Research article

Newly defined fuzzy Misbalance Prodeg Index with application in multi-criteria decision-making

  • Received: 22 March 2024 Revised: 23 May 2024 Accepted: 05 June 2024 Published: 21 June 2024
  • MSC : 05C15

  • In crisp graph theory, there are numerous topological indices accessible, including the Misbalance Prodeg Index, which is one of the most well-known degree-based topological indexes. In crisp graphs, both vertices and edges have membership values of $ 1 $ or $ 0 $, whereas in fuzzy graphs, both vertices and edges have different memberships. This is an entire contrast to the crisp graph. In this paper, we introduce the Fuzzy Misbalance Prodeg Index of a fuzzy graph, which is a generalized form of the Misbalance Prodeg Index of a graph. We find bounds of this index and find bounds of certain classes of graphs such as path graph, cycle graph, complete graph, complete bipartite graph, and star graph. We give an algorithm to find the Fuzzy Misbalance Prodeg Index of a graph for the model of multi-criteria decision-making is established. We present applications from daily life in multi-criteria decision-making. We apply our obtained model of the Fuzzy Misbalance Prodeg Index for the multi-criteria decision-making to the choice of the best supplier and we also show the graphical analysis of our index with the other indices that show how our index is better than other existing indices.

    Citation: Shama Liaqat, Zeeshan Saleem Mufti, Yilun Shang. Newly defined fuzzy Misbalance Prodeg Index with application in multi-criteria decision-making[J]. AIMS Mathematics, 2024, 9(8): 20193-20220. doi: 10.3934/math.2024984

    Related Papers:

  • In crisp graph theory, there are numerous topological indices accessible, including the Misbalance Prodeg Index, which is one of the most well-known degree-based topological indexes. In crisp graphs, both vertices and edges have membership values of $ 1 $ or $ 0 $, whereas in fuzzy graphs, both vertices and edges have different memberships. This is an entire contrast to the crisp graph. In this paper, we introduce the Fuzzy Misbalance Prodeg Index of a fuzzy graph, which is a generalized form of the Misbalance Prodeg Index of a graph. We find bounds of this index and find bounds of certain classes of graphs such as path graph, cycle graph, complete graph, complete bipartite graph, and star graph. We give an algorithm to find the Fuzzy Misbalance Prodeg Index of a graph for the model of multi-criteria decision-making is established. We present applications from daily life in multi-criteria decision-making. We apply our obtained model of the Fuzzy Misbalance Prodeg Index for the multi-criteria decision-making to the choice of the best supplier and we also show the graphical analysis of our index with the other indices that show how our index is better than other existing indices.



