AIMS Mathematics, 5(3): 2388-2411.
ATIMS Mathematics DOI: 10.3934/math.2020158
% : Received: 13 October 2019
o Accepted: 20 January 2020
http://www.aimspress.com/journal/Math Published: 04 March 2020

Research article

On generalized inverse sum indeg index and energy of graphs

Sumaira Hafeez* and Rashid Farooq

School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad,
Pakistan

* Correspondence: Email: sumaira.hafeez123 @gmail.com.

Abstract: Topological indices are used to predict certain phsio-chemical properties of the chemical
compounds. Among all indices, degree based indices are of vital importance. In this paper, we
introduce generalized inverse sum indeg index and generalized inverse sum indeg energy of graphs. We
study the generalized inverse sum indeg index and energy from an algebraic point of view. Extremal
values of this index for some graph classes are determined. Some spectral properties of generalized
inverse sum indeg matrix are studied. We also find Nordhaus-Gaddum-type results for generalized
inverse sum indeg index spectral radius and energy.

Keywords: generalized ISI index; extremal graphs; generalized ISI energy; generalized ISI spread of
graphs; Nordhaus-Gaddum-type results
Mathematics Subject Classification: 05C07, 05C35, 05C50

1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). The number of neighbours of a vertex
w in G is called the degree of w, denoted by dg(w). If vertices w and z are connected by an edge, we
denote it by wz. The order n(G) of a graph G is given by n(G) = |V(G)|. The size e(G) of a graph G
is defined by e(G) = |E(G)|. For any w € V(G), Ng(w) is the set of all vertices adjacent to w in graph
G. The graph G — {w} is a graph formed from G by removing the vertex w of G and all edges incident
with w. The largest (smallest) degree of G is the largest (smallest) vertex degree in G, represented as
Ag (66)- A graph of order n(G), size e(z), maximum degree A and minimum degree J is denoted by
G(n(G), e(G), Ag,0¢) and a graph of order n and size m is denoted by G)'. Throughout this paper, we
consider simple and connected graphs.

A star graph S, on n vertices is a tree consisting of a central vertex adjacent to n — 1 pendant
vertices. An n-vertex cycle C, (n > 3) is a graph with V(C,) = {vi,...,v,} and E(C,) = {vjvjs1 | j =
1,2,...,n—1} U {v,v}. A simple graph of order n in which every vertex is joined by an edge to other
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n — 1 vertices is said to be a complete graph represented by K,. If we can split V(G) of G into two
disjoint sets X; and X, with the property that no two vertices of the same set are adjacent is called a
bipartite graph. A complete bipartite graph K,,, is a bipartite graph with |X;| = m, |X;| = n and each
vertex in X, is adjacent to eaxh vertex in X,.

A topological index TI(G) of a graph G is a molecular descriptor which is a conversion of a
molecular structure into some real number. In theoretical chemistry, many of the molecular
descriptors are considered and have found applications, see [1-18].

A degree based topological index of a graph G can be represented as

TIG) = )| F(dew), do(2)),

wz€E(G)

where .7 is a function with the property .% (x, y) = .Z(y, x).
The inverse sum indeg (henceforth, ISI) index of a graph G was introduced by Vukicevi¢ and
Gasperov [19] and defined as
de(w) dg(2)

BUOY= 2, Goom +do@

wzeE(G)

In this paper, we introduce generalized inverse sum indeg (henceforth, ISI) index and generalized
ISI energy of graphs. Our strong motivation to define generalized ISI index and energy is that a lot of
the degree based topological indices and energies are derived from it by giving the specific values to
the parameters a, 8. We now define generalized inverse sum indeg index as

_ (dg(w) dg(2))"
Sa’ﬂ(G) - WZEZE(G) (de(w) + dG(Z))B’ (1.1)

where a and 8 are real numbers.
The adjacency matrix A(G) = [a;jl.x, Of an n-vertex graph G is defined as

o 1 if Viv; € E(G),
% =10 otherwise.

The A-characteristic polynomial of G is the polynomial of the form:

DG,

det(A(G) — AI)
A+ Z a; A"
i=1

where [, is the identity matrix of order n. The A-eigenvalues of G are the A-eigenvalues of A(G).
Let A4,..., 4, be the A-eigenvalues of a graph G. Gutman [20] defined the energy of G as

EG) =Yl
i=1

Zangi et al. [21] defined the ISI matrix S(G) = [s;;]uxn Of an n-vertex graph G as:

dc(vi)+dg(vj)

L dolv)) iy, € E(G)
S =
Y 0 otherwise.
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The S -characteristic polynomial of G is given by:

Q5(G,p) = det(S(G) - pl,)
— pn + Z bi pn—i.
i=1

The S -eigenvalues of G are the S -eigenvalues of S (G).
Let py,...,p, be the S-eigenvalues of G. Zangi et al. [21] defined the ISI energy of G as

Es1(G) = Z loil.-
i=1
We can now define a generalized ISI matrix A, 3(G) = [b;jl.x. Of an n-vertex graph G as

(dci)+dg(vj))P

de(v) dgv))® .
b (dg(vi) G(Vj)) lf VLV] c E(G),
ij = .
0 otherwise.

The A, 3 -characteristic polynomial of G is given by:

U(G,o) det(A,45(G) — ol,)

n
o'+ Z c; o
i=1

The A, s -eigenvalues of G are the A, s -eigenvalues of A, 3(G).
Leto,...,0, be the A, 3 -eigenvalues of G. Then we define the generalized ISI energy of graph G
as

Eop(G) = )l (1.2)
i=1

We list here some of the degree based indices and energies of a graph G that can be obtained from
the generalized ISI index and energy by only giving specific values to the parameters «, (5.

l. If @ = 0and B = —1, then S, s(G) = M(G) is the first Zagreb index [3] and matrix Ay _;(G) is the
first Zagreb matrix [12]. The energy corresponding to Ay _;(G) is the first Zagreb energy ZE,(G)
also introduced in [12]. Note that ZE|(G) = Ey_1(G).

