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Abstract: In crisp graph theory, there are numerous topological indices accessible, including the
Misbalance Prodeg Index, which is one of the most well-known degree-based topological indexes. In
crisp graphs, both vertices and edges have membership values of 1 or 0, whereas in fuzzy graphs, both
vertices and edges have different memberships. This is an entire contrast to the crisp graph. In this
paper, we introduce the Fuzzy Misbalance Prodeg Index of a fuzzy graph, which is a generalized form
of the Misbalance Prodeg Index of a graph. We find bounds of this index and find bounds of certain
classes of graphs such as path graph, cycle graph, complete graph, complete bipartite graph, and star
graph. We give an algorithm to find the Fuzzy Misbalance Prodeg Index of a graph for the model of
multi-criteria decision-making is established. We present applications from daily life in multi-criteria
decision-making. We apply our obtained model of the Fuzzy Misbalance Prodeg Index for the multi-
criteria decision-making to the choice of the best supplier and we also show the graphical analysis of
our index with the other indices that show how our index is better than other existing indices.
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1. Introduction

Graph theory originated with Euler’s 1736 study on the Seven Bridges of Königsberg issue. To
answer this difficulty, Euler created the concept of a graph, and his book “Solution of a Problem
Related to the Geometry of Position” is recognised as the fundamental work in graph theory. The
development of fuzzy notions in graphs involves expanding classical graph theory to enable the
representation of imprecision via fuzzy logic. Fuzzy graph theory is an area of graph theory that
addresses uncertainty or imprecision in the representation of connections among objects or entities.
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Traditional graph theory defines graphs as nodes (vertices) connected by edges (links) that express
specific relationships between them. However, in many real-world settings, object relationships may
be ambiguous or imprecise. Fuzzy graph theory presents the concept of fuzzy sets, which indicate
the degree of membership or resemblance between nodes and edges. Various fundamental research
and examples of applications of fuzzy graph theory in diverse disciplines, proving its adaptability in
handling uncertainty and ambiguity in real-world circumstances, are described in [1–3] The notion of
the fuzzy set was established in [4] to describe the concept of vagueness in a classical set. This served
as the inspiration for Rosenfeld [5], who proposed the fuzziness for graphs in 1975 and gave them the
name fuzzy graph (FG). Topological indices (TIs) are molecular descriptors that are determined on the
molecular graph of a chemical compound in the areas of mathematical chemistry known as chemical
graph theory, molecular topology, and molecular topology. These molecular descriptors are numerical
quantities that characterize a graph’s topology. The first topological descriptor, named as Wiener index
(WI), which is deployed to find the BP(Boiling Point) of alkane(Paraffin), was initially examined in
1947 [6]. In order to determine the special types of energy namely π-electron energy of hydrocarbons,
the Zagreb index (ZI) was developed in [7]. Following the definition of this molecular descriptive,
authors investigated the forgotten topological index (F-index), another index based on the degree of
vertices in [8]. Mondal et al. discuss a few neighborhood degree-based topological indices [9, 10].
Topological indices are important in fields such as molecular chemistry, chemical graph theory, spectral
graph theory, and network theory. Numerous scholars are investigating the concept of topological
indices (TIs) in fuzzy graphs as well, owing to the extensive applicability of TIs in crisp graphs across
various domains. Uzma et al. discussed the algebraic perspective of TIs using the automorphism of
group action [11]. Extremal values of benzenoid structures have been discussed via degree-based
topological indices [12, 13]. Distance degree-based indices have been in [14]. For the study on
the general Randic index, one can see in [15, 16]. Researchers initially concentrated on extending
standard topological indices, such as the Wiener, Randić, and Zagreb indices, to fuzzy graphs. These
additions involved generating suitable fuzzy versions of distance, degree, and associated concepts.
Aside from enhancing classical indices, researchers created totally new fuzzy topological indices
specifically designed to capture the unique characteristics of fuzzy graphs. These indices frequently
entail aggregating the fuzzy memberships of vertices and edges in a graph to obtain a scalar value
that represents a specific topological attribute. For fuzzy graphs, Kalathian et al. [17] defined the first
degree-based topological indices.

Islam and Pal [18] examine the first Zagreb index and prove several related results for several
fuzzy graphs, including fuzzy path graph, Fuzzy cycle graph, Fuzzy star graph, and fuzzy subgraphs.
Additionally, a method for multi-criteria decision-making (MCDM) is presented, which identifies the
competent employee in a company by utilizing the fuzzy graph’s first Zagreb index. It has been
observed that authors found certain bounds along with numerous of its properties and by the use of
the Randic index, Akram et al. presented the fuzzy graphs using bipolar concept. They also described
an expression for the Randic index of bipolar fuzzy cycles and fuzzy graphs.

Since 1972, several degree-based topological indices have been introduced and examined in
Chemical Graph Theory [19, 20]. Gutman [21] invented the Sombor index, a degree-based index.
The motivation behind this study is that topological indices (TIs) for crisp graphs have many uses in a
variety of contexts, therefore it makes sense to investigate the concept of TIs for fuzzy graphs as well.
For fuzzy graphs, the group of Zagreb indices and Wiener indices are the main topics of the literature
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currently available on topological indices in fuzzy graph theory. This paper introduces a new fuzzy
topological index, the fuzzy Misbalance Prodeg Index (FMPI), as a result of the widespread use and
importance of topological indices in fuzzy graphs. We defined this novel index and investigated its
features and applications in the area of multi-criteria decision-making, particularly with fuzzy graphs.
Numerous research publications have contributed to our understanding of how graphs can be used
to improve decision-making processes. Comparing and discussing the outcomes of this line of
research is critical for various reasons. Researchers can validate particular study findings by
comparing them to other studies, assuring consistency and reliability. Assessing several studies
assists in detecting common trends and patterns, which can lead to the creation of best practices
and standard techniques for graph-driven decision-making. Comparing studies might sometimes
reveal differences or contradicting results, requiring additional research to determine the underlying
causes and strengthen decision-making models. Discussing multiple findings allows for a more
comprehensive grasp of the subject, combining many perspectives and ways to graph-driven decision-
making. For example, the study cited in [22] provides detailed insights into graph-driven decision-
making. By comparing this study to others in the field, researchers can examine the robustness of the
methodologies utilised, the application of the results in diverse contexts, and the overall contribution
to the body of knowledge. In the study of fuzzy graphs, the fuzzy Misbalance Prodeg Index (FMPI)
is an important addition to topological indices, opening up new paths for research and real-world
applications. This paper is arranged in the following manner: in Section 2 some basic elements of
fuzzy graphs are given which are necessary part for the better understanding of this study. In Section 3,
some topological indices along with the Misbalance Prodeg index are defined for fuzzy graphs. Some
bounds of these two indices for fuzzy graphs are discussed in section 4. Section 5 explains an algorithm
to evaluate these indices for fuzzy graphs. In Section 6, applications in multi-criteria decision-making
problems for Misbalance Prodeg indices are considered. Finally, a comparison of related indices on the
application’s outcome is given, demonstrating the worth of our approach in Section 7, and in Section 8
we have given our conclusion.

