ. Hence, the
result follows from Lemma 4.1. �

5. Some bounds on general Gutman index

In this section, we obtain bounds on the general Gutman index in terms of the general Randić
index, general Randić co-index, independence number, and diameter of graph G. The general Randić
index [5] of a graph G is defined as

Ra(G) =
∑

uv∈E(G)

[dG(u)dG(v)]a ,

where a is a real number. Its co-index is denoted by Ra(G), and is given by Ra(G) =∑
uv<E(G)

[dG(u)dG(v)]a.

Theorem 5.1. Let G be a connected graph with n vertices and diameter D. For real numbers a and
b ≥ 0, where at least one of a and b is nonzero,

Ra(G) + 2b Ra(G) ≤ Guta,b(G) ≤ Ra(G) + Db Ra(G),

Equality on both sides holds if, and only if, D ≤ 2.

Proof. We have

Guta,b(G) =
∑

{u,v}⊆V(G)

[dG(u)dG(v)]a [dG (u, v)]b

=
∑

uv∈E(G)

[dG(u)dG(v)]a [dG (u, v)]b +
∑

uv<E(G)

[dG(u)dG(v)]a [dG (u, v)]b (5.1)
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≤
∑

uv∈E(G)

[dG(u)dG(v)]a + Db
∑

uv<E(G)

[dG(u)dG(v)]a . (5.2)

= Ra(G) + Db Ra(G).

Since dG(u, v) ≥ 2 for uv < E(G), from Eq (5.1), we get

Guta,b ≥
∑

uv∈E(G)

[dG(u)dG(v)]a + 2b
∑

uv<E(G)

[dG(u)dG(v)]a . (5.3)

= Ra(G) + 2b Ra(G).

Further, the equality in Eqs (5.2) and (5.3) holds if, and only if, D ≤ 2. This completes the proof. �

Theorem 5.2. Let G be a connected graph with n vertices and diameter D. For real numbers a and
b ≤ 0, where at least one of a and b is nonzero,

Ra(G) + Db Ra(G) ≤ Guta,b(G) ≤ Ra(G) + 2b Ra(G).

Equality on both sides holds if, and only if, D ≤ 2.

Proof. We omit the details of the proof as it is similar to that of Theorem 5.1. �

A vertex independent set of a graph G is a set of pair-wise nonadjacent vertices in G. The
independence number of G, denoted by β0(G), is the maximum order of a vertex independent set
of G.

The following lemma can be obtained by direct calculation.

Lemma 5.3. Let G � Kβ0 + Kn−β0 . Then,
Guta,b(G) =

(n−β0)(n−β0−1)
2 (n − 1)2a + β0(n − β0)a

[
(n − 1)a(n − β0) + (n − β0)a(β0 − 1)2b−1

]
.

Theorem 5.4. Let G be a connected graph with n vertices and independence number β0. For a ≥ 0
and b ≤ 0, where at least one of a and b is nonzero, Guta,b ≤ Guta,b(Kβ0 + Kn−β0) =

(n−β0)(n−β0−1)
2 (n −

1)2a + β0(n − β0)a
[
(n − 1)a(n − β0) + (n − β0)a(β0 − 1)2b−1

]
.

Proof. Let H be a connected graph with n vertices, vertex independence number β0, and having
maximum general Gutman index for a ≥ 0 and b ≤ 0. Let S be a maximum vertex independent
set of H. Then, |S | = β0. Let S ′ = V(H)\S . Assume that the vertices x and y belonging to S ′ are
nonadjacent. Then, the graph H + xy has vertex independence number β0, and also by Lemma 2.2,
Guta,b(H + xy) > Guta,b(H), a contradiction. Thus, every pair of vertices, in S ′ are adjacent. By a
similar argument, each vertex in S is adjacent to every vertex in S ′. Thus, H � Kβ0 + Kn−β0 , and by
Lemma 5.3, the result follows. �

Let S be a subset of V(G). The induced sub-graph G[S ] is the graph whose vertex set is S and
edge set consists of all those edges of G whose both end points are in S . We denote by kG, the k
disjoint copies of G.