2. If a = 0and B = 1/2, then S, s(G) = SCI(G) is the sum-connectivity index [22] and matrix
Ap.12(G) is the sum-connectivity matrix [23]. The energy corresponding to A ;,2(G) is the sum-
connectivity energy S E(G), introduced in [23]. It is easy to see that S E(G) = Ey, 1,2(G).

3. Ifa = 0and B = —a then S, 3(G) = x(G) is the general sum connectivity index [11] and matrix
Ay -o(G) is the general sum-connectivity matrix [24]. The energy corresponding to A _,(G) is the
general sum-connectivity energy GS E(G), defined in [24]. See that GS E(G) = Ey_.(G).

4. If @ = 1 and B = 0 then S, 3(G) = M»(G) is the second Zagreb index [11] and matrix A ((G) is
the second Zagreb matrix [12]. The energy corresponding to A; ¢(G) is the second Zagreb energy
ZE>(G), introduced in [12]. Note ZE,(G) = E; o(G).
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5. Ifa=-1/2and B = 0 then S, s(G) = R(G) is the Randi¢ index [13] and matrix A_;;o(G) is the
Randi¢ matrix. The energy corresponding to A_;/20(G) is the Randi¢ energy RE(G), defined in
[25, 26]. See that RE(G) = E_;20(G).

6. If B = 0 then S, 3(G) = R,(G) is the generalized form of Randi¢ index (also known as general
product-connectivity index) [27] and matrix A, o(G) is the general Randi¢ matrix. The energy
corresponding to A, o(G) is the general Randi¢ energy R,E(G), introduced in [28]. It is easy to
see that R, E(G) = E, o(G).

7.1f @« = 1/2 and B = 1 then 2§, 3(G) = GA(G) is the geometric-arithmetic index [14] and
matrix A, 1(G) is the geometric-arithmetic matrix. The energy corresponding to A, 1(G) is
the geometric-arithmetic energy GAE(G), defined in [15]. Note that GAE(G) = 2E 5, 1(G).

8. If @ = 1 and B = 1 then S, s(G) = ISI(G) is the inverse sum indeg index [19] and matrix A, ;(G)
is the inverse sum indeg matrix. The energy corresponding to A;;(G) is the inverse sum indeg
energy /S 1E(G) introduced in [21]. See that ISIE(G) = E;1(G).

For study of more degree-based topological indices, see [29] and references therein.

In this paper, we study the generalized inverse sum indeg index and energy from an algebraic point
of view. Extremal values of this index for some graph classes are determined. Some spectral properties
of generalized inverse sum indeg matrix are studied. We also find Nordhaus-Gaddum-type results for
generalized inverse sum indeg index spectral radius and energy.

2. Basic results

Under certain conditions, we now determine the monotonicity of the generalized ISI index of a
graph G when new edges are added in the graph.

Lemma 2.1. Let w and z be two non-adjacent vertices of a graph G. Also let G+wz is the graph formed
from G by joining w and z by an edge wz. If a, 8 € Rwitha > 0 and a > B, then S, s(G+wz) > S, 3(G).

Proof. If o, € R with @ > 0 and @ > g, then for any real numbers x,y > 1, we have (1 + i) >

B
1 Qi ; e+ D” X (CS2V ”
(1 + E) . This implies GorlP 2 Gop- Hence o5 > oo

Let Ng(w) = {wy,...,w,} and Ng(2) = {z1,...,z}. Then
((dg(w) + 1) (dg(2) + 1))
(de(w) + dg(2) + 2)
N Zr: ((dgW) + D) d(cw)))®  (dc(w) do(wi))* ]
| (dow) +dcw) + 1P (dg(w) + (dg(w))’
N Zt: [((dG(Z) + 1) ds(z)))"  (dg(2) do(z))" ]
(dg(2) + dg(zj)) + 1 (dg(2) + (ds(z)))P

Sa’ﬁ(G + WZ) - SQ’IB(G)

=1
> 0,

(@dcw)+1) (d6@+1))*
where [ Ao 1de () 127 ] > 0. Therefore S, s(G +wz) > S, (G). O

Two simple graphs G and G, are said to be isomorphic if there exists a bijection ¢ : V(G1) — V(G,)
such that uv € E(G)) if and only if ¢(u)p(v) € E(G,). We write G| = G, if G| and G, are isomorphic.
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Next corollary is obtained from Lemma 2.1.

Corollary 2.2. Let o, € R witha > 0 and a > B. Suppose T is a spanning tree of graph G with
n(G)=nand G £ T. Then S, 3(G) > Sy, p(T).
Next theorem relates S, s(G) with y3(G).
Theorem 2.3. Suppose G = G(n,m, Ag, 6¢) is a graph.
(1). Ifa 0, then S, 4(G) > &

m2A2(t
(2). Ifa <0, then So 5(G) > 5

In both cases, the inequality becomes equality if G is a regular graph.

Proof. (1). By Arithmetic mean-Harmonic mean inequality, we have

m m < 1 Z (dg(w) + dg(2))
- YA a "
Sa.5(G) wzeZE:(g) sy ™) (dg(w) dg(2))

Now if @ > 0, then (dg(w) dg(2))* > (%“. Therefore

1 Z (dg(w) +dg(2) 1

<L Z (dgw) +dg@)) _ xp(G)
m wzeE(G) (dg(W) dQ(Z))a T m WwieE(G) 65’ m(séa .

2 2a

Hence S, 5(G) > %. Now the above inequality becomes equality if and only if for every wz € E(G),
(ggg((v:”))jdgg(é))); = bz;f, where b is some positive constant. This is possible if and only if G is a b-regular
graph.

Similarly one can prove (2).

O
Now we give relationship between S, z(G) and R,(G).

Theorem 2.4. Suppose G = G(n,m, Ag, d¢) is a graph.