    加载中


    [1] N. R. Pal, S. K. Pal, A review on image segmentation techniques, Pattern Recogn., 26 (1993), 1277–1294. https://doi.org/10.1016/0031-3203(93)90135-J doi: 10.1016/0031-3203(93)90135-J
    [2] R. K. Shukla, D. Garg, A. Agarwal, An integrated approach of Fuzzy AHP and Fuzzy TOPSIS in modeling supply chain coordination, Prod. Manuf. Res., 2 (2014), 415–437. https://doi.org/10.1080/21693277.2014.919886 doi: 10.1080/21693277.2014.919886
    [3] K. M. Prabusankarlal, P. Thirumoorthy, R. Manavalan, Computer aided breast cancer diagnosis techniques in ultrasound: A survey, J. Med. Imag. Health In., 4 (2014), 331–349. https://doi.org/10.1166/jmihi.2014.1269 doi: 10.1166/jmihi.2014.1269
    [4] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [5] B. R. Gaines, Foundations of fuzzy reasoning, Int. J. Man-Machine Stud., 8 (1976), 623–668. https://doi.org/10.1016/S0020-7373(76)80027-2 doi: 10.1016/S0020-7373(76)80027-2
    [6] S. Mondal, N. De, A. Pal, On some new neighbourhood degree based indices, (2019), arXiv preprint arXiv: 1906.11215, https://doi.org/10.48550/arXiv.1906.11215
    [7] M. Pal, S. Samanta, G. Ghorai, Modern trends in fuzzy graph theory, Berlin: Springer, (2020).
    [8] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems. Acta Appl. Math., 72 (2002), 247–294.
    [9] H. Hosoya, Topological index, A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, B. Chem. Soc. Jan., 44 (1971), 2332–2339.
    [10] S. Mondal, N. De, A. Pal, Topological properties of Graphene using some novel neighborhood degree-based topological indices, Int. J. Math. Industry, 11 (2019), 1950006. https://doi.org/10.1142/S2661335219500060 doi: 10.1142/S2661335219500060
    [11] S. Hameed, U. Ahmad, Extremal values in a class of basic peri-condensed benzenoids with respect to VDB topological indices, Ars Combinatoria, 145 (2019), 367–376. https://doi:10.2298/JSC160718096A doi: 10.2298/JSC160718096A
    [12] S. R. Islam, M. Pal, Hyper-Wiener index for fuzzy graph and its application in share market, J. Intell. Fuzzy Syst., 41 (2021), 2073–2083. 10.3233/JIFS-210736 doi: 10.3233/JIFS-210736
    [13] S. Poulik, S. Das, G. Ghorai, Randic index of bipolar fuzzy graphs and its application in network systems, J. Appl. Math. Comput., 68 (2022), 2317–2341. https://doi.org/10.1007/s12190-021-01619-5 doi: 10.1007/s12190-021-01619-5
    [14] J. Xu, J. B. Liu, A. Bilal, U. Ahmad, H. M. A. Siddiqui, B. Ali, et al., Distance degree index of some derived graphs, Mathematics, 7 (2019), 283–292. https://doi.org/10.3390/math7030283 doi: 10.3390/math7030283
    [15] A. Jahanbani, H. Shooshtari, Y. Shang, Extremal trees for the Randic index, Acta U. Sapientiae-Ma., 14 (2022), 239–249. https://doi.org/10.2478/ausm-2022-0016 doi: 10.2478/ausm-2022-0016
    [16] S. R. Islam, M. Pal, First Zagreb index on a fuzzy graph and its application, J. Intell. Fuzzy Syst., 40 (2021), 10575–10587. 10575-10587.10.3233/JIFS-201293
    [17] S. Kalathian, S. Ramalingam, S. Raman, N. Srinivasan, Some topological indices in fuzzy graphs, J. Intell. Fuzzy Syst., 39 (2020), 6033–6046. 10.3233/JIFS-189077 doi: 10.3233/JIFS-189077
    [18] S. R. Islam, M. Pal, Hyper-Wiener index for fuzzy graph and its application in share market, J. Intell. Fuzzy Syst., 41 (2021), 2073–2083. 10.3233/JIFS-210736 doi: 10.3233/JIFS-210736
    [19] V. R. Kulli, Some new multiplicative status indices of graphs, Int. J. Recent Sci. Res., 10 (2019), 35568–35573. http://dx.doi.org/10.24327/ijrsr.2019.1010.4131 doi: 10.24327/ijrsr.2019.1010.4131
    [20] R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics: volume Ⅰ: alphabetical listing/volume Ⅱ: appendices, references, John Wiley Sons, (2009).
    [21] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16.
    [22] W. Bai, J. Ding, C. Zhang, Dual hesitant fuzzy graphs with applications to multi-attribute decision making, Int. J. Cognitive Comput. Eng., 1 (2020), 18–26. https://doi.org/10.1016/j.ijcce.2020.09.002 doi: 10.1016/j.ijcce.2020.09.002
    [23] M. Randić, Novel molecular descriptor for structure—property studies, Chem. Phys. Lett., 211 (1993), 478–483. https://doi.org/10.1016/0009-2614(93)87094-J doi: 10.1016/0009-2614(93)87094-J
    [24] R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics: volume Ⅰ: alphabetical listing/volume Ⅱ: appendices, references, John Wiley Sons, (2009).
    [25] V. R. Kulli, Nirmala index, Int. J. Math. Trends Technol., 67 (2021), 8–12. https://doi.org/10.14445/22315373/IJMTT-V67I3P502
    [26] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
    [27] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem, 86 (2021), 11–16.
    [28] K. C. Das, A. S. Çevik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021), 140–151. https://doi.org/10.3390/sym13010140 doi: 10.3390/sym13010140
    [29] V. R. Kulli, I. Gutman, Revan Sombor index, J. Appl. Math. Inform., 2 (2022), 1–10. http://dx.doi.org/10.22457/jmi.v22a03205 doi: 10.22457/jmi.v22a03205
    [30] V. R. Kulli, Status Sombor indices, Int. J. Math. Comput. Res., 10 (2022), 2726–2730. https://doi.org/10.47191/ijmcr/v10i6.05 doi: 10.47191/ijmcr/v10i6.05
    [31] I. Milovanovic, E. Milovanovic, M. Matejic, On some mathematical properties of Sombor indices, Bull. Int. Math. Virtual Inst., 11 (2021), 341–353. https://doi.org/10.7251/BIMVI2102341M doi: 10.7251/BIMVI2102341M
    [32] V. R. Kulli, I. Gutman, On some mathematical properties of Nirmala index, Annals Pure Appl. Math., 23 (2021), 93–99.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(584) PDF downloads(52) Cited by(2)

Article outline

Figures and Tables

Figures(17)  /  Tables(17)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog