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Abstract: A dynamic visualization of Julia and Mandelbrot fractals involves creating animated
representations of these fractals that change over time or in response to user interaction which allows
users to gain deeper insights into the intricate structures and properties of these fractals. This
paper explored the dynamic visualization of fractals within Julia and Mandelbrot sets, focusing on
a generalized rational type complex polynomial of the form S c(z) = azn + b

zm + c, where a, b, c ∈ C
with |a| > 1 and n,m ∈ N with n > 1. By applying viscosity approximation-type iteration processes
extended with s-convexity, we unveiled the intricate dynamics inherent in these fractals. Novel escape
criteria was derived to facilitate the generation of Julia and Mandelbrot sets via the proposed iteration
process. We also presented graphical illustrations of Mandelbrot and Julia fractals, highlighting the
change in the structure of the generated sets with respect to the variations in parameters.
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1. Introduction

Fractal geometry challenges the notion of nature conforming to simple shapes, revealing its
complexity through irregular patterns. It offers a versatile framework to analyze intricate forms that
defy traditional geometric categorization. By embracing self-similarity across scales, fractal geometry
provides insights into the ordered yet seemingly chaotic shapes found in nature. Through fractals,
we explore the beauty inherent in irregular shapes, challenging conventional ideas of simplicity. This
holistic approach allows a deeper understanding of the principles governing natural complexity. Fractal
analysis spans diverse fields, from science to art, enriching our perception of the world. It unveils the
underlying unity in seemingly disparate patterns, inviting exploration of nature’s intricacies. For more
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details, refer to [1, 2].
The fascination with fractals, notably the Mandelbrot and Julia sets, has been a long-standing pursuit

in mathematics. While the concept of Julia sets originated from the work of French mathematicians
Pierre Fatou [3] and Gaston Julia [4] in the early 20th century, it wasn’t familiar until in the late 1970s
with the advent of computers that their intricate visual representations became possible. Benoit
Mandelbrot [5], a key figure in fractal geometry, notably pioneered the visualization of these fractals,
particularly by plotting the Julia set for the quadratic form of z2 + c, where c is a complex number.
Since then, the exploration of Mandelbrot and Julia sets has expanded, driving further research into the
rich world of fractals.

The formation of fractals, particularly the Mandelbrot and Julia sets, owes much to several
fixed-point iteration approaches. These approaches, crucial for their development, can generally be
categorized into two ways: the Mann-type iteration scheme [6] and the Halpern-type iteration scheme.
The Mann process, known as an averaged iterative approach, has undergone modifications over time
to ensure strong convergence, reflecting ongoing efforts to refine fractal generation techniques. On
the other hand, Halpern [7] introduced a novel iterative method in 1967 specifically for approximating
fixed points of non-expansive maps. This innovation laid the foundation for subsequent advancements,
notably the viscosity approximation method pioneered by Moudafi [8]. Since its inception, the
viscosity method has found widespread application in locating fixed points of non-expansive mappings
and other nonlinear functions. Mainge further contributed to this field by exploring the convergence of
the viscosity method, particularly concerning the computation of fixed points within the broader class
of quasi-non-expansive mappings. Such iterative approaches have significantly advanced the study and
application of fractals, enriching our understanding of their intricate structures.

The exploration of fractals, notably the Julia and Mandelbrot sets, has been greatly enriched by the
application of diverse iterative techniques across different studies. Romera et al. [9] used the Picard
iterative method for exploration of fractals in complex polynomials. In 2020, Abbas et al. [10] brought
a deeper understanding about the behavior of complex polynomials. By harnessing the Picard Ishikawa
orbit methodology, they discerned escape criteria for a range of complex polynomials, including
quadratics, cubics, and polynomials of higher degrees. The authors of [11] present a new perspective
on visualizing the Mandelbrot and filled-in Julia sets for the function z2 + c which involves integrating
a constant Möbius transformation at every iteration step. Their investigation specifically delves into
the exploration of affine and inverse Möbius transformations.

Authors of [12] investigated the behavior of a broadened transcendental entire function through the
application of the Mann iteration process. Qi et al. [13] showcased fixed-point results for sine functions
employing different iterations. In [14] complex polynomials with cosine and sine functions have been
calculated using the Picard–Mann method. In another instance, authors of [15] utilized a four-step
iteration equipped s-convexity to elucidate the Mandelbrot and Julia sets of complex cosine polynomial
functions. In [16], Rawat et al. generated and analyzed eye-catching fractals using the Phuengrattana
and Suantai (SP) iteration scheme equipped with s-convexity by the polynomial azn + b

zm + c. For more
details on recent studies on exploration of the Mandelbrot and Julia sets, see [17, 18].

In recent publications, Kumari et al. [19] explored the application of viscosity-type approximation
methods in fractal generation. Furthermore, in [20], Kumari et al. investigated a generalized
viscosity approximation methodology suggested by Nandal et al. in [21], focusing on its utility in
generating Mandelbrot and Julia sets. In their study detailed in [22], researchers employed the viscosity
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approximation iteration process to analyze and visualize the dynamics of Julia and Mandelbrot sets.
They focused on analyzing and visualizing complex polynomials of the form zn + bz + c, where n ≥ 2
and b, c ∈ C, shedding light on the intricate behaviors of these fractals. Additionally, they introduced
two numerical measures enabling the analysis of how changes in set shape correlate with variations in
the iteration parameters.

In the process of fractal generation, researchers have extensively explored various iteration
processes derived from fixed point theory. However, there has been limited attention given to methods
like Halpern or viscosity type approximation, especially concerning complex fractals. Even if such
studies exist, they often focus solely on conventional complex polynomial mappings. Given the
burgeoning volume of research work over the last few years focusing on the viscosity approximation
techniques within fixed point theory, we are prompted to explore its broader potential beyond
traditional applications. Specifically, we believe this method holds significant promise for diverse
applications, including the generation of fractals.