R.(G) Re(@)
(1). Ifﬁ > 0, then Zﬁ_Ag < Sa,,g(Q) < 25_82

(2). If B <0, then %{gg) < Se 46 < 1;;_(5;).

In both cases, the inequality becomes equality if G is a regular graph.

Proof. (1). If B > 0, then (dg(w) + dg(2)’ < (2Ag) and (dg(w) + dg(2))’ > (255)°. Hence

d d @
S, 5(G) = (dg(w) dg(2))" wze%(g)( 6 W) d5(2)) _R(9
" L g +dg@P T ol ¥l
d, dg(2))”
S, 5(G) = Z (dg(w) dg(2))"  _ wzezE:(g)( 5w) dg(2) _R(G)
" ) vzt (deW) + dg)) — 28, - 8%,

Clearly the equality holds if and only if G is a regular graph.
Part (2) can be proved analogously.
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By direct computation, we obtain the following results.

Theorem 2.5. Suppose G, G»,...,G, are components of a graph G. Then E, g(G) = }, E, g(G)).
=1

k2(1

Theorem 2.6. Suppose G is an n-vertex and k-regular graph. Then E, g(G) = 5575 E(G).

Lia
Theorem 2.7. E, 3(K,,,) = 2(mn)2

(m+n)f *
1
. @ « 2 7+(l
Proof. Since Ag, p(Kny) = 5 A(K ), we have Eq p(Kpnn) = s E(Ky ) = 20 O

Using Theorem 2.6, we get the following two results.
Theorem 2.8. E, 5(C,) = 4*PE(C,).
Theorem 2.9. E, 4(K,) = 2! (n — 1)>#*+.,

3. Extremal values of generalized ISI index

In this section, we find extremal values of graphs and bounds with respect to generalized ISI index
in some graph classes.

Theorem 3.1. Suppose T is a tree withn(T) =n. Ifa = and 0 < a < 1, then
(n—-Dm-1)"

S 5(T) >
B(T) "

where the inequality becomes equality if T = §,,.

Proof. We prove the result by induction on n.

Forn = 1,2, 3, the only tree is the star graph S,,. So the statement follows trivially for n < 3. Now
assume that the statement holds true for n > 4.

Suppose T is a tree with n(T) = n. Let vw be a pendent edge of T with dy(w) = 1 and d7(v) = 1. As
n > 4, we have 2 <t < n. Further, since T is not isomorphic to a star, we have that there exists at least
one neighbor u of v in T with d7(u) > 2. Let Nr(W)\{w, u} = {vy,...,vi2}.

Let T = T — w. Then n(f) =n-—1. Now

Sup(T) = Sup@ = (= )+[( LY (- ”

r+1 dr(u) +1t dr(u) +t—1
=2
dr(v)t \* (dr(v)(z = 1) \*
"L (dT(v,-)+t) _(a’r(vi)+t—l) ]

1

Let y > 0 and define ( ‘ )a ((l 1) )"
s = (=) -(F=—].

y+t y+t—1
Then

, ol 1 a+1 r—1 a+1 ol
g =ay [(y+t) _(y+t—1) }_ay

AIMS Mathematics Volume 5, Issue 3, 2388-2411.
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Ast>2 0<a<landy>0,wehave (y+1)* >0and (y+1— 1" > 0. Also (yt + > — 1) >
(yt + 1> — t —y). Therefore (yt + £ — )*"! > (yt + 1 —t — y)**!. Hence g’(y) > 0 and thus g(y) is strictly
increasing for y > 0. Also 2% > 1 for 0 < @ < 1, dr(v;) > 1 and dr(u) > 2, we have

() ) -G Sl - (5]
| -G - () e

> () 2 ls) () o> )

Sa.p(T) = Sa 5(T)

\%

\%
—_
‘N

Since ¢t > 2, we have

Sa p(T) = Sup(T) > 2(%) > 1
(n-Dn-1)* (n=2)m=-2)" _
n< (n-1)* B

Soz,,B(Sn) - SQ,B(Sn—l)

Therefore by induction hypothesis S, g(T) — S, g(S,) > S, ,;(7) =S4, 8(S 4-1) = 0. This concludes
the proof by induction and clearly equality holds if 7 = §,,. O

Next theorem gives the minimal graph with respect to generalized ISI index in class of all connected
graphs with smallest degree 2.

Theorem 3.2. Among all connected graphs G with smallest degree 2, we have

(). Ifa >0and B <0, then S, s(G") > m4**.
). Ifa =B > 0, then Sy 4(G") >

In both cases, the inequality becomes equality for G = C,,.

Proof. (1). If @ > 0 and B < 0, then for any w,z € V(G™), we have (dgr(w) dgn(z))* > 4% and
(dr(w) + dgn(2))P < 4P. Therefore

4(1—[3

Z (dgp(w) dgp(2))”

Sa.p(G) = oz () + deg QP ~

wzeE(G)))

Now S, 3(G}) = m 4% if and only if dgn(w) = dgn(v) = 2 for every edge wz € E(G)'). Therefore
the inequality becomes equality for G} = C,,.
(2). Since 6gn = 2, therefore (dgn(w) dgn(z)) > (dgn(w) + dgn(z)). Hence

d m( W d m\ @
Se, p(G)) = Z c(i ar () Z”( ) >m
welily oy ) + doy @Y
Similar to the proof of Part (1), the inequality becomes equality for G = C,,. O
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Any subset of pairwise non-adjacent vertices of a graph G is called an independent set of a graph G.
The maximum size of an independent set of a graph G is called the independence number of G. The
join G V H of two graphs G and H is formed by making every vertex of G adjacent to every vertex of
H.

The proof of next theorem is similar to the proof of Theorem 3.2 [30] and thus omitted.

