A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to user interaction which allows users to gain deeper insights into the intricate structures and properties of these fractals. This paper explored the dynamic visualization of fractals within Julia and Mandelbrot sets, focusing on a generalized rational type complex polynomial of the form $ S_{c}(z) = a z^{n}+\frac{b}{z^{m}}+c $, where $ a, b, c \in \mathbb{C} $ with $ |a| > 1 $ and $ n, m \in \mathbb{N} $ with $ n > 1 $. By applying viscosity approximation-type iteration processes extended with $ s $-convexity, we unveiled the intricate dynamics inherent in these fractals. Novel escape criteria was derived to facilitate the generation of Julia and Mandelbrot sets via the proposed iteration process. We also presented graphical illustrations of Mandelbrot and Julia fractals, highlighting the change in the structure of the generated sets with respect to the variations in parameters.
Citation: Arunachalam Murali, Krishnan Muthunagai. Generation of Julia and Mandelbrot fractals for a generalized rational type mapping via viscosity approximation type iterative method extended with $ s $-convexity[J]. AIMS Mathematics, 2024, 9(8): 20221-20244. doi: 10.3934/math.2024985
A dynamic visualization of Julia and Mandelbrot fractals involves creating animated representations of these fractals that change over time or in response to user interaction which allows users to gain deeper insights into the intricate structures and properties of these fractals. This paper explored the dynamic visualization of fractals within Julia and Mandelbrot sets, focusing on a generalized rational type complex polynomial of the form $ S_{c}(z) = a z^{n}+\frac{b}{z^{m}}+c $, where $ a, b, c \in \mathbb{C} $ with $ |a| > 1 $ and $ n, m \in \mathbb{N} $ with $ n > 1 $. By applying viscosity approximation-type iteration processes extended with $ s $-convexity, we unveiled the intricate dynamics inherent in these fractals. Novel escape criteria was derived to facilitate the generation of Julia and Mandelbrot sets via the proposed iteration process. We also presented graphical illustrations of Mandelbrot and Julia fractals, highlighting the change in the structure of the generated sets with respect to the variations in parameters.
[1] | A. Husain, M. N. Nanda, M. S. Chowdary, M. Sajid, Fractals: An eclectic survey, part-Ⅰ, Fractal Fract., 6 (2022), 89. https://doi.org/10.3390/fractalfract6020089 doi: 10.3390/fractalfract6020089 |
[2] | A. Husain, M. N. Nanda, M. S. Chowdary, M. Sajid, Fractals: An eclectic survey, part Ⅱ, Fractal Fract., 6 (2022), 379. https://doi.org/10.3390/fractalfract6070379 doi: 10.3390/fractalfract6070379 |
[3] | P. Fatou, Sur les substitutions rationnelles, Comp. Rend. Heb. S. Acad. Sci., 164 (1917), 806–808. |
[4] | G. Julia, Memoire sur l'iteration des fonctions rationnelles, J. Math. Pures Appl., 1 (1918), 47–245. |
[5] | B. Mandelbrot, The fractal geometry of nature, San Francisco: W. H. Freeman, 1982. |
[6] | W. Mann, Mean value methods in iteration, Proc. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[7] | B. Halpern, Fixed points of nonexpanding maps, Bull. Am. Math. Soc., 73 (1967), 957–961. https://doi.org/10.1090/S0002-9904-1967-11864-0 doi: 10.1090/S0002-9904-1967-11864-0 |
[8] | A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46–55. https://doi.org/10.1006/jmaa.1999.6615 doi: 10.1006/jmaa.1999.6615 |
[9] | M. Romera, G. Pastor, G. Alvarez, F. Montoya, Growth in complex exponential dynamics, Comput. Graph., 24 (2000), 115–131. https://doi.org/10.1016/S0097-8493(99)00142-9 doi: 10.1016/S0097-8493(99)00142-9 |
[10] | M. Abbas, H. Iqbal, M. De la Sen, Generation of Julia and Mandelbrot sets via fixed points, Symmetry, 12 (2020), 86. https://doi.org/10.3390/sym12010086 doi: 10.3390/sym12010086 |