Building on this approach and inspired by the wide-ranging applications of complex polynomials,
our work extends viscosity approximation iteration processes to include s-convexity for rational-type
complex polynomial functions. Unlike traditional studies that concentrate on escape criteria for normal
complex functions, our study employs a generalized rational-type complex polynomial approach. By
incorporating viscosity approximation with iteration extended by s-convexity, we gain greater control
over the morphology of the resulting sets.

In this work, we investigate the dynamic visualization of fractals within the Julia and Mandelbrot
sets, particularly focusing on a generalized rational-type complex polynomial described by S c(z) =

azn + b
zm + c. Here, a, b, c ∈ C with |a| > 1 and m ≥ 1, n > 1. By employing a viscosity approximation

type orbit extended with s-convexity, we unravel the intricate dynamics inherent in these fractals. We
introduce innovative escape criteria to facilitate the generation of Mandelbrot and Julia sets using the
proposed iteration process. Graphical illustrations of Mandelbrot and Julia fractals, indicate how the
variations in iteration and contraction parameters significantly affect their formation. These examples
vividly demonstrate the clear exploration of both sets on the specifics of the iterative process, revealing
changes in their complexity, shape, and visual patterns. Through this visual documentation, we aim to
deepen our understanding of the intricate relationship between parameter adjustments and the emergent
properties of these fascinating fractal structures.

The article comprises of two sections apart from the introduction and conclusion. The second
section revisits the prerequisites that are needed for our work. In Section 3, one can find the algorithms
used, figures representing the Julia and Mandelbrot sets generated for various parameters, results, and
discussions.

2. Preliminaries

In this section, we revisit several fundamental concepts that play a crucial role throughout the
entirety of this paper.

Definition 2.1. [4] The filled Julia set (FSc) is defined as follows. Sc denotes a polynomial function
with complex coefficients, mapping complex numbers to complex numbers, where c ∈ C is a parameter

FSc = {z ∈ C : {|Sp
c (z)|}∞p=0 is bounded}, (2.1)
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and where Sp
c (z) represents the pth time composition of Sc.

Definition 2.2. [5] Let Sc : C → C be a complex-valued polynomial function, with the parameter
c ∈ C. The Mandelbrot set M encompasses all complex numbers c ∈ C where the associated filled
Julia set FSc exhibits connectivity, i.e.,

M = {c ∈ C : FSc is connected}. (2.2)

According to [16], M can also be defined as

M = {c ∈ C : |Sp
c (θ)|9 ∞ as p→ ∞}.

The starting point θ is chosen such that S
′

c(θ) = 0, indicating that θ is a critical point of Sc.

Definition 2.3. [23] Consider a nonempty set A and z1, z2, . . . , zn ∈ A, s ∈ (0, 1]. The s-convex
combination of the elements z1, z2, . . . , zn can be represented as:

ps
1z1 + ps

2z2 + · · · + ps
nzn, (2.3)

where pi ≥ 0, for i ∈ {1, 2, . . . , n} and
∑n

k=1 pi = 1.

The pioneering investigation into the viscosity approximation method dates back to Moudafi’s [8]
in 2000. This approach, operating within the complex plane, is delineated in the following.

Definition 2.4. Let S : C→ C denote a complex-valued polynomial mapping. Define a sequence zi as
follows:

zi+1 = pig(zi) + (1 − pi)S (zi), i ≥ 0, (2.4)

where z0 ∈ C serves as the initial point, pi ∈ (0, 1), and g represents a self contraction mapping on C.
This sequence zi is referred to as the viscosity approximation method.

Mainge [24] proposed a modified version of the viscosity approximation approach, which serves as
a specialized variant of the formulation discussed previously (2.4). Initially, the sequence zi is initiated
from an arbitrary point z0 ∈ C, and it evolves according to the recurrence relation given by:

zi+1 = pig(zi) + (1 − pi)Sqzi, i ≥ 0. (2.5)

Here, Sq = qI + (1−q)S, where S represents a quasi-non-expansive mapping and I denotes the identity
mapping. The parameters pi and q are constrained to lie in the interval (0, 1).

In the domain of the complex plane, Sudesh Kumari et al. [22] explored a viscosity approximation-
type orbit zi proposed by Mainge, as follows:

zi+1 = pig(zi) + (1 − pi)yi, (2.6)
yi = qzi + (1 − q)S c(zi), i ≥ 0,

where z0 ∈ C serves as the initial point, Sc represents a complex polynomial function, g : C → C is a
contraction condition, and pi, q ∈ (0, 1) are parameters. They considered the complex polynomial

Sc(z) = zn + bz + c, (2.7)

where n ≥ 2 and b, c ∈ C. Furthermore, they used a complex contraction such that g(z) = αz + β, with
α, β ∈ C satisfying |α| < 1.
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Definition 2.5. The viscosity filled Julia set F
′

S c
of Sc, as defined in Eq (2.7), is characterized by the

set

F
′

Sc
= {z0 ∈ C : {zi}

∞
i=0 is bounded },

where zi follows the definition provided in Eq (2.6). The viscosity Julia set J
′

Sc
of Sc comprises of the

boundary points of the viscosity filled Julia set FSc , denoted as J
′

Sc
= ∂F

′

Sc
.

Definition 2.6. Consider the function Sc defined by Eq (2.7), where c ∈ C serves as a parameter.
Defining the viscosity Mandelbrot set Mc as

Mc = {c ∈ C : |zi|9 ∞ as i→ ∞},

with z0 = 0 and zi, for i > 0 governed by Eq (2.6) of Sc.