Theorem 3.3. Let @ > 0 is a real number and o > B when 3 € R. Also let n > 4 and G be a connected
graph with n(G) = n > 4 and independence number &. Then

_ | — 128 - - 1))
Se.p(G) < oo 52,8+1 o=l tén - f)((’(1214 éi)(fn— l)z) ’

where the inequality becomes equality when G = Eg VK, .
4. Spectral radius and spread of the generalized ISI matrix

In this section, we give lower and upper bounds on spectral radius and spread of graphs with respect
to generalized ISI matrix. For any complex n X n matrix M with eigenvalues y;, ..., u,, the spread
s(M) of M is introduced in [10] and is defined as s(M) = max |u; — ;.

l’j

Leto, > --- > o, be the A, g -eigenvalues of a simple graph G. Then spread A, g(G) is defined as

5(Aq, p(G)) = 0| — 0, since the eigenvalues oy, ..., 0, are all real.
For convenience, we define some notations. We denote determinant of A, g(G) by det(A,, 3(G)). Let
d, Vi dg(v; 2a
0= (d6(vi) dg(v;)) Q = det(A, 4(G).

(dG(vi) + d(v)*

1<i<j<n

We first give some lemmas that are used to prove our main results. The proof is straight forward.

Lemma 4.1. Let G be an n-vertex graph and oy, . .., 0, be its A, g -eigenvalues. Then
(1. Y oi=0,

i=1
(2). Y o =20.

i=1

Lemma 4.2 (Horn and Johnson [5]). Let A; = [a;jluxn and Ay = [b;jluxn be n X n symmetric and non-
negative matrices. If Ay > A,, that is, a;j > b;j for all i,j = 1,...,n, then (A1) > 1:(A,), where

m(Ay), k = 1,2 is the largest eigenvalue of the respective matrix.

Theorem 4.3 (Hong [6]). Let G be a connected graph with A-eigenvalues Ay > - -+ > A,. Then
L V2m—-n+1,

where the equality holds if and only if G! = S, or G} = K,,.

Theorem 4.4 (Cao [31]). Let G = G(n,m, Ag, ) be a graph with A-eigenvalues A, > --- > A, and
6g > 1. Then

A £ \2m—=65(n— 1)+ (6g — DAg.
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Lemma 4.5 (Zhang [32]). If C is a symmetric matrix of order n with eigenvalues n; > --- > n,, then
foranyy e R" withy # 0,

Y'Cy <miy'y,
where y is the transpose of y. Equality holds if and only if y is an eigenvector of C corresponding to
the eigenvalue n,.

Now we give bounds on largest A, g-eigenvalue of a graph.

Theorem 4.6. Let n > 2. Also let G = G(n,m, A, 6¢) be a connected graph with A, g-eigenvalues
oy >--->20,anda,B €R.

(1). Ifa, B = 0 then

R(G) _ (=1 VIm—n+1
S 01 = .
n2 Al 1 »

2). Ifa, B <0 then
R.(&) <o < V2m—n+1
T A VRV

3). Ifa >20and B <0 then
R.(G) n—D*P\2m-n+1

<O']<

n2ﬁ6’2_ B 2P

@). Ifa <0and B > 0 then

R.(G) <o < V2m—n+1.

<o <
n2p Al 2
Proof. (1). Lety € R" such that y = (y1,y2,...,y,)!. Then
(s ds(v,) (4500 ds(v,)
Y A p(@) y = 5 Vv > L
v €EG) (dg(v,.) dg(v ,-)) o €EG) G
. B ¢ _ Ry(©)
Taking y = (\/Lﬁ, #, cees %)T, we get #Aﬁg - EZE(Q) (dg(vi) dg(Vj)) yiyj = @. Therefore by
R, (G)
Lemma 4.5, oy > —p ok

Now for any vertex v; € V(G), i =1,...,n, we have 1 < 6g < dg(v;) < Ag < (n—1). Therefore

(dg(v,.) dg(vl-))a e
)ﬁ - 2/3(5@ - 2

(dg(vj) +dg(v))

If n; is the spectral radius of a matrix (”_Z%MA(Q), then by Lemma 4.2 and Theorem 4.3, we obtain

_ (=D (=D V2m—n+ ]
¥y T 2 ’

o<
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where A is the spectral radius of A(H).
(2). Let y € R" such that y = (y1,v2,...,v,)!. Then

dg(vi) dg(v;) ) dg(vi) dg(v;) )
Y A p(G)y = Z (9 ’ ])BJ’L'Y]‘Z (9 i ])
vivj € E(G) (dg(vi) + dg(Vj)) vivj € E(@G) 2 6ﬁ§

Yiyj-

Covo (L L T 1 o) vy — Ral©
Taking y = (\/7,’ wAXRRE \/E) , we get 7 Ving]E(g) (dg(v,)dg(vj)) ViYi= s Therefore by Lemma

@

R.(G)
> e
4.5, 0 > T

Now for any vertex v; € V(G),i=1,...,n,wehave 1 <dg <dg(v;) < Ag < (n—1). Since o, <0,
therefore (%“ <1and A’; > (n - 1)°. Now

(dotv de)) g 1
rsﬁ%sﬁm_w-

(v + g0
If i, is the spectral radius of a matrix mA(g), then by Lemma 4.2 and Theorem 4.3, we obtain

A <V2m—n+1
Bn-1¥" 2Pm-1p"

orsm=

where A, is the spectral radius of A(G).
Parts (3) and (4) can be proved analogously. O

Next theorem gives bounds on the smallest A, z-eigenvalue of a graph.

Theorem 4.7. Let G = G(n,m, A, 6¢) be a graph with A, g -eigenvalues oy > - -- > 0 ,. Then

\/2Q +(n- 1)2(11 —2) Q2/n-1 <o < [2(n ; l)Q’

Proof. By Part (1) of Lemma 4.1, we get

where a, 8 € R.

n—1

2
0‘%:(— O'i) :ZO',.Z+2 Z o0 ;.
i=1 i=1 1<i<j<n-1
Since arithmetic mean is always greater than geometric mean, therefore
2 2/n—1
s Y G0y 2 @D (detAn @) = @
(n—-1)(n-2) &
1<i<j<n-1

Hence 02 > (20 — 02) + (n — 1)(n —2) Q"' and o, > \/ 20t (e
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Again using Part (1) of Lemma 4.1 and Cauchy-Schwartz inequality, we have

n—1
a<m-1)) ol =@n-1)QQ-0)
i=1

Hence o, < 1/@. O

In the following theorem, we give bounds on spread of the generalized ISI matrix of a graph.

