In this paper, $ n $-dimensional incompressible Boussinesq equations with fractional dissipation and thermal diffusion are investigated. Firstly, by applying frequency decomposition, we find that $ \Vert (u, \theta) \Vert _{L^{2}(\mathbb{R}^{n})} \rightarrow 0 $, as $ t \rightarrow \infty $. Secondly, by using energy methods, we can show that if the initial data is sufficiently small in $ H^{s}(\mathbb{R}^{n}) $ with s = 1+$ \frac{n}{2}-2\alpha \, (0 < \alpha < 1) $, the global solutions are derived. Furthermore, under the assumption that the initial data $ (u_{0} $, $ \theta_{0}) $ belongs to $ L^{p}($where $ 1\le p < 2) $, using a more advanced frequency decomposition method, we establish optimal decay estimates for the solutions and their higher-order derivatives. Meanwhile, the uniqueness of the system can be obtained. In the case $ \alpha $ = 0, we obtained the regularity and decay estimate of the damped Boussinesq equation in Besov space.
Citation: Xinli Wang, Haiyang Yu, Tianfeng Wu. Global well-posedness and optimal decay rates for the $ n $-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion[J]. AIMS Mathematics, 2024, 9(12): 34863-34885. doi: 10.3934/math.20241660
In this paper, $ n $-dimensional incompressible Boussinesq equations with fractional dissipation and thermal diffusion are investigated. Firstly, by applying frequency decomposition, we find that $ \Vert (u, \theta) \Vert _{L^{2}(\mathbb{R}^{n})} \rightarrow 0 $, as $ t \rightarrow \infty $. Secondly, by using energy methods, we can show that if the initial data is sufficiently small in $ H^{s}(\mathbb{R}^{n}) $ with s = 1+$ \frac{n}{2}-2\alpha \, (0 < \alpha < 1) $, the global solutions are derived. Furthermore, under the assumption that the initial data $ (u_{0} $, $ \theta_{0}) $ belongs to $ L^{p}($where $ 1\le p < 2) $, using a more advanced frequency decomposition method, we establish optimal decay estimates for the solutions and their higher-order derivatives. Meanwhile, the uniqueness of the system can be obtained. In the case $ \alpha $ = 0, we obtained the regularity and decay estimate of the damped Boussinesq equation in Besov space.
[1] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren Der Mathematischen Wissenschaften, Springer, Berlin Heidelberg, 343 (2011). |
[2] | C. Cao, J. Wu, Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. An., 208 (2013), 985–1004. |
[3] | D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497–513. https://doi.org/10.1016/j.aim.2005.05.001 doi: 10.1016/j.aim.2005.05.001 |
[4] | P. Constantin, V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22 (2012), 1289–1321. https://doi.org/10.1007/s00039-012-0172-9 doi: 10.1007/s00039-012-0172-9 |
[5] | R. Danchin, M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Physica D, 237 (2008), 1444–1460. https://doi.org/10.1016/j.physd.2008.03.034 doi: 10.1016/j.physd.2008.03.034 |
[6] | C. R. Doering, J. Wu, K. Zhao, X. Zheng, Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion, Physica D, 376 (2018), 144–159. https://doi.org/10.1016/j.physd.2017.12.013 doi: 10.1016/j.physd.2017.12.013 |
[7] | B. Dong, J. Wu, X. Xu, N. Zhu, Stability and exponential decay for the 2D anisotropic Boussinesq equations with horizontal dissipation, Calc. Var. Partial Dif., 60 (2021), 116. https://doi.org/10.1007/s00526-021-01976-w doi: 10.1007/s00526-021-01976-w |
[8] | L. Dong, Y. Sun, Asymptotic stability of the 2D Boussinesq equations without thermal conduction, J. Differ. Equations, 337 (2022), 507–540. https://doi.org/10.1016/j.jde.2022.08.015 doi: 10.1016/j.jde.2022.08.015 |
[9] | D. Fang, W. Le, T. Zhang, The 2D regularized incompressible Boussinesq equations with general critical dissipations, J. Math. Anal. Appl., 461 (2018), 868–915. https://doi.org/10.1016/j.jmaa.2017.12.008 doi: 10.1016/j.jmaa.2017.12.008 |
[10] | T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation, J. Differ. Equations, 249 (2010), 2147–2174. https://doi.org/10.1016/j.jde.2010.07.008 doi: 10.1016/j.jde.2010.07.008 |
[11] | T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation, Commun. Part. Diff. Eq., 36 (2010), 420–445. https://doi.org/10.1080/03605302.2010.518657 doi: 10.1080/03605302.2010.518657 |
[12] | H. Houamed, M. Zerguine, On the global solvability of the axisymmetric Boussinesq system with critical regularity, Nonlinear Anal., 200 (2020), 112003. https://doi.org/10.1016/j.na.2020.112003 doi: 10.1016/j.na.2020.112003 |
[13] | A. Hanachi, H. Houamed, M. Zerguine, On the global well-posedness of axisymmetric viscous Boussinesq system in critical Lebesgue spaces, Discrete Cont. Dyn-S., 40 (2020), 6493–6526. https://doi.org/10.3934/dcds.2020287 doi: 10.3934/dcds.2020287 |
[14] | Q. Jiu, C. Miao, J. Wu, Z. Zhang, The two-dimensional incompressible Boussinesq equations with general critical dissipation, SIAM J. Math. Anal., 46 (2014), 3426–3454. https://doi.org/10.1137/140958256 doi: 10.1137/140958256 |
[15] | Q. Jiu, J. Wu, W. Yang, Eventual regularity of the two-dimensional Boussinesq equations with supercritical dissipation, J. Nonlinear Sci., 25 (2015), 37–58. https://doi.org/10.1007/s00332-014-9220-y doi: 10.1007/s00332-014-9220-y |
[16] | T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pur. Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704 |
[17] | C. E. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Am. Math. Soc., 4 (1991), 323–347. |
[18] | Q. Jiu, H. Yu, Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations, Acta Math. Appl. Sin.-E., 32 (2016), 1–16. https://doi.org/10.1007/s10255-016-0539-z doi: 10.1007/s10255-016-0539-z |
[19] | S. Lai, J. Wu, Y. Zhong, Stability and large-time behavior of the 2D Boussinesq equations with partial dissipation, J. Differ. Equations, 271 (2021), 764–796. https://doi.org/10.1016/j.jde.2020.09.022 doi: 10.1016/j.jde.2020.09.022 |
[20] | S. Lai, J. Wu, X. Xu, Y. Zhong, Optimal decay estimates for 2D Boussinesq equations with partial dissipation, J. Nonlinear Sci., 31 (2021), 1–33. https://doi.org/10.1007/s00332-020-09672-3 doi: 10.1007/s00332-020-09672-3 |
[21] | J. Li, H. Shang, J. Wu, X. Xu, Z. Ye, Regularity criteria for the 2D Boussinesq equations with supercritical dissipation, Commun. Math. Sci., 14 (2016), 1999–2022. https://doi.org/10.4310/CMS.2016.v14.n7.a10 doi: 10.4310/CMS.2016.v14.n7.a10 |
[22] | C. Miao, X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Commun. Math. Phys., 321 (2013), 33–67. https://doi.org/10.1007/s00220-013-1721-2 doi: 10.1007/s00220-013-1721-2 |
[23] | C. Miao, L. Xue, On the global well-posedness of a class of Boussinesq-Navier-Stokes systems, Nonlinear Differ. Equ. Appl., 18 (2011), 707–735. https://doi.org/10.1007/s00030-011-0114-5 doi: 10.1007/s00030-011-0114-5 |
[24] | J. Pedlosky, Geophysical fluid dynamics, Springer Science & Business Media, 2013. |
[25] | O. B. Said, U. R. Pandey, J. Wu, The stabilizing effect of the temperature on buoyancy-driven fluids, Indiana U. Math. J., 71 (2022), 1–34. |
[26] | H. Shang, L. Xu, Stability near hydrostatic equilibrium to the three-dimensional Boussinesq equations with partial dissipation, Z. Angew. Math. Phys., 72 (2021), 60. https://doi.org/10.1007/s00033-021-01495-w doi: 10.1007/s00033-021-01495-w |