Theorem 5.5. Let G be a connected graph with n vertices. For a ≥ 0 and b ≤ 0, where at least one of
a and b is nonzero,

Guta,b(G) ≤ (n− 2η)(n− 1)a
[

(n−2η−1)
2 (n − 1)a + 2η(n − 2η + 1)a

]
+ η(n− 2η+ 1)2a

[
1 + (2η − 2)2b

]
,

where η is the maximum positive integer such that ηK2 is an induced sub-graph of G.
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Proof. Let S be a subset of V(G) such that G[S ] = ηK2. Let S ′ = V(G)\S . Denote by H the graph
obtained from G by adding edges between the nonadjacent vertices in S ′ and then joining each vertex
of S with every nonadjacent vertex in S ′. Therefore, H � ηK2 + Kn−2η, and also by Lemma 2.2,
Guta,b(G) ≤ Guta,b(H). Now,

Guta,b(H) =
∑
{w,y}⊆S ′

d(w)ad(y)ad(w, y)b +
∑
{w,y}⊆S

d(w)ad(y)ad(w, y)b +
∑
w∈S
y∈S ′

d(w)ad(y)ad(w, y)b

=
(n − 2η)(n − 2η − 1)

2
(n − 1)2a + η(n − 2η + 1)2a

+ η(η − 1)(n − 2η + 1)2a 2b+1 + 2η(n − 2η)(n − 1)a(n − 2η + 1)a

= (n − 2η)(n − 1)a

[
(n − 2η − 1)

2
(n − 1)a + 2η(n − 2η + 1)a

]
+ η(n − 2η + 1)2a

[
1 + (η − 1)2b+1

]
.

This completes the proof. �

6. QSPR analysis of some anticancer drugs

We consider the general Gutman index Gut1,1(G),Gut1,−1(G),Gut−1,1(G) and Gut−1,−1(G) for
modeling four representative physical properties (boiling point (BP), melting point (MP), enthalpy
(E) and molar refraction (MR)) of 10 anticancer drugs. The exact values of these properties are taken
from Chem Spider and are also listed in [3, 17]. The molecular graphs of the anticancer drug, namely,
Carmustine, Caulibugulone E, Convolutamine F, Perfragilin A, Melatonin, Convolutamydine A,
Tambjamine K, Pterocellin B, Amathaspiramide E, Aspidostomide E, Aminopterin, Podophyllotoxin,
Convolutamide A, Deguelin, Minocycline, Daunorubicin, and Raloxifene, are as depicted in Figure 3.
Table 1 gives the experimental values of these compounds. The general Gutman index of these
anticancer drugs is given in Table 2.

A linear regression through Microsoft Excel is performed on the dataset. We consider the linear
regression model

P = A(T I) + B, (6.1)

where P is the physical property of the anticancer drug, A is the regression coefficient, T I represents
the topological index, and B is a constant.
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Carmustine

Caulibugulone E

Convolutamine F

Perfragilin A

Melatonin

Convolutamydine A Trambjamine K

Amathaspiramide E
Aspidostomide E

Aminopterin

Podophyllotoxin

Pteroceliin B

Convolutamide A

Deguelin Raloxifene

Minocycline
Daunorubicin

Figure 3. Molecular graph of some anticancer drugs.
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Table 1. Some anticancer drugs with its physicochemical property value.
Drug BP MP E MR

Carmustine 309.6 120.99 63.8 46.6
Caulibugulone E 373 129.46 62 52.2
Convolutamine F 387.7 128.67 63.7 73.8

Perfragilin A 431.5 187.62 68.7 63.6
Melatonin 512.8 182.51 78.4 67.6

Convolutamydine A 504.9 199.2 81.6 68.2
Trambjamine K 391.7 - 64.1 76.6

Pterocellin B 521.6 199.88 79.5 87.4
Amathaspiramide E 572.7 209.72 90.3 89.4

Aspidostomide E 798.8 - 116.2 116
Aminopterin 782.27 344.45 - 114

Podophyllotoxin 597.9 235.86 93.6 104.3
Convolutamide A 629.9 - 97.9 130.1

Deguelin 560.1 213.39 84.3 105.1
Minocycline 803.3 326.3 122.5 116
Daunorubicin 770 208.5 117.6 130

Raloxifene 728.2 289.58 110.1 136.6

Table 2. Some anticancer drugs with general Gutman index values for some a and b.