2. Preliminaries

A graph is an ordered pairℜ = (η, τ) with vertex set η(ℜ) and edge set τ(ℜ). The vertex set η(ℜ)
is always non-empty whereas the edge set τ(ℜ) may or may not be an empty set. There are two types
of graphs we are dealing with in this research such as crisp graphs and fuzzy graphs. This paper aims
to study fuzzy graphs. All the definitions in this section are taken from [23].
Let A(, ∅) be given a finite set. Let Fuzzy graph (FG) is ℜ = (η, τ), where η is fuzzy subset (FS S )
of A and τ is FSS of A × A with τ(ϖ, ϱ) ≤ ∧{η(ϖ), η(ϱ)}, where ∧ shows the minimum, η(ϖ) is
weight of the vertex ϖ, and τ(ϖ, ϱ) is the weight of the edge ϖϱ. We write ℜ∗ = (η∗, τ∗), where
η∗ = {ϖ ∈ A : η(ϖ) , ∅} and τ∗ = {(ϖ, ϱ) ∈ A × A : τ(ϖ, ϱ) , 0} . Here η∗ and τ∗ are called the vertex
and edge set of the FG, respectively. The membership value of all the vertices and edges are taken
from the closed interval 0 and 1. If all the membership values are the same and equal to 1, then the
fuzzy graph becomes a crisp graph. There are three possibilities for the vertices in a fuzzy graph, the
membership value of the vertex in a fuzzy graph is either 0, between 0 and 1, or 1. If the membership
value is equal to 0, it means no vertex exists. if the membership value is equal to 1, this shows that the
vertex certainly exists in the graph but if the membership value lies between 0 and 1, it indicates that
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the vertex exists in the graph with some possibilities.
The degree or the valency of a vertex ϖ is the sum of the membership values of edges joining to

vertex ϖ and denoted by Degℜ(ϖ) =
∑
ϖ,ϱ τ(ϖ, ϱ). The minimum degree denoted by δ(ℜ) and is

defined as δ(ℜ) = ∧{Degℜ(ϖ) : ϖ ∈ η∗}. The maximum degree denoted by ∆(ℜ) and is defined
as ∆(ℜ) = ∨{Degℜ(ϖ) : ϖ ∈ η∗}, where ∧ shows the minimum and ∨ shows the maximum. Let
ℜ = (η, τ) be a fuzzy graph. The order of fuzzy graph ℜ is represented by O(ℜ) is the sum of
all membership values of all vertices and is denoted by O(ℜ) =

∑
ϖ∈η∗ η(ϖ). The size of a fuzzy

graph ℜ is denoted by S (ℜ) is the sum of all membership values of all edges and is denoted by
S (ℜ) =

∑
(ϖ,ϱ)∈η∗×η∗ τ(ϖ, ϱ). A path graph is a graph in which a sequence of vertices are connected in

such a way that all vertices are connected except the first and last vertex. A path graph is called a cycle
graph if the first and last vertex is also connected. A regular fuzzy graph is a graph if the Degℜ(ϖ) = l,
for all ϖ ∈ η∗, where l is a real number and it is also called l− regular fuzzy graphs. A fuzzy graph is
called an irregular fuzzy graph if two adjacent vertices have different degrees.

3. Fuzzy topological indices

In this section, we discuss the fuzzy topological indices with their uses. We define a new fuzzy
topological index Fuzzy Misbalance Prodeg Index and also find some bounds of different classes of
graphs such as path graph, cycle graph, wheel graph, complete graph, and complete bipartite graph.
We also give a real-life application of multi-criteria decision-making (MCDM) give an analysis and
show on the basis of our analysis that our index is more useful than other existing indices. The list of
some fuzzy topological indices with their definitions is given below:

Fuzzy first Zagreb Index

Kalathian discovered the first fuzzy Zagreb Index (FZI) for fuzzy graphs and was denoted by

M(ℜ) =
∑
ϖ∈η∗

η(ϖ)d2(ϖ)

here, η(ϖ) and d(ϖ) are the node weight and the degree of the vertex ϖ, respectively.