The iterations involving z are written inside Mc because the boundedness of the sequence {zi} under
the function Sc is used to determine whether the parameter c belongs to the Mandelbrot set Mc. The
behavior of z iterations reflects the influence of c, making it an essential part of the set’s definition. For
simplicity, we adopt the convention pi = p, with p ∈ (0, 1), throughout the article.

3. Viscosity approximation type iteration extended with s-convexity for a generalized rational
type complex polynomial mapping

In literature, we encounter various extensions of the convex combination concept. One notable
example is the s-convex combination. Here, we blend the classic convex combination concept with the
s-convex method in viscosity approximation type orbit. In this article, we examine the subsequent orbit
of viscosity approximation type equipped with s-convexity for a generalized rational type complex
polynomial mapping S and a complex contraction condition g:

zi+1 = psg(zi) + (1 − p)syi,

yi = qszi + (1 − q)sS c(zi), (3.1)

where z0 ∈ C serves as the initial point, S c represents a complex polynomial, g : C → C is a
contraction mapping, and s ∈ (0, 1], p, q ∈ (0, 1). Here, we consider the generalized rational type
complex polynomial,

S c(z) = azn +
b
zm + c, (3.2)

where a, b, c ∈ C with |a| > 1, m, n ∈ N with n > 1 and complex contraction g(z) = αz + β, where
α, β ∈ C with |α| < 1.

The generalized rational map is classified within a more intricate category of complex functions,
primarily because the point z = ∞ does not serve as an attracting fixed point for this map. By setting
a = 1, c = 0, and m = n in (3.2), the map simplifies to a rational form in [25] given by fb(z) = zn + b

zn ,

where b ∈ C and n ≥ 2.

Remark 3.1. The viscosity approximation type orbit equipped with s-convexity becomes
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1) The viscosity approximation-type orbit of [22] for s = 1.
2) The viscosity approximation-type orbit of [24] for s = 1 and q = 0.

Definition 3.1. The viscosity filled Julia set F
′

S c
of S c, defined in Eq (3.2), is characterized by the set

F
′

S c
= {z0 ∈ C : {zi}

∞
i=0 is bounded },

where zi follows Eq (3.1). The viscosity Julia set J
′

S c
of S c consists of the boundary points of the

viscosity filled Julia set F
′

S c
, denoted by J

′

S c
= ∂F

′

S c
.

Definition 3.2. Consider the function S c defined by Eq (3.2), where c ∈ C serves as a parameter. The
viscosity Mandelbrot set Mc is defined as

Mc = {c ∈ C : |zi|9 ∞ as i→ ∞},

with zi for i > 0 governed by Eq (3.1) of S c.

Even when the function is not well-defined at z = 0, the parameter c is still selected based
on the behavior of the iterations starting from a critical point. The extension of the s-convex
combination viscosity approximation type iteration to Julia and Mandelbrot sets represents a significant
advancement in the study of complex dynamical systems. Julia and Mandelbrot sets are fundamental
objects in the field of complex dynamics, providing deep insights into the behavior of iterated functions
in the complex plane. One of the primary benefits of this extension is the enhanced ability behaviors
during graphical exploration of the complex polynomial within Julia and Mandelbrot sets.

3.1. Escape criterion

In fractal analysis, researchers have explored diverse techniques like escape time algorithms,
potential functions, distance estimator algorithms for constructing and analyzing fractals, and iterated
function systems [26]. Among these methods, the escape time criteria stands out as one of the most
pivotal approaches in fractal generation. At its core, the escape criterion serves as a fundamental
condition enabling us to discern whether the trajectory of an initial point veers toward infinity or
remains bounded.

The escape criterion plays a major role in analyzing Julia and Mandelbrot sets because it determines
how iterations of complex functions are handled. In both sets, points are iterated using certain
mathematical functions, and the escape criterion determines when to stop iterating. The escape
criterion serves as a termination condition for iterating complex functions, allowing us to classify
points in the complex plane as either belonging to or escaping from the Julia and Mandelbrot sets. It is
essential for generating accurate visual representations and studying the intricate fractal structures of
these sets.

Now, we formulate a comprehensive escape criterion suitable for constructing the viscosity of Julia
and Mandelbrot sets. This criterion is designed to accommodate viscosity approximation-type orbits
extended with s-convexity, incorporating complex contractions and generalized rational-type complex
polynomial mappings.

Theorem 3.1. Let S c(z) = azn + b
zm + c be a generalized rational type complex polynomial of degree n

and g(z) = αz + β a complex contraction, where α, β ∈ C with |α| < 1. Assume that

|z0| ≥ max{|c|, |β|} >
(

2 + sp
(1 − sp)(1 − sq)(|a| − 1)

) 1
n−1

, (3.3)
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and |z0| ≥ |b|
1

n+m , where a, b, c ∈ C with |a| > 1, m, n ∈ N with n > 1. Define a sequence {zn} as follows:

zi+1 = psg(zi) + (1 − p)syi,

yi = qszi + (1 − q)sS c(zi), (3.4)

for i ≥ 0 , s ∈ (0, 1] and p, q ∈ (0, 1). Then, |zi| → ∞ as i→ ∞.

Proof. Consider the sequence defined by (3.4),

|y0| = |qsz0 + (1 − q)sS c(z0)|

= |qsz0 + (1 − q)s(azn
0 +

b
zm

0
+ c)|.

By utilizing the binomial expansion of (1−q)s up to the linear terms of q and considering the inequality
qs ≥ sq, we obtain

|y0| ≥ |sqz0 + (1 − sq)(azn
0 +

b
zm

0
+ c)|

≥ |(1 − sq)(azn
0 +

b
zm

0
+ c)| − sq|z0|

≥ (1 − sq)|(azn
0 + c)| − (1 − sq)|

b
zm

0
| − sq|z0|.