Theorem 4.8. Let G = G(n,m, Ag,6c) be a connected graph with A, g -eigenvalues oy > -+ > 0,
Then

(D). Ifa,B =0 then

R(G) (=17 [2m@n-1)
as@) = T T

=12 V2m—n+1 2m+ 22— 1)1 (n—2) Q2/n-1
% 258 (n — 1) '

\%

$(Aa,5(G))

IA

(). Ifa,B < 0 then

R.(&) 1 2m(n—1)
5(Aq, 5(G)) o 6@ T o1y \/ ;. ,

V2m—-n+1 \/Zm m-D*+28m-1)(1n-2)Q%n1
2 (n-1y 23+B '

\%

IA

5(Aq5(G)

3). Ifa > 0and B <0 then

R, 2B Pmn-1
A, > ~2T B [T
G

m—12FP\2m—n+1 2m+28m-1)(1n-2) Q!
28 2548 '

\%

$(Ao,p(G)) <

@). Ifa <0and B > 0 then

Ri(@ 1 [2Zm@n-1)
$(A0,5(G)) = nQﬁA/;_ﬁ — Y

V2m—-n+1 \/2m (n—1)% + 22 (n— 1)1+28 (n — 2) Q2/n-1
% 25+B(n — 1) '
Proof. (1). We have 1 < g < dg(v;) < Ag < (n—1) for any vertex v; € V(G), i = 1,...,n. Therefore

$(A0,5(G)) <

2a
(450 ds(v,) B o

20=2 ) 22 ) T > T 4.1)
I<i<j<n (dg(vl) + d§(vj)) 1<i<j<n G
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Also

2a
(dg(vl.) dg(v j)) Adar
= g 1-28 ¢, _ 1\
20=2 Z 5 <2 Z g5 < M- 4.2)
1<i<j<n (dg(vl) + dg(V])) 1<i<j<n G

Hence using Theorem 4.6, Theorem 4.7 and Equations (4.1) and (4.2), we get

5(Awp(@) = o1 -0,
=1 V2m-n+1 [20+@n-1)(n-2) Q!
- 2 2
2a
< (n—1) Vzim—n+l_% (2(,12_%‘“”_1)(”_2)92/"_1
=12 V2m—n+1 +2m+2% - 1)1 (n-2) Q2n1
28 - 2548 (n - 1)8 '

Also

o L R  20-D0 | R (-1 =T
e @) =01 0w 2 S50 Vo Y V.

(2). We have 1 < 6g < dg(vi) < Ag < (n—1) for any vertex v; € V(G),i = 1,...,n. Since o, < 0,
therefore Ag > (n—-1)*and 6‘; < 1. Now

2w
(dg(vi) dg(Vj)) A4a
_ g 1-2, 4o
20=2 3’ 522 > ey G (4.3)
1<i<j<n (dg(vi) + dg(vj)) I<i<j<n G
Also )
(s dsv)

64(1 21—2ﬁ
R~

20=2 = .
0=2 ), 2 AP T (=1

7 < 4.4)
1<i<j<n (dg(vi) + dg(vj)) I<i<j<n

Hence using Theorem 4.6, Theorem 4.7 and Equations (4.3) and (4.4), we get

S(Aa,ﬁ(g)) = 01 =0y
V2m-n+1 20+ (n—1)(n—2)Qn-1
T 2 (m-1)y 2
B V2m—-n+1 \/2m m=1)y+228m—-1)(n-2) Q21
22 (n—1)y 2548 '
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Also
R.(G) 2(n-1)Q0 R.(G) 1 [2m (n—1)
s(A, =0 -0, = > - .
(Ao, 5(G)) = 0 nzgéﬂ N, nps -1y n
Similarly, one can prove Parts (3) and (4). The proof is complete. O

5. Bounds on generalized ISI energy

In this section, we give some bounds for the generalized ISI energy of graphs. We would like to
mention that the idea of proof of next theorem is taken from the proof of Theorem 13 [8].

Theorem 5.1. Let G = G(n,m, A, 6g) be a connected graph having A, g-eigenvalues oy > --- > o,
and a, € R.

(D). Ifa,B >0 then
21F 27RAG) _ (n—1)>
n (I’l 1)ﬂ = a ,B(g) S —— 2/3

2nm.

(). Ifa,B < 0 then

27 Ru(G) 1 oy
T < Ea,ﬁ(Q) < 2/5(n——1)5 2nm.

3). Ifa>0and B <0 then

1-8 _ 1\2a-8
% < E,p(G) < % V2nm.

@). Ifa <0and B > 0 then

2'FR 27RUG) _
@ a < - \/_
n(n— 1)5 < Eap(G)
Proof. (1). With no loss of generality, suppose that oy, ..., o, are positive and 0,1, . . . , 0, are negative.
Using Theorem 4.6, we get

n t
2R.(G) _ 2'PR.(G)
E, = i =2 i 220 2 2 -
0.p(G) ;:1 |oril 21 o Tz A@ Y

Now applying Cauchy-Schwartz inequality, Part (2) of Lemma 4.1 and Equation (4.2), we have

_ @ _1)\2a
Ea,ﬁ(g)—Zw, < 4|n Za V21 0 2”’"(” e _ @ 1) Va2nm
i=1

(2). With no loss of generality, suppose that o7y, . . ., o, are positive and 0,1, . . . , 0, are negative. Since
a, B < 0 therefore (5ﬁg < 1. Now using Theorem 4.6 (2), we get

_ 2R(G) _ 2P RuG)
Ea,ﬁ@—;m 220,_ NI T
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Now applying Cauchy-Schwartz inequality, Part (2) of Lemma 4.1 and Equation (4.4), we have