Fuzzy modified first Zagreb Index

Islam and Pal modified the first Zagreb Index for fuzzy graphs in 2021. Suppose ℜ = (η, τ) is a
fuzzy graph, then first fuzzy Zagreb index (FZI) of the Fuzzy graph (ℜ) is represented by ZF1(ℜ) and
is expressed as:

ZF1(ℜ) =
∑
ϖ∈η∗

[η(ϖ)d(ϖ)]2

Fuzzy second Zagreb Index

Kalathian et al. presented the second Zagreb index for fuzzy graphs in 2020 Let ℜ = (η, τ), be an
FG, then the second fuzzy Zagreb Index (SZI) of the Fuzzy graph (ℜ) is represented by ZF2(ℜ) and
is expressed as:
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ZF2(ℜ) =
∑
ϖϱ∈τ∗

η(ϖ)η(ϱ)d(ϖ)d(ϱ)

Fuzzy randic index

S. Kalathian established the fuzzy Randic Index(FRI)

R(G) =
1
2

[ n∑
i=1

σ(ϖi)d(ϖi)σ(ϱ j)d(ϱ j)
] −1

2

Fuzzy F-index

Islam explained the F-Index for fuzzy graphs in 2021. Letℜ = (η, τ) is a fuzzy graph, then F-index
of the Fuzzy graph is represented by FF(ℜ) and is defined as:

FF(ℜ) =
∑
ϖ∈η∗

[η(ϖ)d(ϖ)]3

Let ℜ∗ be a finite, connected graph, and simple graph with the vertex set V(ℜ∗) and edge set E(ℜ∗)
Numerous vertex degree-based topological descriptors have been proposed and thoroughly investigated
in Chemical Science [24, 25].

Sum Connectivity Index

Another index namely Sum Connectivity Index [26] is described as

S CI(ℜ∗) =
∑

ϖϱ∈E(ℜ∗)

1√
dℜ∗(ϖ) + dℜ∗(ϱ)

Sombor index

The Sombor Index was discovered by Ivan Gutman in [27] and defined as

S O(ℜ∗) =
∑

ϖϱ∈E(ℜ∗)

√
dℜ∗(ϖ)2 + dℜ∗(ϱ)2

Some other types of Sombor indices were recently investigated. Das et al. discussed the Sombor index
in [28]. In [29], Kulli along with Gutman defined the Revan Sombor index. Kulli another invention,
Status Sombor index was established in [30]. Some properties of Somber indices were investigated
in [31].

Misbalance Prodeg Index

In [32] introduced Misbalance Prodeg Index forℜ∗ as:

MPI(ℜ∗) =
∑

ϖϱ∈E(ℜ∗)

√
dℜ∗(ϖ) +

√
dℜ∗(ϱ)
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4. Main results

In this section, we introduce our main results on the Fuzzy Misbalance Prodeg index. We have
generated some bounds for certain classes of graphs such as path graph, cycle graph, complete graph,
complete bipartite graph, and star graph.

Fuzzy Misbalance Prodeg Index

Letℜ = (η, τ) be a fuzzy graph, then the Misbalance Prodeg Index of the Fuzzy graph is represented
by FMPI(ℜ) and is demonstrated as:

FMPI(ℜ) =
∑

ϖϱ∈τ∗(ℜ)

√
η(ϖ)dℜ(ϖ) +

√
η(ϱ)dℜ(ϱ)

where, η(ϖ) and η(ϱ) is the weight of verticesϖ and ϱ and d(ϖ) and d(ϱ) is the degree of the vertexϖ
and ϱ, respectively.
Example 1
Supposeℜ be a fuzzy graph (FG) shown in Figure 1 such that V(ℜ) = {a, b, c, d} be the end nodes with
η(a) = 0.9, η(b) = 0.2, η(c) = 0.5, and η(d) = 0.3. The edge set contains τ(a, b) = 0.2, τ(b, c) = 0.1,
τ(c, d) = 0.3, τ(b, d) = 0.1. Where d(a) = 0.2, d(b) = 0.4, d(c) = 0.4 and d(d) = 0.4 are all the degrees
of vertices a, b, c, and d, respectively. Fuzzy Misbalance Prodeg index FMPI(ℜ) is given as

FMPI(ℜ) = [
√
η(a)dℜ(a) +

√
η(b)dℜ(b)] + [

√
η(b)dℜ(b) +

√
η(c)dℜ(c)]

= [
√
η(b)dℜ(b) +

√
η(d)dℜ(d)] + [

√
η(c)dℜ(c) +

√
η(d)dℜ(d)]

0.2

0.1

0.1

0.3
(a,0.9)

(b,0.2) (c,0.5)

(d,0.3)

Figure 1. Example of Fuzzy Graph.

After substituting the values of the vertex weights and the degree of each vertex, we have

FMPI(ℜ) = [
√

(0.9)(0.2) +
√

(0.2)(0.4)] + [
√

(0.2)(0.4) +
√

(0.5)(0.4)]
= [
√

(0.2)(0.4) +
√

(0.3)(0.4)] + [
√

(0.5)(0.4) +
√

(0.3)(0.4)]
A f ter simpli f ication,

= 2.8599

Theorem 1. Letℜ = (η∗, τ∗) be a FG and η∗ be the set of vertices with order N̈ and τ∗ be the edge set
with size M̈, then the Fuzzy Misbalance Prodeg index FMPI(ℜ) is given as
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FMPI(ℜ) ≤ M̈
∑

ϖϱ∈τ∗(ℜ)

(
√
η(ϖ) +

√
η(ϱ))

where ϖ, ϱ ∈ η∗. Also, η(ϖ) and η(ϱ) are the weights of the vertices ϖ and ϱ, respectively.

Proof. For fuzzy graph ℜ = (η∗, τ∗) the degree of vertex ϖ ∈ η∗ is denoted dℜ(ϖ) and evaluated as
dℜ(ϖ) =

∑
ϖ,ϱ τ

∗(ϖ, ϱ) then,

dℜ(ϖ) ≤ M̈2

η(ϖ) > 0 be the weight of the vertex ϖ. Multiplying with η(ϖ) both side of the equation

η(ϖ)dℜ(ϖ) ≤ η(ϖ)M̈2

Taking square root on both sides, we have√
η(ϖ)dℜ(ϖ) ≤

√
η(ϖ)M̈2

√
η(ϖ)dℜ(ϖ) ≤

√
η(ϖ)M̈

Similarly, for vertex ϱ √
η(ϱ)dℜ(ϱ) ≤

√
η(ϱ)M̈

Summing the square root inequalities over all edges ϖϱ ∈ τ∗(ℜ)∑
ϖϱ∈τ∗(ℜ)

√
η(ϖ)dℜ(ϖ) +

√
η(ϱ)dℜ(ϱ) ≤

∑
ϖϱ∈τ∗(ℜ)

√
η(ϖ)M̈ +

√
η(ϱ)M̈

Hence, the Fuzzy Misbalance Prodeg Index FMPI(ℜ) is given as

FMPI(ℜ) ≤ M̈
∑

ϖϱ∈τ∗(ℜ)

(
√
η(ϖ) +

√
η(ϱ))

□

Theorem 2. Let Pz = (η∗, τ∗) be a fuzzy path graph with η∗ = {ϖ1, ϖ2..., ϖz} as vertex set and τ∗ =
{ϖ1ϖ2, ϖ2ϖ3, ..., ϖz−2ϖz−1, ϖz−1ϖz} as edge set.The order of fuzzy path graph Pz is z with size z − 1,
then

FMPI(Pz) ≤ 2(1 +
√

2(z − 1))

Proof. As Pz = (η∗, τ∗) be a fuzzy path graph, then:
dPz(ϖ1) = τ1,dPz(ϖ2) = τ1 + τ2,...dPz(ϖz−1) = τz−2 + τz−1 and dPz(ϖz) = τz−1 for i = 2, 3, ...z therefore

FMPI(Pz) ≤ [
√
η(ϖ1)dPz(ϖ1) +

√
η(ϖ2)dPz(ϖ2)] + [

√
η(ϖz−1)dPz(ϖz−1) +

√
η(ϖz)dPz(ϖz)]
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+

z−2∑
i=2

[
√
η(ϖi)dPz(ϖi) +

√
η(ϖi+1)dPz(ϖi+1)]

As ηz ≤ 1 and τz ≤ 1, η(ϖi) is the vertex weight of a fuzzy graph and dPz(ϖ) be degree of vertex ϖ.
In the path graph, there will be two types of partitions: The first partition contains the first and last
vertex and the second partition contains from second vertex to the second and last vertex. This formula
reflects the contributions of every vertex over the path graph. Since each vertex weight and edge weight
has a maximum value equal to 1. The following inequality obtained gets the following result.

FMPI(Pz) ≤ 2(1 +
√

2) +
z−2∑
i=2

(
√

2 +
√

2) = 2(1 +
√

2(z − 1))

□

Theorem 3. Let Cz = (η∗, τ∗) is a fuzzy cycle graph with vertex set η∗ = {ϖ1, ϖ2, ..., ϖz} and order z
where z ≥ 3. τ∗ = {ϖ1ϖ2, ϖ2ϖ3, ..., ϖz−1ϖz, ϖzϖ1} be an edge set with size z, then

FMPI(Cz) ≤ 2
√

2(z − 1)

Proof. As Cz = (η∗, τ∗) be a fuzzy cycle graph then dCz(ϖ1) = τ1 + τz,dCz(ϖ2) = τ1 + τ2 dCz(ϖz−1) =
τz−2 + τz−1 and dCz(ϖz) = τz−1 + τz, then the fuzzy Misbalance Prodeg index is as follows:

FMPI(Cz) ≤
z−1∑
i=1

[
√
η(ϖi)dCz(ϖi) +

√
η(ϖi+1)dCz(ϖi+1)]

Since ηz ≤ 1 and τz ≤ 1, the fuzzy Misbalance Prodeg index is bounded and after simple calculation,
we obtain the following result.

FMPI(Cz) ≤ 2
√

2
z−1∑
i=1

(1) = 2
√

2(z − 1)

□

Theorem 4. Let KN = (η∗, τ∗) be a complete graph with N vertices in which everyϖi ∈ η
∗ is connected

to all other vertices ϖ j where i , j, then fuzzy Misbalance Prodeg Index (FMPI) for KN is given as:

FMPI(KN) ≤ N(N − 1)
3
2

Proof. Since in a complete graph KN , every vertex ϖi is linked with all other vertices, having degree
d(ϖi) = N − 1. The fuzzy Misbalance Prodeg Index (FMPI) for KN takes into account the pairwise
connections between each vertex. For every pair of vertices (ϖi, ϖ j), the FMPI role is stated as√
η(ϖi)dℜ(ϖi) +

√
η(ϖ j)dℜ(ϖ j). Summing this over all pairs of vertices in the complete graph yields:
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FMPI(KN) ≤
N∑

i=1

N∑
j=1

√
η(ϖi)(N − 1) +

√
η(ϖ j)(N − 1)wherei , j

Considering that ϖi ≤ 1, the complete graph KN contains N(N−1)
2 edges. Then the upper bound for KN

is evaluated as:

FMPI(KN) ≤
N(N − 1)

2

[
√

N − 1 +
√

N − 1
]

FMPI(KN) ≤
N(N − 1)

2
2
√

N − 1

FMPI(KN) ≤ N(N − 1)
3
2

The next theorem is about the wheel graph, which has a central hub connected to a peripheral cycle,
and is the subject of the following theorem, which looks at its Fuzzy Misbalance Prodeg Index to reflect
its distinct topological structure. □

Theorem 5. For a wheel graph, WN , with N end nodes (N ≥ 4), the Fuzzy Misbalance Prodeg Index
is given as:

FMPI(WN) ≤ (N − 1)
[
√

N − 1 + 3
√

3
]

Proof. Let WN be a wheel graph, then the Fuzzy Misbalance Prodeg Index is given as:

FMPI(WN) ≤
[ N−1∑

i=1

√
η(ϖh)d(ϖh) +

√
η(ϖi)d(ϖi)

]
+

[ N−1∑
i=1

√
η(ϖi)d(ϖi) +

√
η(ϖi+1)d(ϖi+1)

]
whereϖh is the hub vertex ,ϖi andϖi+1 are the adjacent vertices on the rim. Since d(ϖh) = N − 1 and
η(ϖh) ≤ 1, since there are N −1 such edges so for hub vertex the FMPI is to be (N −1)[

√
N − 1+

√
3].

Where the rim forms a cycle CN with N − 1 vertices and edges as well. Let the maximum membership
value for η(ϖi) is 1 and d(ϖi) = 3, then for N − 1 edges of rim we have FMPI as (N − 1)[

√
3 +
√

3].
From the above discussion, we conclude fuzzy Misbalance Prodeg Index() for WN as:

FMPI(WN) ≤ (N − 1)
[√

N − 1 +
√

3
]
+ (N − 1)

[√
3 +
√

3
]

FMPI(WN) ≤ (N − 1)
[√

N − 1 +
√

3 + 2
√

3
]

FMPI(WN) ≤ (N − 1)
[√

N − 1 + 3
√

3
]

□
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Theorem 6. Let S N = (η∗, τ∗) be a star graph with η∗ = {ϖ1, ϖ2, ..., ϖN} vertex set having N vertices,
and τ∗ = {ϖ1ϖs, ϖ2ϖs, ..., ϖn−1ϖs} as an edge set then fuzzy Misbalance Prodeg Index for S N is
explained as:

FMPI(S N) ≤ (N − 1)
[√

N − 1 + 1
]

Proof. In a star graph, each vertexϖi where 1 ≤ i ≤ N −1, is connected to one central vertexϖs. Here
degree of ϖs is N − 1 where degree of each ϖi is 1, and defined as dS N (ϖs) =

∑N−1
i=1 τ(ϖs, ϖi) with

dS N (ϖi) = τ(ϖi, ϖs). (ϖs, ϖi) is the pair of connections between the vertices of the star graph. As there
are total N − 1 edges in S N , so fuzzy Misbalance Prodeg Index for S N is described as

√
η(ϖs)d(ϖs) +√

η(ϖi)d(ϖi). Since η(ϖs) and η(ϖi) are bounded by 1, then For N − 1 edges we get the following
result as:

FMPI(S N) ≤
N−1∑
i=1

[ √
η(ϖs)d(ϖs) +

√
η(ϖi)d(ϖi)

]
FMPI(S N) ≤ (N − 1)

[√
N − 1 +

√
1
]

FMPI(S N) ≤ (N − 1)
[√

N − 1 + 1
]

□

Theorem 7. For two sets of vertices U and V in complete bipartite graph Kx,y, we have |U | = x and
|V | = y, then the bounds of fuzzy Misbalance Prodeg Index for Kx,y is given as:

FMPI(Kx,y) ≤ x
3
2 y + xy

3
2

Proof. In complete bipartite graph Kx,y, each vertex in set U has a degree of x, where y is the degree of
every vertex contained in V . The FMPI index for Kx,y examines the pairwise relationships between the
vertices in various sets. For an edge connecting a vertex ϖi ∈ U and vertex ϱ j ∈ V , the contribution to
fuzzy Misbalance Prodeg Index is

√
η(ϖi)x +

√
η(ϱ j)y. As there are xy edges in Kx,y, joining a vertex

in U to the vertex in V . Since the membership value of η(ϖi) and η(ϖ j) is bounded by 1, so the total
fuzzy Misbalance Prodeg Index for xy edges is described as:

FMPI(Kx,y) ≤
∑

ϖi∈U,ϱ j∈V

[ √
η(ϖi)x +

√
η(ϱ j)y

]
FMPI(Kx,y) ≤ xy[

√
x +
√

y]

FMPI(Kx,y) ≤ x
3
2 y + xy

3
2

□

5. FMPI Algorithm

Here we present an algorithm to compute the Misbalance Prodeg Index for FG. The pseudo-code is
presented below in Table 1. Clearly, the complexity of the fuzzy Misbalance Prodeg Index is
dominated by the calculation of FMPI(ℜ), which is of the order O(ℜ)2.
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Table 1. FMPI Algorithm.

Input: A FGℜ = (η, τ)
Output: Misbalance prodeg index ofℜ and each vertex ofℜ.
01: Let d(ϖ) =

∑
ϖ∈η∗ τ(ϖ, ϱ) be the degree of each vertex ϖ ∈ ℜ

02: Letℜϖ be the fuzzy graph for each ϖ ∈ η∗

03: The Misbalance Prodeg index of FGℜ is given by
FMPI(ℜ) =

∑
ϖϱ∈τ∗(ℜ)

√
η(ϖ)dℜ(ϖ) +

√
η(ϱ)dℜ(ϱ)

04: The Misbalance Prodeg index of a vertex ϖ of FG is given by
FMPI(ϖ) = FMPI(ℜ) − FMPI(ℜϖ)

6. Proposed model for MCDM problem using Misbalance Prodeg Index

Multi-criteria decision-making (MCDM) problems involving fuzzy graphs are complex situation
where decision-makers need to consider multiple criteria while dealing with uncertainty represented
by fuzzy information. Fuzzy graphs extend traditional graph theory to handle imprecise and vague
information. Here’s a general framework for addressing multi-criteria decision-making problems with
fuzzy graphs:
Let X = {X1, X2, ..., Xa} be the set of alternatives and Y = {Y1,Y2, ...,Yb} be the set of attributes, K =
{K1,K2, ...,Kc} be the weight vector of attributes Yi, where Ki characterize the degree of importance of
Yr, fulfilling Ki ∈ [0, 1] and

∑c
i=1 Ki = 1. Our current goal is to identify the most suitable alternative.

For each attribute, we first construct FGs with a vertex set of alternatives in order to determine which
alternative is best. Edges are the influencing factors and connections between the available options.
The Fuzzy graph βY j related to the attribute Y j having vertex set as a set of alternatives X, for each
i = 1, 2, ..., c.