By our assumption |z0| ≥ max{|c|, |β|}, it follows that |z0| ≥ |c|. Furthermore, from the assumption
|z0| ≥ |b|

1
n+m , we get

|y0| ≥ (1 − sq)|azn
0| − (1 − sq)

∣∣∣∣zn+m
0

zm
0

∣∣∣∣ − (1 − sq)|z0| − sq|z0|

= (1 − sq)|azn
0| − (1 − sq)|zn

0| − |z0|.

=⇒

|y0| ≥ |z0|
[
(1 − sq)(|a| − 1)|zn−1

0 | − 1
]
. (3.5)

Using Eq (3.4), the binomial expansion of (1 − p)s up to the first-order terms of p, and the inequality
ps ≥ sp, we arrive at

|z1| ≥ |sp(αz0 + β) + (1 − sp)y0|.

This leads us to

|z1| ≥ (1 − sp)|y0| − sp|αz0| − sp|z0|

> (1 − sp)|y0| − sp|z0| − sp|z0|,

as |z0| ≥ max{|c|, |β|}. Using (3.5), we obtain

|z1| > |z0|
[
(1 − sp)(1 − sq)(|a| − 1)|zn−1

0 | − sp − 1
]
. (3.6)

Because |z0| >

(
2 + sp

(1 − sp)(1 − sq)(|a| − 1)

) 1
n−1

, we have
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(1 − sp)(1 − sq)(|a| − 1)|zn−1
0 | − sp − 1 > 1.

Thus, there exists a positive real number µ such that

(1 − sp)(1 − sq)(|a| − 1)|zn−1
0 | − sp − 1 > µ + 1. (3.7)

Using (3.7) in (3.6), we have |z1| > (µ + 1)|z0|. With |z1| being greater than |z0|, we can extend our
reasoning by repeatedly applying the same logic such that |zi| > (µ + 1)i|z0|. Hence, |zi| → ∞ as
i→ ∞. �

We refine the above theorem with the following corollaries.

Corollary 3.1. Let

|z0| ≥ max
{
|c|, |β|, |b|

1
n+m ,

(
2 + sp

(1 − sp)(1 − sq)(|a| − 1)

) 1
n−1

}
= R,

where s ∈ (0, 1] and 0 < p, q < 1. Then, there exists µ > 0 such that |zi| > (1 + µ)i|z0|, and we have
|zi| → ∞ as i→ ∞.

Corollary 3.2. Suppose that

|z j| ≥ max
{
|c|, |β|, |b|

1
n+m ,

(
2 + sp

(1 − sp)(1 − sq)(|a| − 1)

) 1
n−1

}
= R,

for some j ≥ 0, where s ∈ (0, 1], 0 < p, q < 1, a, b, c ∈ C with |a| > 1, and m, n ∈ N with n > 1. Then,
there exists µ > 0 such that |zi+ j| > (1 + µ)i|z j|, and we have |zi| → ∞ as i→ ∞.

Our theorem and corollary underscore the importance of applying s-convexity within viscosity
approximation types for generalized rational-type complex polynomials in generating complex fractal
sets. Building upon this principal discovery and if the value of s makes a great impact on the shape,
we enhance analogous conclusions for viscosity approximation iterations found in existing literature.

3.2. Algorithms

Corollaries 3.1 and 3.2 provide a practical framework for generating both the Julia and Mandelbrot
sets associated with the nth degree generalized rational type complex polynomial S c(z) = azn + b

zm + c,
where a, b, c ∈ C with |a| > 1, m, n ∈ N with n > 1. These corollaries offer clear guidelines for
determining whether a given point z0 lies within the filled Julia set or not. If, at any iteration i, the
magnitude of zi surpasses a certain threshold defined by the circle of radius R given by

R = max
{
|c|, |β|, |b|

1
n+m ,

(
2 + sp

(1 − sp)(1 − sq)(|a| − 1)

) 1
n−1

}
,

then the orbit of |z0| diverges toward infinity, indicating z0 is exterior to the filled Julia set. Conversely,
if |zi| remains within this threshold, z0 is considered to belong to the filled Julia set.

Algorithm 1 delineates the procedural steps for executing the escape time algorithm to generate the
Julia set. This approach uses the viscosity approximation orbit extended s-convexity, and incorporates
the escape criteria obtained from the above section. The Julia set is constructed within a specified
domain A ⊂ C. To prevent infinite looping, we set a maximum iteration limit of K1 in the algorithm.
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Similarly, Algorithm 2 outlines the process for computing the Mandelbrot set using the viscosity
approximation type method orbit extended s-convexity. Like Algorithm 1, it employs the escape
criterion outlined in the previous section. The Mandelbrot set is computed within a defined region
A ⊂ C, with a maximum iteration cap of K1 iterations using the viscosity approximation technique.

In their paper, Kumari et al. [22] presented a detailed pseudo-code outlining the implementation of
the escape-time algorithm for generating both the viscosity Mandelbrot and Julia sets. This algorithm
operates based on the orbit specified in Eq (2.6) for the complex polynomial zn + bz + c. Here, we give
the following algorithms to generate the viscosity Mandelbrot and Julia sets using the orbit defined
in (3.1) for the generalized rational type complex polynomial.

Though both Julia sets and Mandelbrot sets are generated through iterative processes involving
complex numbers, the main difference lies in the method in which they are constructed (fixed c for
Julia sets vs. varying c for Mandelbrot sets) and visualized (for a specific constant c in Julia set, the
Mandelbrot set represents the behavior of the iteration).

To create the visual representations of the Julia and Mandelbrot sets showcased in this part, we
implement Algorithms 1 and 2 using the MATLAB tool. We also use viscosity approximation orbits
extended with s-convexity.