[27] | A. Stefanov, J. Wu, A global regularity result for the 2D Boussinesq equations with critical dissipation, J. Anal. Math., 137 (2019), 269–290. https://doi.org/10.1007/s11854-018-0073-4 doi: 10.1007/s11854-018-0073-4 |
[28] | L. Tao, J. Wu, K. Zhao, X. Zheng, Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion, Arch. Ration. Mech. An., 237 (2020), 585–630. https://doi.org/10.1007/s00205-020-01515-5 doi: 10.1007/s00205-020-01515-5 |
[29] | L. Tao, J. Wu, The 2D Boussinesq equations with vertical dissipation and linear stability of shear flows, J. Differ. Equations, 267 (2019), 1731–1747. https://doi.org/10.1016/j.jde.2019.02.020 doi: 10.1016/j.jde.2019.02.020 |
[30] | T. Tao, Nonlinear dispersive equations: local and global analysis, Am. Math. Soc., 2006. |
[31] | J. Wu, Q. Zhang, Stability and optimal decay for a system of 3D anisotropic Boussinesq equations, Nonlinearity, 34 (2021), 5456. https://doi.org/10.1088/1361-6544/ac08e9 doi: 10.1088/1361-6544/ac08e9 |
[32] | J. Wu, X. Xu, Z. Ye, The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion, J. Math. Pur. Appl., 115 (2018), 187–217. https://doi.org/10.1016/j.matpur.2018.01.006 doi: 10.1016/j.matpur.2018.01.006 |
[33] | J. Wu, X. Xu, L. Xue, Z. Ye, Regularity results for the 2D Boussinesq equations with critical or supercritical dissipation, Commun. Math. Sci., 14 (2016), 1963–1997. https://doi.org/10.4310/CMS.2016.v14.n7.a9 doi: 10.4310/CMS.2016.v14.n7.a9 |
[34] | X. Xu, Global regularity of solutions of 2D Boussinesq equations with fractional diffusion, Nonlinear Anal.-Theor., 72 (2010), 677–681. https://doi.org/10.1016/j.na.2009.07.008 doi: 10.1016/j.na.2009.07.008 |
[35] | K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system, Appl. Math., 60 (2015), 109–133. |
[36] | W. Yang, Q. Jiu, J. Wu, Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation, J. Differ. Equations, 257 (2014), 4188–4213. https://doi.org/10.1016/j.jde.2014.08.006 doi: 10.1016/j.jde.2014.08.006 |
[37] | Z. Ye, X. Xu, Remarks on global regularity of the 2D Boussinesq equations with fractional dissipation, Nonlinear Anal., 125 (2015), 715–724. https://doi.org/10.1016/j.na.2015.06.021 doi: 10.1016/j.na.2015.06.021 |
[38] | Z. Ye, X. Xu, Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation, J. Differ. Equations, 260 (2016), 6716–6744. https://doi.org/10.1016/j.jde.2016.01.014 doi: 10.1016/j.jde.2016.01.014 |
[39] | Z. Ye, X. Xu, L. Xue, On the global regularity of the 2D Boussinesq equations with fractional dissipation, Math. Nachr., 290 (2017), 1420–1439. https://doi.org/10.1002/mana.201500413 doi: 10.1002/mana.201500413 |
[40] | Z. Ye, Global smooth solution to the 2D Boussinesq equations with fractional dissipation, Math. Meth. Appl. Sci., 40 (2017), 4595–4612. https://doi.org/10.1002/mma.4328 doi: 10.1002/mma.4328 |
[41] | Z. Ye, Regularity criterion of the 2D Bénard equations with critical and supercritical dissipation, Nonlinear Anal., 156 (2017), 111–143. |
[42] | Z. Ye, A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation, Acta Math. Sci. Ser. B-E., 35 (2015), 112–120. https://doi.org/10.1016/S0252-9602(14)60144-2 doi: 10.1016/S0252-9602(14)60144-2 |
[43] | K. Zhao, 2D inviscid heat conductive Boussinesq equations on a bounded domain, Mich. Math. J., 59 (2017), 329–352. https://doi.org/10.1307/mmj/1281531460 doi: 10.1307/mmj/1281531460 |
[44] | D. Zhou, Z. Li, H. Shang, J. Wu, B. Yuan, Global well-posedness for the 2D fractional Boussinesq equations in the subcritical case, Pac. J. Math., 298 (2019), 233–255. https://doi.org/10.2140/pjm.2019.298.233 doi: 10.2140/pjm.2019.298.233 |