7. Real-life application using multi-criteria decision-making

Consider a manufacturing company that needs to select suppliers for critical components used in
their production process. The decision-makers are faced with the challenge of evaluating potential
suppliers based on various criteria while dealing with uncertainties and imprecise information. Let
us consider five suppliers namely A, B,C,D, and E and we choose three attributes such as Y1 = cost,
Y2 = Quality, and Y3 = lead time. Not all suppliers must use the same set of specifications. However,
each measure is significant in assessing their performance. In every fuzzy graph for each attribute,
Nodes represent potential suppliers. Where edges between nodes denote the fuzzy relationships among
suppliers, considering factors like historical performance, collaboration, and shared resources. As Y1,
Y2 and Y3 are the attributes and just English words their characteristics may get some membership
values. The membership value for these parameters are taken as K1 = 0.3 ,K2 = 0.4, and K3 = 0.3 and
the rank value of each supplier is displayed in Table 2.
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Table 2. Score values of suppliers.

Suppliers Y1 = Time Y2 = Quality Y3 = lead
time

A 0.2 0.4 0.9
B 0.4 0.5 0.7
C 0.6 0.3 0.5
D 0.8 0.7 0.2
E 0.9 0.2 0.2

Now, we construct different fuzzy graphs βY j related to every attribute. In these fuzzy graph
constructions, suppliers are the vertex set and edges are the influence relation between the suppliers,
and display their Rank table and associated score table figure along with its detailed explanation. First
of all, we construct a fuzzy graph βY1 as shown in Figure 2.

0.1

0.20.2

0.1

0.3

0.5

0.7

(A,0.2)

(B,0.4)

(C,0.6)(D,0.8)

(E,0.9)

Figure 2. βY1

All the information about the influence relation among the suppliers is displayed in Table 3. In the
first step, we will evaluate the fuzzy Misbalance Prodeg Index for βY1 by using the FMPI algorithm,
we get the value

FMPI(βY1) = 9.3811.
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Table 3. Score values of influence relations among the suppliers.

Attributes Suppliers A B C D E
A 0 0.1 0.2 0.2 0.1
B 0.1 0 0.3 0 0

Y1 C 0.2 0.3 0 0.5 0
D 0.2 0 0.5 0 0.7
E 0.1 0 0 0.7 0

In the second step, we construct subgraphs for each vertex by deleting that vertex and the edges
associated with it. Now, we pick vertex A from Figure 2 and delete that vertex A and all its associated
edges. The related fuzzy subgraph βY1(A) by deleting vertex A and all its related edges is obtained and
shown in Figure 3.

0.3

0.5

0.7

(B,0.4)

(C,0.6)(D,0.8)

(E,0.9)

Figure 3. βY1(A).

For criteria Y1 the fuzzy Misbalance Prodeg Index of the supplier A, first we calculate FMPI(βY1(A)):

FMPI(βY1(A)) = 4.4853

then fuzzy Misbalance Prodeg Index for supplier A is calculated by using the following formula:

FMPI(A) = FMPI(βY1) − FMPI(βY1(A))

by substituting the value of FMPI(βY1) and FMPI(βY1(A)) in the above equation, we have:

FMPI(A) = 9.3811 − 4.4853 = 4.8958

Now, we pick vertex B from Figure 2 and delete that vertex B and all its associated edges. The
related fuzzy subgraph βY1(B) by deleting vertex B and all its related edges is obtained and shown in
Figure 4.
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0.20.2

0.1

0.5

0.7

(A,0.2)

(C,0.6)(D,0.8)

(E,0.9)

Figure 4. βY1(B).

For criteria Y1 the fuzzy Misbalance Prodeg Index of the supplier B, first we calculate FMPI(βY1(B)):

FMPI(βY1(B)) = 7.1166

then fuzzy Misbalance Prodeg Index for supplier B is calculated by using the following formula:

FMPI(B) = FMPI(βY1) − FMPI(βY1(B))

by substituting the value of FMPI(βY1) and FMPI(βY1(B)) in the above equation, we have:

FMPI(B) = 9.3811 − 7.1166 = 2.2645

Now, we pick vertex C from Figure 2 and delete that vertex C and all its associated edges. The
related fuzzy subgraph βY1(C) by deleting vertex C and all its related edges is obtained and shown in
Figure 5.

0.1

0.2

0.1

0.7

(A,0.2)

(B,0.4)

(D,0.8)

(E,0.9)

Figure 5. βY1(C).
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For criteria Y1 the fuzzy Misbalance Prodeg Index of the supplier C, first we calculate FMPI(βY1(C)):

FMPI(βY1(C)) = 4.4424

then fuzzy Misbalance Prodeg Index for supplier C is calculated by using the following formula:

FMPI(C) = FMPI(βY1) − FMPI(βY1(C))

by substituting the value of FMPI(βY1) and FMPI(βY1(C)) in the above equation, we have:

FMPI(C) = 9.3811 − 4.4424 = 4.9387

Now, we pick vertex D from Figure 2 and delete that vertex D and all its associated edges. The
related fuzzy subgraph βY1(D) by deleting vertex D and all its related edges is obtained and shown in
Figure 6.

0.1

0.2

0.1

0.3

(A,0.2)

(B,0.4)

(C,0.6)

(E,0.9)

Figure 6. βY1(D).

For criteria Y1 the fuzzy Misbalance Prodeg Index of the supplier D, first we calculate FMPI(βY1(D)):

FMPI(βY1(D)) = 3.0438

then fuzzy Misbalance Prodeg Index for supplier D is calculated by using the following formula:

FMPI(D) = FMPI(βY1) − FMPI(βY1(D))

by substituting the value of FMPI(βY1) and FMPI(βY1(D)) in the above equation, we have:

FMPI(D) = 9.3811 − 3.0438 = 6.3373

Now, we pick vertex E from Figure 2 and delete that vertex E and all its associated edges. The related
fuzzy subgraph βY1(E) by deleting vertex E and all its related edges is obtained and shown in Figure 7.
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0.1

0.20.2

0.3

0.5

(A,0.2)

(B,0.4)

(C,0.6)(D,0.8)

Figure 7. βY1(E).