Algorithm 1 Julia set generation

Require: S c(z) = azn + b
zm + c, where a, b, c ∈ C with |a| > 1, m, n ∈ N with n > 1; A ⊂ C –the

region from which the set is drawn; The max no. of iterations is denoted byK1; p, q ∈ (0, 1), the
parameters for the viscosity approximation type iterative extended with s-convexity; s ∈ (0, 1]
convexity parameter; g(z) = αz + β, where α, β ∈ C & |α| < 1; colourmap [0..K1] – with K1 + 1
colours.

Ensure: Julia set for A.

1: R = max
{
|c|, |β|, |b|

1
n+m ,

(
2 + sp

(1 − sp)(1 − sq)(|a| − 1)

) 1
n−1

}
2: for z0 ∈ A do
3: i = 0
4: while |zi| < R and i < K1 do
5: yi = qszi + (1 − q)sS c(zi)
6: zi+1 = psg(zi) + (1 − p)syi

7: i = i + 1
8: end while
9: colour z0 with colourmap[i]

10: end for
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Algorithm 2 Mandelbrot set generation

Require: S c(z) = azn + b
zm + c, where a, b, c ∈ C with |a| > 1, m, n ∈ N with n > 1; A ⊂ C – area; K1 –

the max no. of iterations; p, q ∈ (0, 1) – parameters for the viscosity approximation type extended
with s-convexity; s ∈ (0, 1] -convexity parameter; g(z) = αz + β, where α, β ∈ C and |α| < 1;
colourmap [0...K1] – with K1 + 1 colours.

Ensure: Mandelbrot set for area A.
1: for c ∈ A do

2: R = max
{
|c|, |β|, |b|

1
n+m ,

(
2 + sp

(1 − sp)(1 − sq)(|a| − 1)

) 1
n−1

}
3: i = 0
4: z0 = c
5: while |zi| < R and i < K1 do
6: yi = qszi + (1 − q)sS c(zi)
7: zi+1 = psg(zi) + (1 − p)syi

8: i = i + 1
9: end while

10: colour c with colourmap[i]
11: end for

In Figures 1 and 2, we use hot color maps, utilize an image resolution of 800×800 pixels, and
execute a total of 50 iterations for the Julia set and 10 iterations for the Mandelbrot set. To capture
finer details and intricate structures in Julia sets, a higher number of iterations, such as K = 50, is
chosen. This allows for a more accurate representation of the fractal’s features. Since determining
Mandelbrot set membership involves a binary classification (inside or outside), a lower number of
iterations, such as K = 10, is often sufficient for a quick assessment of membership. Usage of less
numbers of iterations provides a good balance between computational efficiency and capturing the
main features of the set.

Figure 1. Color maps used to generate the viscosity Julia set example.

Figure 2. Color maps used to generate the viscosity Mandelbrot set example.
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3.3. Examples for the Mandelbrot set

Figure 3 depicts the nature of Mandelbrot set under a generalized rational type mapping.
While maintaining the values for parameters n = 3, m = 9, a = 3, b = −0.0003i, α = 0.067,
β = 0.007 − 0.0004i, q = 0.92, and s = 1, we systematically vary the value of p across six different
settings: (a) 0.11, (b) 0.25, (c) 0.5, (d) 0.62, (e) 0.8, and (f) 0.89.

(a) p = 0.11 (b) p = 0.25 (c) p = 0.5 (d) p = 0.62 (e) p = 0.8

(f) p = 0.89

Figure 3. Mandelbrot set for n = 3,m = 9 generated using the viscosity approximation type
iteration extended with s-convexity by fixing q = 0.92, s = 1 and varying p.

Figure 4 represents the Mandelbrot set using a generalized rational mapping technique. Figure 4 is
obtained by maintaining the parameters n = 3, m = 2, a = 4, b = −0.5, α = 0.8, β = −0.4i, p = 0.6,
and s = 0.98, and varying the value of q across six different settings: (a) 0.22, (b) 0.39, (c) 0.5, (d) 0.7,
(e) 0.82, and (f) 0.91.

In Figure 5, we explore the Mandelbrot set using a generalized rational mapping approach. To
obtain Figure 5, we keep the parameters n = 4, m = 2, a = 2.008, b = 1.0008 + .0007i, α = 0.85,
β = 0.003 + 0.002i, p = 0.69, and q = 0.8 fixed and the value of s is varied across six different settings:
(a) 0.1, (b) 0.22, (c) 0.35, (d) 0.5, (e) 0.81, and (f) 1.
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(a) q = 0.22 (b) q = 0.39 (c) q = 0.5 (d) q = 0.7 (e) q = 0.82

(f) q = 0.91

Figure 4. Mandelbrot set for n = 3,m = 2 generated through the utilization of the viscosity
approximation type iteration extended with s-convexity by fixing p = 0.6, s = 0.98 and
varying q.

(a) s = 0.1 (b) s = 0.22 (c) s = 0.35 (d) s = 0.5 (e) s = 0.81

(f) s = 1

Figure 5. Mandelbrot set for n = 4, m = 2 generated by the viscosity approximation method
extended with s-convexity. We keep q = 0.8 and p = 0.69 and vary s.

Subsequently, we move forward to generate a cubic viscosity Mandelbrot set for a generalized
rational-type mapping using Algorithm 2. The parameters for generating this set are as follows: n = 3,
m = 9, a = 3, b = −0.0003i, α = 0.067, β = 0.007 − 0.0004i. The illustration showcases a division
into three distinct groups.
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In the first set, presented in Figure 6, constant values for q = 0.6 and s = 0.7 are maintained, while
the parameter p is varied. Specifically: (a) 0.4, (b) 0.7, and (c) 0.89.

(a) p = 0.4 (b) p = 0.7 (c) p = 0.89

Figure 6. Generating the Mandelbrot set for n = 3,m = 9 through the use of a viscosity
approximation iteration method, enhanced by incorporating s-convexity, with q set to 0.6
and s to 0.7, while altering p.