- = 2nm 1
Ea,ﬁ(g):;m < 4 n;ag - V0 < ‘/(n_l)zﬁ 7 = w2

One can prove Parts (3) and (4) in a similar manner. The result is proved. O
Theorem 5.2. Let G = G(n,m,Ag,0¢) be a connected graph with A, g-eigenvalues oy > -+ > 0.
Then

(D). Ifa, B =0 then

217ﬁ \/ﬁ (I’l _ 1)2&
o1y =Pl = T

n2

2 284
V2m—n+1+ \/2m(n—1)—R" @) (n— DI }

(2). If a, B <0 then

. R,> _ 1)1+28
21‘3(;1—1)2“\/E§Ea,ﬁ(g)§m[\@m—n+l+ sz(n_l)_ (giz(r;éﬁ . ]

3). Ifa > 0and B <0 then

_ 1\2a-8 2 _ +2B8—4a
21—ﬁ\@gEa,ﬁ(g)s—(" 21/3) [m+ sz(n—l)—R” (g)(lzéz,})l - ]
n
G

@). Ifa <0and B > 0 then

2
21 (n = 1)\ < E, 4(G) < %{m+ sz (n-1)- @1 (QZ)A(’;;_ D ]
n
G

Proof. (1). By Part (1) of Lemma 4.1, we have i 0'1.2 =-2 >, o;0;. Using Part (2) of Lemma 4.1,

i=1 I<i<j<n
we obtain
n 2 n
Eap @7 =(Yloil) =D 07 +2 Y I 2 20+2] ), oiorl = 40
i=1 i=1 1<i<j<n 1<i<j<n
Now
2a
(dg(vi) dg(v j)) a5t m 2228

40=4 Z 5> Z T T
I<i<j<n (dg(vz) + dg(vj)) I<i<j<n G

21F m
Hence E,, 4(G) > 557 -
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To prove inequality on the right side, we apply Cauchy-Schwartz inequality to obtain (3 |o])? <
i=2

(n-1) iaf. Therefore using Part (2) of Lemma 4.1, (E, 4(G) — 01)* < (n — 1) (2Q — 0}). Hence by
Theorem 4.6 (1), we get

IA

o+ \/(n -1)Q20 - 0—%)
_1)\2a — -
(n 1) \//W + \/(71 - 1) [m 21_2ﬁ (n — 1)4(1 _ Ra’ (g) ]

Eq 5(G)

2 n? 2% (n-1)%*

_1)\2¢a 2 _ _28-4q
u[ 2m—n+1+\/2m(n—1)—Ra(g)(n DT }
28 n2

(2). Using Eq (4.3), we get
40 =220) > 2" m (n - 1)*.

Hence E, 3(G) = 2'# (n — 1)* \/m.
Now using Theorem 4.6 (2) and Eq (4.4), we get

EfQ) < o1+ Jn—1)Q20- o))

V2m—n+1 |
Pom-1p T\ D

m2%  RAG)
(=% 2w P

_
P (n—1p

RQZ — 1)1+28
o nt 1+ y|2mn 1) @D
n? 6;
This gives the required result.
Analogously, one can prove Parts (3) and (4). |

6. Nordhaus-Gaddum-type results for generalized ISI spectral radius and energy

The compliment of a simple graph G is a graph represented by G with the property that V(G) =
V(G) and wz € E(G) if and only if wz ¢ E(G). Therefore n(G) = n(G), e(G) = @M@ _ ¢(G),
Az = n(G) — 1 -6 and 6 = n(G) — 1 — Ag. The A, g-eigenvalues of Gareoy, i = 1,2,...,n. A
maximal connected subgraph of G is called a connected component of G.

We first present bounds on oy + 7.

Theorem 6.1. Let G = G(n, m, Ag, 6¢) be a connected graph and a,3 € R.

(1). If B = O then

I [Ri© . RuG)
n2|{(n-1¥¢ (m-1-68650|

0'1+512
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(2). If B <0 then B
— 1 |R.(G) R.(G)
O'1+0'1Z’12,6 éﬁg +(I’l—1—Vg)B'

Proof. (1). Lety € R"” such that y = (y1,y2,...,y,)!. Then

_ (dg(v?) dg(v))® (dg(v) dg(v))*
A, Aq = iV ¥
Y [ ’ﬁ(g) " ’B(g)] g v,-wEZE:(Q) (dg (vi) + dg (vj ))B o viv,€E(G) (dé(w) " dg(Vj))ﬂ "
dg(vy) dg(v,))* (dg(v) dg(v)))"
.y (dg(vi) i(v,» T S ik AL
viv;€E(G) Q/BAQ viv,€EG) Q/BAE

Since Az = n—1-6g and Ag < n— 1 therefore taking y = (\/iﬁ, \/iﬁ, o, \/LE)T and using Lemma 4.5,

we obtain

1 [ R, R,(G
o1 +o 2 — ©G) + G .
n2f|(n—=1F (n—1-6g)F

Part (2) can be proved similarly. O
Theorem 6.2. Let G = G(n,m, g, Ag) be a connected graph and G, is a connected component of G
with o, = 01(Gy).

(1). Leta, B=0.

(a). If Ag =n—1 orAE: n—1, then

o+ T < % | = D> V2m —n+ 1+ ((G1) - 1Y V2e(G) - n(G) + 1.

(b). IngSn—ZandAESn—Z, then

(I’l _ 2)2(1
28

o +0; < [ 2m—n+1+\/(n2_2n_2m+1)+5g(2+Ag—n)J‘

(2) Leta, B<0.
(@). If A\g=n—-1 orAézn— 1, then

i <i V2m—n+1+ V2e(G) —n(G)) + 1
TUIE B -1y (n(G)) — 1P ’

(b). IngSn—ZandAESn—Z, then

P
28 (n—2)°

3). Leta>0andB <0.
(a). Ing:n—lorAézn—l, then

o+ T [ 2m—n+1+\/(n2—2n—2m+1)+6g(2+Ag—n)J.

o1+0 < % [ = D P N2m—n+ 1+ ((G) - 1P 2e(G1) = n(G) + 1],
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(b). IngSn—2andA§Sn—2, then

(n—2)%"F

% [ 2m—n+1+\/(n2—2n—2m+1)+5g(2+Ag—n)J.