[11] | L. K. Mork, D. J. Ulness, Visualization of Mandelbrot and Julia sets of Möbius transformations, Fractal Fract., 5 (2021), 73. https://doi.org/10.3390/fractalfract5030073 doi: 10.3390/fractalfract5030073 |
[12] | D. J. Prajapati, S. Rawat, A. Tomar, M. Sajid, R. C. Dimri, A brief study on Julia sets in the dynamics of entire transcendental function using Mann iterative scheme, Fractal Fract., 6 (2022), 397. https://doi.org/10.3390/fractalfract6070397 doi: 10.3390/fractalfract6070397 |
[13] | H. Qi, M. Tanveer, W. Nazeer, Y. Chu, Fixed point results for fractal generation of complex polynomials involving sine function via non-standard iterations, IEEE Access, 8 (2020), 154301–154317. https://doi.org/10.1109/ACCESS.2020.3018090 doi: 10.1109/ACCESS.2020.3018090 |
[14] | N. Hamada, F. Kharbat, Mandelbrot and Julia sets of complex polynomials involving sine and cosine functions via Picard–Mann Orbit, Complex Anal. Oper. Theory, 17 (2023), 13. https://doi.org/10.1007/s11785-022-01312-w doi: 10.1007/s11785-022-01312-w |
[15] | A. Tomar, V. Kumar, U. S. Rana, M. Sajid, Fractals as Julia and Mandelbrot sets of complex cosine functions via fixed point iterations, Symmetry, 15 (2023), 478. https://doi.org/10.3390/sym15020478 doi: 10.3390/sym15020478 |
[16] | S. Rawat, D. J. Prajapati, A. Tomar, K. Gdawiec, Generation of Mandelbrot and Julia sets for generalized rational maps using SP-iteration process equipped with $s$-convexity, Math. Comput. Simulation, 220 (2024), 148–169. https://doi.org/10.1016/j.matcom.2023.12.040 doi: 10.1016/j.matcom.2023.12.040 |
[17] | M. Tanveer, W. Nazeer, K. Gdawiec, On the Mandelbrot set of $z^p+ logc^t$ via the Mann and Picard–Mann iterations, Math. Comput. Simulation, 209 (2023), 184–204. https://doi.org/10.1016/j.matcom.2023.02.012 doi: 10.1016/j.matcom.2023.02.012 |
[18] | A. Tassaddiq, General escape criteria for the generation of fractals in extended Jungck–Noor orbit, Math. Comput. Simulation, 196 (2022), 1–14. https://doi.org/10.1016/j.matcom.2022.01.003 doi: 10.1016/j.matcom.2022.01.003 |
[19] | S. Kumari, K. Gdawiec, A. Nandal, M. Postolache, R. Chugh, A novel approach to generate Mandelbrot sets, Julia sets and biomorphs via viscosity approximation method, Chaos Solitons Fractals, 163 (2022), 112540. https://doi.org/10.1016/j.chaos.2022.112540 doi: 10.1016/j.chaos.2022.112540 |
[20] | S. Kumari, M. Kumari, R. Chugh, Dynamics of superior fractals via Jungck SP orbit with $s$-convexity, An. Univ. Craiova Ser. Mat. Inform., 46 (2019), 344–365. |
[21] | A. Nandal, R. Chugh, M. Postolache, Iteration process for fixed point problems and zeros of maximal monotone operators, Symmetry, 11 (2019), 655. https://doi.org/10.3390/sym11050655 doi: 10.3390/sym11050655 |
[22] | S. Kumari, K. Gdawiec, A. Nandal, N. Kumar, R. Chugh, On the viscosity approximation type iterative method and its non-linear behaviour in the generation of Mandelbrot and Julia sets, Numer. Algor., 96 (2024), 211–236. https://doi.org/10.1007/s11075-023-01644-4 doi: 10.1007/s11075-023-01644-4 |
[23] | M. R. Pinheiro, $s$-Convexity–foundations for analysis, Differ. Geom. Dyn. Syst., 10 (2008), 257–262. |
[24] | P. Mainge, The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., 59 (2010), 74–79. https://doi.org/10.1016/j.camwa.2009.09.003 doi: 10.1016/j.camwa.2009.09.003 |
[25] | R. L. Devaney, A first course in chaotic dynamical systems: Theory and experiment, 1 Eds., Boca Raton: CRC Press, 2018. https://doi.org/10.1201/9780429503481 |
[26] | H. O. Peitgen, H. Jürgens, D. Saupe, Chaos and fractals: New frontiers of science, New York: Springer, 2004. https://doi.org/10.1007/b97624 |