In the second set, presented by Figure 7, p = 0.4, s = 0.89 are maintained, while the parameter q is
varied. Specifically: (a) 0.3, (b) 0.8, and (c) 0.9.

(a) q = 0.3 (b) q = 0.8 (c) q = 0.9

Figure 7. Mandelbrot for n = 3,m = 9 generated in way of the viscosity approximation type
iteration extended with s-convexity by fixing p = 0.4, s = 0.89 and varying q.

In the third set, represented by Figure 8, p = 0.85, q = 0.3, and the parameter s is varied.
Specifically: (a) 0.4, (b) 0.6, and (c) 1.

(a) s = 0.4 (b) s = 0.6 (c) s = 1

Figure 8. Mandelbrot set for n = 3, m = 9 generated using the viscosity approximation
type iteration extended with s-convexity, with fixed parameters p = 0.85 and q = 0.3, while
varying s.

Furthermore, we need to show the impact of α, β on the Mandelbrot set generated. Our parameters
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n = 3, m = 2, a = 4, b = 0.7, s = 1 , q = 0.6, p = 0.9, and α = 0.6 remain fixed and we adjust the
value of β across three settings: (a) 0.99, (b) 1.899i, (c) 2.899i. Figure 9 is the visualization obtained
by fixing α = 0.6, s = 1 and varying the value of β.

(a) β = 0.99 (b) β = 1.899i (c) β = 2.899i

Figure 9. Mandelbrot for n = 3,m = 2 generated through the use of the viscosity
approximation type iteration extended with s-convexity by fixing α = 0.6, s = 1 and varying
β.

Next, the parameters n = 3, m = 2, a = 4, b = 0.7, s = 1 , q = 0.6, p = 0.9, and β = 0.4
remain fixed, while we vary the value of α across three settings: (a) 0.033, (b) 0.55, (c) 0.8, and obtain
Figure 10.

(a) α = 0.033 (b) α = 0.55 (c) α = 0.8

Figure 10. Mandelbrot for n = 3,m = 2 generated using an iteration method based on
viscosity approximation, augmented with s-convexity, by setting β at 0.4, s at 1, and adjusting
α.

We move on to the investigation of the Mandelbrot set for fixed p, q, and s on different values of
a, b. Here, we fix the following values n = 11, m = 9, s = 0.79 , q = 0.7, p = 0.9, α = 0.6,
β = 0.003 + 0.009i. In Figure 11, to study (a), we use a = 6, b = 3.098i. To investigate (b) and (c), we
fix b = 0.004 − 0.005i for a = 2 and 4.

(a) b = 3.098i (b) a = 4 (c) a = 2

Figure 11. Mandelbrot for n = 11,m = 9 generated through the viscosity approximation
type iteration extended with s-convexity for different values of a, b.
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The generation of the Mandelbrot set using our method is illustrated in Figure 12. Following are
the values of the parameter used for Figure 12:

(a) n = 6,m = 4, a = 4, b = 0.007 − 0.006i, α = 0.007, β = 0.002 − 0.009i, p = 0.79, q = 0.4, and
s = 0.2.

(b) n = 6,m = 4, a = 4, b = 0.007 − 0.006i, α = 0.007, β = 0.002 − 0.009i, p = 0.79, q = 0.4, and
s = 0.79.

(c) n = 8,m = 4, a = 6, b = 0.809 − 0.906i, α = 0.008, β = 2.009 + 1.007i, p = 0.8, q = 0.69, and
s = 0.7.

(d) n = 11,m = 4, a = 2, b = 0.004 − 0.005i, α = 0.6, β = 0.003 + 0.009i, p = 0.2, q = 0.27, and
s = 0.79.

(e) n = 7,m = 3, a = 2, b = 5, α = 0.08, β = 0.0007 − 0.0009i, p = 0.8, q = 0.7, and s = 1.
(f) n = 5,m = 3, a = 2, b = 5, α = 0.08, β = 0.0007 − 0.0009i, p = 0.8, q = 0.7, and s = 1.

(a) (b) (c) (d) (e)

(f)

Figure 12. More examples of Mandelbrot sets for viscosity approximation type iteration
extended with s-convexity.

3.3.1. Results and discussion on Mandelbrot set

Observing Figures 3 and 4, it becomes evident that both parameters, p and q, significantly influence
the shape of the set. As either parameter increases, the set expands and undergoes alterations in its
form. Additionally, a noteworthy observation is the axial symmetry present in the resulting sets.
Moreover, Figures 6 and 7 highlight a pronounced reliance on the iteration parameters, indicating
a substantial impact on the resultant set’s configuration. When parameters are set at lower values,
the resulting sets appear relatively compact, expanding gradually with parameter increments. From
Figures 5 and 8, we can say it’s worth noting that a subtle uptick in the value of s brings about a clearer,
more comprehensive view, while also infusing additional vibrancy into the fractals. From Figures 9–11,
we can see impact of parameters of the contraction and generalized rational type complex polynomial,
we can see that the variation in shape is huge, and we obtain sets with different shapes and details.
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Observing Figures 3–12, it becomes evident that altering the parameters (especially p, q, s, and α, β)
has a profound impact on the shape of the resulting set. As the parameters increase, the set expands in
size while simultaneously adopting a more different exploration, thereby sacrificing some of its finer
intricacies.

3.4. Examples for the Julia set

In the following part, we examine the Julia set for a generalized rational type condition by
utilizing orbits extended with s-convexity under the viscosity approximation method for various input
parameters.