O'1+E1S

(4) Leta <0and g > 0.
(a). Ing:n—lorAE:n—l, then

o1+ T S%[\/Zm—n+l+ V2e(G)) - n(Gn) + 1.

(b). IngSn—2andA§§n—2, then

1
01+51Sﬁ[ 2m—n+ 1+ \/(n2—2n—2m+1)+5g(2+Ag—n)].

Proof. (1).
(a). Assume that Ag = n — 1. From Theorem 4.6, we have

< n—D**V2m-n+1

g1 = 2ﬁ

6.1)

Let G, G», ..., G, be connected components of ? With no loss of generality, assume that o1(G) >
01(Gy) = -+ > 01(Gy). Also note that o7} = 01(G;). Therefore using Theorem 4.6, we get

— _ (G = 1) V2e(G)) —n(G)) + 1
o1 < .

7 (6.2)
The desired result is obtained by adding Equations (6.1) and (6.2).
(b).If Ag <n—2and Ag <n-2,then 65 > 1. From Theorem 4.6, we have
—7)2 _
<(n 2)"*N2m n+1' 6.3)

g1 = 2ﬁ

Now using Inequalities 65 = n — 1 — Ag and Ag < n — 2, Theorem 4.4 and proof of Theorem 4.6,
we obtain

(n =27 \J2(3) = 2m — 550 = 1) + (65 - DAy
<

T

28
G
(n—2)* (6.4)
=———— M -2n-2m+ 1)+ 652 + Ag — n)
(l’l _ 2)2(1
< T\/(;ﬂ—zn—szr 1) + 662 + Ag — ).
By adding Egs (6.3) and (6.4), we get the result.
Now similarly using Theorem 4.4 and Theorem 4.6, one can prove Parts (2) ~ (4). |
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We now give bounds on E, z(G(n,m, Ag,6¢)) + E,, ,;(E(n, m, Ag, 0g)).

Theorem 6.3. Let G = G(n,m, A, 6) be a connected graph and G, is a connected component of é with
o =oi(Gr).
(1). Leta, B > 0.

(@). If A\g=n—-1 OV'AEZ n—1, then

_ -1 2a 1
E, 5(G) + E, p(G) < % U+ % [(”(gl) —~1)*\2e(G) - n(G) + 1 + Wl] ,

(b). IngSn—ZandAESn—Z, then

_ (n _ 2)2(1 , (l’l -1- 56)20 m
Eep©) + Eap@) s ——5— Uld =0 T B

(2). Leta, B<0.
(a). If Ag :n—lorAézn—l, then

— 1 1 [ V2e(G) —n(G)) + 1 WsVn2—n-2m
Fon@ @ = e B | T e -1y T 1o 1 AP

(b). IngSn—ZandAgﬁn—Z, then

4.

N O g 7
Ea,ﬁ(g) + Ea,ﬂ(g) < 26 (n _ z)ﬁ Ul + 28 (n —-1- 5@)5

3). Leta>0and B < 0.
(@). IfAg=n—-1 orAgzn—l, then

_ _ 1) 1

E, 5(G) + E, 5(G) < % U, + % V2e(G)) - n(G) + L((G)) — 1)
Vn?2 —n-2m
W

(D). IngSn—ZandAESn—Z, then

(n—2)%#8 U+ (n—1-=0650"PNn2 —n-2m
28 2 2B

E. 5(G) + Eq 5(G) < We.

4). Leta <0andp = 0.
(@). If A\g=n—-1 orAézn— 1, then

- 1 1
Ewp(G) + Eup(@) < 55 Us + 35 [ V2e(G) = n(G)) + 1+ Wy V2 —n = 2m |,
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(b). IngSn—2andA§Sn—2, then

where

W,

Ws

Wy

Ws

We

W7

<

-

-

-

V2m—-n+1+ \/Zm(n—l)

V2m—n+1+ \/Zm(n—l)—

E, 5(G) + Eo 5(G)

S?U3+

1 (n—1-=Ag)**FVn2-n-2m

28

R, (G) (n = 1)~

n2

b

R, (G) (n—1)

n2 (n _ 2)4a+2ﬁ ’

2 +
Vam—nt1+ 2mn-1)- X © (nz— 1! 2ﬁ,
\ nzégﬂ
V2m —n+ 1+ |2m( _1)_Ra2(g)(n—1)(n—2)2ﬁ
m-—n \ m (n nzagf ,
2 —da+
V2m-n+1+ 2m(n—1)_R“ (Q)(n—21)1 4 25’
\ n26gﬂ
2
Vom—n i+ | 2mn—1)— @@= D
\ n? (n —2)%-2 6;/3
2
=1+ | 2m(n-1)- 2 @D
\ nzA;

8»

\/(n—l)[

(n—1—Ag)*

(n—1-26g)* (n*> —n—2m) (- 1 — Ag)** (n> — n —2m)?
4n> (n—1-406g)%# ’

+1—I’l+5g(2+Ag—ﬂ)

n2—n-2m

~ (n—1)(n—1-Ag)**%# (n?> —n —2m)

+ \/(n— 1)

4n* (n — 1 — §g)*h+4e '

(n-1) [(n — 1= Agylar2 —

(n—1—=26g)* % (n> — n —2m)

|

<

1-n+6cQ2+ Ag —
1+ " 6 ( L)

n—n-2m

~ (n—1)(n—1-36g)**8 (n> —n—2m)

4n?
+ \/(n -1

4n2 (n — 1 — Ag)2rie ’

(n—1) [(n — 1 —g)*a2 —

(n—1-Ag)*e (n> —n—2m)

|

g

1—-n+6c Q2+ Ag —
1+ " 6 g "

n2—n-2m

+

_ (n—1)(n—-1-Ag)* 21> —-n-2m)

4n?
\/(n— D

4n? (n— 1 = §g)ta=2# ’

(n-1) [(n — 1= Agye2 -

AIMS Mathematics
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l-n+dg(2+Ag—n) (n—1)(n—-1-36g)* 2 (n>-n-2m)
W = 1 -1)- .