Drug a=1, b=1 a=1, b= -1 a= -1, b=1 a= -1, b= -1
Carmustine 691 107.7226 101.5278 9.244048

Caulibugulone E 1104 205.169 90.8333 10.44967
Convolutamine F 1248 161.7524 154.1667 13.0582

Perfragilin A 1768 289.1083 189.1111 14.46911
Melatonin 1900 245.727 185.2778 12.75701

Convolutamydine A 1759 278.4524 192.125 16.21925
Trambjamine K 3264 276.8154 255.7222 14.63814

Pterocellin B 5843 493.6581 342.0556 20.1794
Amathaspiramide E 3802 437.6786 324.8333 21.89983

Aspidostomide E 6291 585.3044 488.0556 26.92546
Aminopterin 14985 569.3475 1232.8056 32.7608

Podophyllotoxin 9455 673.7335 527.75 28.2706
Convolutamide A 14313 516.5041 1175.7778 34.4201

Deguelin 10998 713.369 826.4583 36.9371
Minocycline 14001 803.7356 1105 63.73204
Daunorubicin 17335 937.3948 1325.1111 49.9052

Raloxifene 18138 728.2362 774 28.2997
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Using Eq (6.1), we can get the different linear fittings; see Figures 4–7 for the general Gutman
index for some values of a and b, and the value of R2 is also listed below.

Gutman index

BP =0.0213[Gut(G)] + 410.49,R2 = 0.6747,

MP =0.0083[Gut(G)] + 151.85,R2 = 0.6293,

E =0.0027[Gut(G)] + 67.926,R2 = 0.6632,

MR =0.0042[Gut(G)] + 61.209,R2 = 0.8649.

Figure 4. Linear fitting of the Gutman index with BP, MP, E, and MR.
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General Gutman index for a = 1 and b = −1

BP =0.5647[Gut1,−1(G)] + 302.65,R2 = 0.7387,

MP =0.1824[Gut1,−1(G)] + 126,R2 = 0.5041,

E =0.0716[Gut1,−1(G)] + 53.768,R2 = 0.7653,

MR =0.1027[Gut1,−1(G)] + 44.321,R2 = 0.7905.

Figure 5. Linear fitting of the Gut1,−1 with BP, MP, E, and MR.
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General Gutman index for a = −1 and b = 1

BP =0.3029[Gut−1,1(G)] + 403.62,R2 = 0.6606,

MP =0.1206[Gut−1,1(G)] + 149.06,R2 = 0.6078,

E =0.0407[Gut−1,1(G)] + 66.67,R2 = 0.6464,

MR =0.057[Gut−1,1(G)] + 61.651,R2 = 0.7564.

Figure 6. Linear fitting of the Gut−1,1(G) with BP, MP, E, and MR.

AIMS Mathematics Volume 9, Issue 11, 30454–30471.



30469

General Gutman index for a = −1 and b = −1

BP =8.8591[Gut−1,−1(G)] + 342.92,R2 = 0.6533,

MP =3.0602[Gut−1,−1(G)] + 134.29,R2 = 0.5085,

E =1.1504[Gut−1,−1(G)] + 58.283,R2 = 0.7053,

MR =1.5078[Gut−1,−1(G)] + 54.287,R2 = 0.6123.

Figure 7. Linear fitting of the Gut−1,−1(G) with BP, MP, E, and MR.

The correlation coefficient of the general Gutman index for some values of a and b with BP, MP,
E, and MR is given in Table 3. The numbers highlighted in bold font indicates a high correlation
between the general Gutman index and the physicochemical properties of anticancer drugs considered
in the study.

Table 3. Correlation coefficient value of general Gutman index with BP, MP, E, and MR of
anticancer drugs.

General Gutman index BP MP E MR
Gut1,1(G) 0.8214 0.7932 0.8144 0.93
Gut1,−1(G) 0.8595 0.71 0.8748 0.8891
Gut−1,1(G) 0.8128 0.7796 0.804 0.8697
Gut−1,−1(G) 0.8083 0.7131 0.8398 0.7895
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From the above linear regression model, it can be seen that the general Gutman index Gut1,1(G) has
higher positive correlation with melting point and molar refraction value. Also, the index Gut1,−1(G)
correlates well with boiling point and enthalpy. Further, it is observed that Gut1,1(G) and Gut1,−1

have a high correlation with melting point and enthalpy respectively than that of other degree-based
topological indices considered in [3, 17].

7. Conclusions

In this work, we have obtained extremal unicyclic graphs for the general Gutman index Guta,b(G)
(for some values of a and b). Also, we have obtained bounds for the general Gutman index in terms
of vertex connectivity, independence number, and general Randić index. These results indeed answer
some of the open problems posed by Das and Vetrı́k. A comparative study of the general Gutman
index with other topological indices would be an interesting problem for future work. At last, QSPR
analysis of some anticancer drugs is carried out. It is observed that for some specified values of a and b,
Guta,b(G) index is found to correlate well with some physicochemical properties (namely, boiling point,
melting point, enthalpy, and molar refractivity) of anticancer drugs. Hence, it would be interesting to
conduct QSPR analysis on various drugs with a general Gutman index.
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