For criteria Y1 the fuzzy Misbalance Prodeg Index of the supplier E, first we calculate FMPI(βY1(E)):

FMPI(βY1(E)) = 5.5689

then fuzzy Misbalance Prodeg Index for supplier E is calculated by using the following formula:

FMPI(E) = FMPI(βY1) − FMPI(βY1(E))

by substituting the value of FMPI(βY1) and FMPI(βY1(E)) in the above equation, we have:

FMPI(E) = 9.3811 − 5.5689 = 3.8122

Similarly, we have used the same process for attributes Y2 and Y3. The fuzzy graphs βY2 and βY3

shown in Figures 8 and 9 are related to the attributes Y2 and Y3, respectively.

0.3

0.1

0.4

0.2

0.2

0.5

0.7

(A,0.4)

(B,0.5)

(C,0.3)(D,0.7)

(E,0.2)

Figure 8. βY2 .

The influence relation between the attributes is given in the matrix in Table 4.
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Table 4. Score values of influence relations among the suppliers.

Attributes Suppliers A B C D E
A 0 0.3 0 0.4 0.2
B 0.3 0 0.1 0 0.2

Y2 C 0 0.1 0 0.5 0
D 0.4 0 0.5 0 0.7
E 0.2 0.2 0 0.7 0

0.6

0.4

0.3

0.3

0.2

0.2
0.1

(A,0.9)

(B,0.7)

(C,0.5)(D,0.2)

(E,0.4)

Figure 9. βY3 .

The influence relation between the attributes is given in the matrix in Table 5.

Table 5. Score Values of Influence Relations Among the Suppliers.

Attributes Suppliers A B C D E
A 0 0.6 0.3 0 0.3
B 0.6 0 0.4 0.3 0.2

Y3 C 0.3 0.4 0 0 0
D 0 0.3 0 0 0.1
E 0.3 0.0 0 0.1 0

Now, in Table 6, we display all the fuzzy Misbalance Prodeg Index values of all the suppliers with
respect to given attributes Y1 = Time, Y2 = Quality, Y3 = lead time.
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Table 6. The Value of FMPI of the Suppliers.

Suppliers Y1 = Time Y2 = Quality Y3 = lead
time

FMPI(A) 4.8958 3.2193 6.464
FMPI(B) 2.2645 2.2202 7.4216
FMPI(C) 4.9387 1.3029 3.9506
FMPI(D) 6.3373 2.9584 2.2753
FMPI(E) 3.8122 3.8893 4.2872

Following that, the next method is used to choose the most suitable alternatives. The steps are as
follows:
Input: The Fuzzy graph βY j related to the attribute Y j having vertex set as a set of alternatives X and
the influence relation between the vertices represented by an edge, for each j = 1, 2, ..., c and K j be the
weight of criteria.
Output: Best Alternative

Step 1: compute fuzzy Misbalance Prodeg Index as described in the FMPI algorithm.

Step 2: Evaluate rank of each vertex by using the formula
(X j) =

∑c
j=1 K jFMPI(X j; βY j).

Step 3: Evaluate the normalized rank of each vertex by using the following formula, NS (X j) =
S (X j)

R(Xi)=
∑c

j=1 K jFMPI(β)

Step 4: Compare all alternatives X j with respect to the normalised rank. If NS (Xp) > NS (X j) of each
alternative, then, Xp ≻ X j and we say Xp is better than X j.

By following steps 1 to 3, we have found the rank of each supplier shown in Table 7, and the graphical
analysis is shown in Figure 10.

Table 7. Comparison of Rank of Suppliers.

Supplier’s
rank

FMPI for
fuzzy graph

MPI for crisp
graph

2nd ZI for crisp
graph

2nd ZI for
fuzzy graph

Fuzzy F index for
fuzzy graph

A 4.67838 13.49591 44.90000 1.04414 1.1501
B 3.793904 11.17315 39.50000 0.88292 0.6964
C 3.18795 9.08443 30.60000 0.86648 0.8449
D 3.76714 10.76287 29.30000 0.8179 0.7831
E 3.98554 11.30991 40.60000 0.89213 0.0006
Best
Supplier

A A A A A
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Figure 10. Graphical Analysis of Rank of All Suppliers.

After following steps 4 and 5, we have found the Normalized rank of each supplier shown in Table 8,
and the graphical analysis is shown in Figure 11.

Figure 11. Comparative Analysis of Normalized Rank of All Suppliers.
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Table 8. Comparison of Normalized Rank of All Suppliers.

Supplier’s
Normalized
rank

FMPI MPI for crisp
graph

2nd ZI for crisp
graph

2nd ZI for fuzzy
graph

Fuzzy F Index

A 1 1 1 1 1
B 0.4066 0.4734 0.6538 0.2874 0.6053
C 0 0 0.08333 0.2147 0.7345
D 0.3886 0.3801 0 0 0.6807
E 0.5346 0.5045 0.7244 0.3281 0
Best Supplier A A A A A

8. Designing the most interactive bus stop

Imagine that a city transportation department aims to design the most interactive bus stop to
enhance passenger experience and encourage public transportation usage. The goal is to identify a
location and design a bus stop that offers the highest level of interactivity based on multiple criteria.
Suppose C = {C1,C2,C3,C4} are the criteria which include Accessibility(e.g., ramps, tactile markers
for visually impaired), Passenger Engagement (interactive touchscreens, QR code information),
Passenger Comfort (e.g., seating, shelter, lighting) and Information Availability (e.g., real-time bus
schedules, route maps). Assign fuzzy membership values to each criterion to represent the degree
to which a potential bus stop location satisfies that criterion.Here we consider it as weight of the
criteria as W = {W1,W2,W3,W4}. Now consider there are four possible locations for the bus stop
L = {L1, L2, L3, L4}. Represent potential bus stop locations as nodes in the fuzzy graph. Assign fuzzy
values to each node based on each of the criteria. Define edge weights to represent the connectivity
or accessibility between different bus stop locations. These edge weights can also have fuzzy values,
reflecting the ease of reaching one location from another. Here, we consider 0.25, 0.25, 0.25, 0.25 as
the weight value for each characteristic. Now, we construct fuzzy graphs GCi for each criteria.For
every GCi each vertex represents locations L j in Figures 12,13,14 and 15.