In Figure 13, we explore the Julia set for a generalized rational type mapping. The parameters
n = 3, m = 2, a = 4, b = 0.0007+0.006i, c = 0.0004+0.003i, α = 0.6, β = 0.004, q = 0.6, and s = 0.4
remain fixed, while we vary the value of p across six settings: (a) 0.11, (b) 0.25, (c) 0.5, (d) 0.62,
(e) 0.7, and (f) 0.85.

(a) p = 0.11 (b) p = 0.25 (c) p = 0.5 (d) p = 0.62 (e) p = 0.7

(f) p = 0.85

Figure 13. Julia set for n = 3, m = 2 generated using viscosity approximation iteration
extended with s-convexity, with fixed parameters q = 0.6 and s = 0.4, while varying p.

Figure 14 illustrates our investigation about the Julia set of a generalized rational-type mapping.
While our parameters remain constant (n = 2, m = 4, a = 3.0004, b = 0.9807 + 0.0009i, c = 0.0006i,
α = 0.7, β = 0.078 + 0.0056i, p = 0.67, and s = 1), we vary the value of q across six different settings:
(a) 0.5, (b) 0.66, (c) 0.73, (d) 0.8, (e) 0.88, and (f) 0.9.
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(a) q = 0.5 (b) q = 0.66 (c) q = 0.73 (d) q = 0.8 (e) q = 0.88

(f) q = 0.9

Figure 14. Julia set for n = 2,m = 4 generated through the viscosity approximation type
orbit extended with s-convexity by fixing p = 0.67, s = 1 and varying q.

In Figure 15, we embark on an exploration of the Julia set for a generalized rational-type mapping.
We maintain the parameters at fixed values: n = 2, m = 4, a = 6, b = 1.2i, c = 0.0002i, α = 0.05,
β = 0.1, p = 0.9, and q = 0.9. However, we introduce variations in the parameter s across six distinct
settings: (a) 0.40, (b) 0.56, (c) 0.7, (d) 0.82, (e) 0.95, and (f) 1.

(a) s = 0.40 (b) s = 0.56 (c) s = 0.7 (d) s = 0.82 (e) s = 0.95

(f) s = 1

Figure 15. Generated Julia set for n = 2,m = 4 with a viscosity approximation iteration
method, incorporating s-convexity, setting both p and q to 0.9, and adjusting s.

Next, we proceed to generate a cubic viscosity Julia set for generalized rational type mapping using
Algorithm 1. The parameters used for generating this set are n = 3, m = 5, a = 1.03, b = 0.05 − 0.09i,
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c = 3i, α = 0.0.006, β = 0.0004.
The illustration showcases a division into three distinct groups. In the first set, presented in

Figure 16, constant values of q = 0.5, s = 1 are maintained, while the parameter p is varied.
Specifically: (a) 0.42, (b) 0.7, (c) 0.89.

(a) p = 0.42 (b) p = 0.7 (c) p = 0.89

Figure 16. Julia set for n = 3,m = 5 created using viscosity approximation iteration with
s-convexity, fixing q = 0.5 and s = 1, while adjusting p.

In the second set, presented in Figure 17, constant values of p = 0.7, s = 1 are maintained, while
the parameter q is varied. Specifically: (a) 0.6, (b) 0.84, (c) 0.91.

(a) q = 0.6 (b) q = 0.84 (c) q = 0.91

Figure 17. Julia sets for n = 3, m = 5 are generated using viscosity approximation orbit
extended with s-convexity, with fixed parameters p = 0.7 and s = 1, while varying q.

In the third set, presented in Figure 18, constant values of p = 0.9, q = 0.84 are maintained, while
the parameter s is varied. Specifically: (a) 0.5, (b) 0.8, (c) 1.

(a) s = 0.5 (b) s = 0.8 (c) s = 1

Figure 18. Julia set for n = 3,m = 5 generated using the viscosity approximation type
iteration extended with s-convexity by fixing p = 0.9, q = 0.84 and varying s.

Furthermore, to show the impact of α, β on exploration of the Julia set, we apply the subsequent
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parameters n = 2, m = 2, a = 4, b = 0.08 + 0.09i, c = 0.9, s = 1 , q = 0.7, p = 0.9, and α = 0.8 fixed,
while we vary the value of β across six settings: (a) 0.5, (b) 2.0089i, (c)4i, (d) 5.0089i, (e) 0.7 − 7i,
(f) 7i. Figure 19 is obtained by fixing α = 0.8, s = 1 and varying the values of β.

(a) β = 0.5 (b) β = 2.0089i (c) β = 4i (d) β = 5.0089i (e) β = 0.7 − 7i

(f) β = 7i

Figure 19. Julia set for n = 2,m = 2 generated using the viscosity approximation type
iteration extended with s-convexity by fixing α = 0.8, s = 1 and varying β.

By fixing the parameters n = 2, m = 2, a = 4, b = 0.08 + 0.09i, c = 0.9, s = 1 , q = 0.7, p = 0.9,
and β = 5i and changing the value of α across three settings: (a) 0.03, (b) 0.6, (c) 0.9, Figure 20 has
been obtained.

(a) α = 0.03 (b) α = 0.6 (c) α = 0.9

Figure 20. Julia set for n = 2,m = 2 generated using the viscosity approximation type
iteration extended with s-convexity by fixing β = 5i, s = 1 and varying α.

Next, we move on to the exploration of the Julia set for fixed p, q, and s on different values of
a, b, c. Here, we fix the following values n = 7, m = 5, s = 0.89 , q = 0.9, p = 0.8, α = 0.8,
β = 0.9i. In Figure 21, to explore (a), (b), (c), we use b = 0.000097 + 0.00009i, c = 0.990789i
for varying a = 2, 3, 5. To explore (d), (e), we use a = 2 and c = 0.990789i for different values of
b = 2.098 + 0.9989i, 0.098i. To explore (f), we use a = 2 and b = 0.000097 + 0.00009i for a value of
c = 2.908i.
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(a) a = 2 (b) a = 3 (c) a = 5 (d) b = 2.098+0.9989i (e) b = 0.098i

(f) c = 7.908i

Figure 21. Julia set for n = 7,m = 5 explored using the viscosity approximation type
iteration extended with s-convexity by fixing p, q, s and varying a, b, c.