Proof. (1). Note that Az = n—1-6g and 65 = n— 1 —Ag. Using Part (2) of Lemma 4.1 on compliment
of a graph G, we see that

(A )4a
2,8(6 )2,8

B (dg(v)) dg(vp)*
2e =2 Z (d (vz)+dg(vj))2ﬂ - Z 2
2€E(G)

) n (n—l—ég)““ (n—l—ég)4“ (n*> —n—2m)
[((2) ) 2%6(n—1-Ag)* ] 2%(n—1-Ag)* '

1<i<j<n

Similar to the proof of Theorem 4.6, we get

(6% (> —n=2m)  (n—1-Ag)* (n* —n—2m)
2 (Ag 2P (n—1-5g)

(6.5)

0'12

Applying Cauchy-Schwartz inequality to obtain (3 [o5))*> < (n — 1) E?. Therefore using Part (2)
i=2 i=2

of Lemma 4.1, (E, 4(G) - 71)> < (n — 1) 2Q — 7).
(a). From Theorem 5.2, we see that

— 1)2 2 _ -2B-4a
Eop@) < " [ 2’”_””*\/2"1(”—1>—R“(g)(nnzl)1 - (6.6)

If Ag =n—1or Az = n— 1, then by using Inequality (6.2), we obtain

E.p©@ <71+ (1-1)20 -7
_ (G ~ 1) VG —AGN 7 1

2%
(n—1-6g)* (n* —n-2m) (n—1-~A7Ag)* (n>—-n-2m)? ©.7)
b (- 1-Ag® | 2 (n—1-og)F

1
= 5 |(G) = " V2e(G1) — n(G1) + T+ W .

By adding Egs. (6.6) and (6.7), we get the desired result.
(b). From proof of Theorem 5.2 (1), we see that

_22(1 Raz -1
aﬁ(g)<( 2/3) [ 2mn+1+\/2m(n1)n2(£lg_)—(2’;2ﬁ+43]. (6.8)
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If Ag <n—2and Az < n -2, then using Lemma 4.4 and proof of Theorem 4.6, we get

Eop©@ <1+ - 1) (20 -5

(n—1-65)%
< T ay 02 =20 = 2m + 1) + 652 + Ag — n)
+ ( 1) (n -1- 6g)4a (}’l2 -n- 2m) (l’l -1- Ag)4a (n2 —-n— 2m)2 (69)
n 22,6’(,1 —-1- Ag)Zﬁ n2 228+2 (n -1-= 6g)25
_(n=1-6g0"Vn2 —n—-2m
- B(n—1-Ag¥ 2

The desired result is obtained by adding Eqgs (6.8) and (6.9).
One can prove Parts (2) ~ (4) similarly. O

Theorem 6.4. Let G = G(n, m, Ag, d¢) be a connected graph and «, 3 are real numbers.

(1). If a, B = 0 then

21-p \/ﬁ \/2 n>-n-2m)(n-1 _AQ)M
-1y " 2 (n—1-6gy .

Eop(G) + Eq 3(G) >

2). Ifa, B <0 then

V2 (2 —n—2m)(n—1-8g)%

= 1-8 _1\2«
Eo §(G) + Eap(@) 2 2'7F (n— 1) vim + P 1= AgP

3). Ifa 20and B <0 then

V22 —n—-2m)(n—1-Vg)es

Ea,ﬁ(g) + Eaﬁ(é) > 21 \/}1_1 + =

). Ifa <0and B > 0 then

V22 —n—2m)(n—1-6g)%F

Eop(@) +Eop(@) 22" (n— D™ m + Il

Proof. (1). From Theorem 5.2, we see that

218 \fm
(n—1p"

E,3(G) > (6.10)

By Part (1) of Lemma 4.1, we have i Eiz =-2 ), 0;0,. Using Part (2) of Lemma 4.1, we obtain
i=1

1<i<j<n

(Ea,ﬁ@)>2=(i|a|)2=Zn‘ﬁ%+2 M ol 220421 Y o)l = 40
i=1 i=1

1<i<j<n 1<i<j<n
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We know that Az =n — 1 — 6g and 65 = n— 1 — Ag. Now

(dg(vi) dg(v ) 40 2B -n-2 —1-Ag)*
1024 3 e D W e
1<ic<n YglVi G\Vi 1<i<j<n G n G
Hence
—  (n=1-Ag)* 2 (n*—n-2m)
E, > . 6.11

#G) ITE R (6.11)
The result is obtained by adding Eqs (6.10) and (6.11).
Now using Theorem 5.2, one can prove Parts (2) ~ (4) in a similar manner. O

7. Conclusions

We introduce generalized inverse sum indeg index and energy of graphs. Under certain conditions,
we discuss the monotonicity of generalized ISI index by adding edges to a graph. We find extremal
graphs with respect to generalized ISI index in class of trees, a class of connected graphs with smallest
degree 2 and a class of graphs with given independence number. Bounds on spectral radius and spread
of generalized ISI matrix are determined. We also find bounds on generalized ISI energy and Nordhaus-
Gaddum-type results for generalized inverse sum indeg index spectral radius and energy. In future, one
can find the extremal graphs with respect to generalized ISI index in class of trees, chemical trees,
unicyclic graphs, bicyclic graphs for general values of parameters @ and 8. One can also study the
spectral properties of graph operations with respect to generalized ISI matrix. Extremal graphs with
respect to generalized ISI energy in class of trees, chemical trees, unicyclic graphs and bicyclic graphs
can also be determined.
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