0.4

0.3

0.2

0.5

L1(0.5) L2(0.6)

L3(0.7) L4(0.3)

Figure 12. GC1 .
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0.4

0.3

0.3

0.20.4

L1(0.9) L2(0.4)

L3(0.8) L4(0.5)

Figure 13. GC2 .

0.5

0.6

0.5

0.50.5

L1(0.6) L2(0.7)

L3(0.5) L4(0.8)

Figure 14. GC3 .

0.5

0.6

0.40.20.3

L1(0.3) L2(0.5)

L3(0.8) L4(0.7)

Figure 15. GC4 .

All the score values of locations are shown in Table 9.

Table 9. Score Values of Locations.

Locations C1 C2 C3 C4

L1 0.5 0.9 0.6 0.3
L2 0.6 0.4 0.7 0.5
L3 0.7 0.8 0.5 0.8
L4 0.3 0.5 0.8 0.7

All the score values for the relation between locations in GC1 in Table 10.
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Table 10. Score Values for the Relation Between Locations in GC1 .

R L1 L2 L3 L4

L1 0 0.4 0.5
L2 0.4 0 0.3
L3 0.5 0 0.2
L4 0.3 0.2 0

All the score values for the relation between locations in GC2 in Table 11.

Table 11. Score Values for the Relation Between Locations in GC2 .

R L1 L2 L3 L4

L1 0 0.4 0.4
L2 0.4 0 0.2 0.3
L3 0.2 0 0.3
L4 0.4 0.3 0.3 0

All the score values for the relation between locations in GC3 in Table 12.

Table 12. Score Values for the Relation Between Locations in GC3 .

R L1 L2 L3 L4

L1 0 0.5 0.4 0.5
L2 0.5 0 0.5 0.6
L3 0.4 0.5 0 0.5
L4 0.5 0.6 0.5 0

All the score values for the relation between locations in GC4 in Table 13.

Table 13. Score Values for the Relation Between Locations in GC4 .

R L1 L2 L3 L4

L1 0 0.3 0.2
L2 0 0.4 0.5
L3 0.3 0.4 0 0.6
L4 0.2 0.5 0.6 0

All the Modified Fuzzy Misbalance Prodeg Index of the Locations for GCi in Table 14.
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Table 14. Modified Fuzzy Misbalance Prodeg Index of the Locations for GCi .

FMPI(L j) C1 C2 C3 C4

FMPI(L1) 3.2339 4.1186 6.7831 3.7648
FMPI(L2) 2.6672 4.6099 7.2282 4.069
FMPI(L3) 2.7689 3.1929 6.648 5.8924
FMPI(L4) 2.3890 4.9033 7.3437 5.7935

Now, the grade of each location is evaluated by using the following formula given in Table 15:

G(L j) =
4∑

i=1

Wi × FMPI(Ci, L j)

Table 15. Grades of the locations.

L j L1 L2 L3 L4

Grades 4.4764 4.6435 4.6255 5.1073

9. Comparative analysis

In this section, the comparative analysis of location grades given in Table 16 and graphical analysis
in Figure 16. The normalized grades of all locations are shown in Table 17 and graphical analysis in
Figure 17.

Table 16. Location Grades.

Location’s
Grade

FMPI for fuzzy
graph

MPI for crisp
graph

2nd ZI for fuzzy
graph

Fuzzy F Index for
Fuzzy Graph

L1 4.4764 7.0638 1.6287 1.2331
L2 4.6435 7.978 1.8917 1.4170
L3 4.6255 7.978 1.7575 1.3242
L4 5.1073 8.8922 2.0086 1.5793
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Table 17. Location Grades.

Normalized
Location’s
Grade

FMPI for fuzzy
graph

MPI for crisp
graph

2nd ZI for fuzzy
graph

Fuzzy F Index for
Fuzzy Graph

L1 0 0 0 0
L2 0.2649 0.5 0.6923 0.5312
L3 0.2363 0.5 0.339 0.2631
L4 1 1 1 1

Figure 16. Comparative Analysis of Grades of All Locations.
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Figure 17. Comparative Analysis of Normalized Grades of All Locations.

10. Conclusions

In this paper, we have defined a new topological index named fuzzy Misbalance Prodeg Index and
also we have found some bounds of this index. By using this bound, we have defined bounds for
certain classes of graphs. We have presented an algorithm for multi-criteria decision-making in daily
life and applied this algorithm to a manufacturing company that needs to select suppliers for critical
components used in their production process. The decision-makers are faced with the challenge of
evaluating potential suppliers based on various criteria while dealing with uncertainties and imprecise
information. By using the algorithm displayed in Sections 5 and 6, the fuzzy Misbalance prodeg index
of every supplier with respect to all attributes is displayed in Table 6. The comparative analysis of
fuzzy Misbalance Prodeg Index with Misbalance Prodeg Index, second Zagreb Index, and fuzzy second
Zagreb Index is displayed in Table 7 and the graphical analysis of fuzzy Misbalance Prodeg Index with
Misbalance Prodeg Index, second Zagreb Index, and fuzzy second Zagreb Index are displayed in Figure
10. The normalized rank of each supplier is computed and given in Table 8 and its graphical analysis is
shown in Figure 11. Now, we display the order of the alternatives as A ≻ E ≻ B ≻ D ≻ C. Hence, A is
the most suitable supplier. The same algorithm is applied in identifying the Most Interactive Bus Stop.
The goal is to identify a location and design a bus stop that offers the highest level of interactivity based
on multiple criteria. All the values are displayed in Tables from 9 to 15 and the comparative analysis
shown in Tables 16 and 17 with graphical representation in Figures 16 and 17. So the modified fuzzy
Misbalance Prodeg Index has great importance in multi-criteria decision-making analysis. In future,
we will use the same idea for intuitionistic fuzzy graphs, bipolar fuzzy graphs, and Pythagorean fuzzy
graphs and investigate other topological indices.
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