Continuing our investigation, we venture into a countless number of viscosity Julia sets
meticulously crafted using our methodology. For a comprehensive visual representation of these sets,
please check Figure 22. Find below the specific parameter values employed in their generation:

(a) n = 3,m = 2, a = 4, b = 0.0007 + 0.006i, c = 0.0004 + 0.003i, α = 0.8, β = 2.0089i, p = 0.7, q =

0.89, and s = 0.78.
(b) n = 3,m = 2, a = 9, b = 0.0007 + 0.006i, c = 0.0004 + 0.003i, α = 0.8, β = 2.0089i, p = 0.7, q =

0.89, and s = 0.78.
(c) n = 4,m = 5, a = 2, b = 0.7, c = 0.1, α = 0.9, β = 0.1, p = 0.9, q = 0.7, and s = 0.88.
(d) n = 6,m = 2, a = 4, b = 0.0007+0.006i, c = 0.0004+0.003i, α = 0.6, β = 0.004, p = 0.8, q = 0.6,

and s = 0.4.
(e) n = 6,m = 2, a = 5, b = 0.7, c = 0.3, α = 0.6, β = 0.4, p = 0.5, q = 0.6, and s = 0.89.
(f) n = 7,m = 6, a = 8, b = 1.0009 − 0.0008i, c = 2.009 − 0.896i, α = 0.7, β = 0.8, p = 0.8, q = 0.8,

and s = 1.
(g) n = 6,m = 2, a = 5, b = 0.7, c = 0.3, α = 0.6, β = 0.4, p = 0.8, q = 0.8, and s = 0.89.
(h) n = 11,m = 2, a = 5, b = 0.7, c = 0.3, α = 0.6, β = 0.4, p = 0.8, q = 0.8, and s = 0.89.
(i) n = 9,m = 3, a = 7, b = −0.0009, c = 0.0002, α = 0.7, β = 0.4, p = 0.7, q = 0.8, and s = 1.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 22. More examples of Julia set for viscosity approximation type iteration extended
with s-convexity.

3.4.1. Results and discussion on Julia set

In Figure 13, it’s apparent that a decrease in the value of p notably enhances the aesthetic appeal
of the fractals, adding to their visual allure. Figures 14 and 15 underscore a pronounced relationship
between the iteration parameters and the configuration of the resulting set. Particularly noteworthy is
the trend where smaller parameter values correspond to compact sets, which progressively grow larger
with parameter increments. Also, we can see that there’s a wide range of variation in shape. In the
same line, we can see the impact of parameters p, q, and s from Figures 16–18. Also, we explore the
Julia set in Figures 19–21 by varying parameters of contraction and parameters of the rational type
complex polynomial condition. There we can see the diversity in shape is readily apparent, producing
collections that exhibit a broad spectrum of forms and intricate nuances.

From Figures 13 to 22, it is clear that each parameter, especially p, q, s and a, b, c, α, β, plays a
pivotal role in shaping the Julia set and determining its overall size. Notably, as the value of the
variable parameter increases, the set undergoes a notable transformation, losing its coherence and
gradually resembling scattered fragments akin to dust. Furthermore, there exists a rich array of shapes
exhibited by the constant function across various parameter configurations.

3.5. Mathematical description about the effect of change of parameters in the sets generated

Notable increase in the value of p, while we fix the other parameters influences the color mapping
function used in visualizing the fractal. It varies the complexity of the Julia sets. Smaller values of
p produce clearer and brighter regions in the fractals. Additionally, the resulting sets exhibit notable
axial symmetry (Figure 3).

Increase in the value of q by fixing a, b, α, β, p, and s for n = 3,m = 2 leads to more defined and
stable fractal patterns (Figure 4).

Increase in s and fixation of a, b, α, β, p, q, m, and n leads to more defined and structured fractal
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shapes (Figure 5).
The generated sets in Figure 10 are symmetrical about the X-axis. It can be observed that with

small values of p with n = 3,m = 2, there is a clarity and brightness in the structure. However, as we
increase p, the size increases but brightness is the same. For small p, the set will be more connected
and colorful, while for larger p, the set will expand in complexity and brightness (Figure 13).

Change in q affects the shape and structure of the fractals, but connectivity is not lost for increased
values of q (Figure 14).

When varying s , there is a growth in the set and it is symmetrical about both the axes (Figure 15).
A rotation of the fractal, for complex values of β with negative imaginary part and a dust-like

structure while changing the complex values of β, can be observed, i.e., the set looses its connectivity
(Figure 19).

4. Conclusions

In this study, we have explored the visualization of Mandelbrot and Julia sets using a generalized
rational-type complex polynomial. We have employed an extended viscosity approximation method,
enhanced by s-convexity, a technique that has been widely recognized for determining fixed points in
nonlinear operators. We have introduced an escape criterion specifically designed for the generation
of Mandelbrot and Julia sets through this method. Additionally, we have utilized the escape time
algorithm in conjunction with our iterative process to visualize these fractal sets. The study has
further investigated how changes in the parameters have affected the morphology of the produced
sets and presented our observations through graphical analysis. In forthcoming research, we intend
to introduce numerical measures enabling the examination of how alterations in set shape correlate
with variations in the iteration parameters for our iterative orbit. Through these measures, we aim to
demonstrate that the relationship within our designated iteration method exhibits pronounced non-
linearity. Furthermore, we plan to expand upon the findings presented in the paper by exploring
additional types of viscosity approximation orbits and their applications.
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