In this paper, we considered the parabolic Anderson model with a class of time-independent generalized Gaussian fields on $ \mathbb{R}^d $, which included fractional white noise, Bessel field, massive free field, and other nonstationary Gaussian fields. Under the rough initial conditions, we constructed the Feynman-Kac formula as a solution in the Stratonovich integral by Brownian bridge, and then proved the Hölder continuity of the solution with respect to the time variable. As a comparison, we also studied the Hölder continuity under the regular initial conditions that $ u_0\equiv C $ and $ u_0\in C^\kappa(\mathbb{R}^d) $ with $ \kappa\in(0, 1] $.
Citation: Hui Sun, Yangyang Lyu. Temporal Hölder continuity of the parabolic Anderson model driven by a class of time-independent Gaussian fields with rough initial conditions[J]. AIMS Mathematics, 2024, 9(12): 34838-34862. doi: 10.3934/math.20241659
In this paper, we considered the parabolic Anderson model with a class of time-independent generalized Gaussian fields on $ \mathbb{R}^d $, which included fractional white noise, Bessel field, massive free field, and other nonstationary Gaussian fields. Under the rough initial conditions, we constructed the Feynman-Kac formula as a solution in the Stratonovich integral by Brownian bridge, and then proved the Hölder continuity of the solution with respect to the time variable. As a comparison, we also studied the Hölder continuity under the regular initial conditions that $ u_0\equiv C $ and $ u_0\in C^\kappa(\mathbb{R}^d) $ with $ \kappa\in(0, 1] $.
[1] | L. D. Pitt, R. Robeva, On the sharp Markov property for Gaussian random fields and spectral synthesis in spaces of Bessel potentials, Ann. Probab., 31 (2003), 1338–1376. http://dx.doi.org/10.1214/aop/1055425783 doi: 10.1214/aop/1055425783 |
[2] | X. Chen, Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise, Ann. Probab., 44 (2016), 1535–1598. http://dx.doi.org/10.1214/15-AOP1006 doi: 10.1214/15-AOP1006 |
[3] | Y. Hu, D. Nualart, J. Song, Feynman-Kac formula for heat equation driven by fractional white noise, Ann. Probab., 39 (2011), 291–326. http://dx.doi.org/10.1214/10-AOP547 doi: 10.1214/10-AOP547 |
[4] | B. Duplantier, R. Rhodes, S. Sheffield, V. Vargas, Renormalization of critical Gaussian multiplicative chaos and KPZ relation, Commun. Math. Phys., 330 (2014), 283–330. http://dx.doi.org/10.1007/s00220-014-2000-6 doi: 10.1007/s00220-014-2000-6 |
[5] | T. Madaule, Maximum of a log-correlated Gaussian field, Ann. Inst. H. Poincaré Probab. Statist., 51 (2015), 1369–1431. http://dx.doi.org/10.1214/14-AIHP633 doi: 10.1214/14-AIHP633 |
[6] | L. Bertini, G. Giacomin, Stochastic Burgers and KPZ equations from particle systems, Commun. Math. Phys., 183 (1997), 571–607. https://doi.org/10.1007/s002200050044 doi: 10.1007/s002200050044 |
[7] | G. Amir, I. Corwin, J. Quastel, Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions, Comm. Pure Appl. Math., 64 (2011), 466–537. https://doi.org/10.1002/cpa.20347 doi: 10.1002/cpa.20347 |
[8] | L. Chen, R. C. Dalang, Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions, Ann. Probab., 43 (2015), 3006–3051. https://doi.org/10.1214/14-AOP954 doi: 10.1214/14-AOP954 |
[9] | R. M. Balan, L. Quer-Sardanyons, J. Song, Hölder continuity for the parabolic Anderson model with space-time homogeneous Gaussian noise, Acta Math. Sci., 39 (2019), 717–730. https://doi.org/10.1007/s10473-019-0306-3 doi: 10.1007/s10473-019-0306-3 |
[10] | R. Balan, L. Chen, Parabolic Anderson model with space-time homogeneous Gaussian noise and rough initial condition, J. Theor. Probab., 31 (2018), 2216–2265. http://dx.doi.org/10.1007/s10959-017-0772-2 doi: 10.1007/s10959-017-0772-2 |
[11] | R. Balan, L. Chen, Y. Ma, Parabolic Anderson model with rough noise in space and rough initial conditions, Electron. Commun. Probab., 27 (2022), 1–12. http://dx.doi.org/10.1214/22-ECP506 doi: 10.1214/22-ECP506 |
[12] | L. Chen, R. Dalang, Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions, Stoch. PDE: Anal. Comp., 2 (2014), 316–352. http://dx.doi.org/10.1007/s40072-014-0034-6 doi: 10.1007/s40072-014-0034-6 |
[13] | L. Chen, K. Kim, Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency, Acta Math. Sci., 39 (2019), 645–668. https://doi.org/10.1007/s10473-019-0303-6 doi: 10.1007/s10473-019-0303-6 |
[14] | L. Chen, R. C. Dalang, Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation, Stoch. PDE: Anal. Comp., 3 (2015), 360–397. https://doi.org/10.1007/s40072-015-0054-x doi: 10.1007/s40072-015-0054-x |
[15] | L. Chen, J. Huang, Comparison principle for stochastic heat equation on $\mathbb{R}^d$, Ann. Probab., 47 (2019), 989–1035. https://doi.org/10.1214/18-AOP1277 doi: 10.1214/18-AOP1277 |
[16] | Y. Hu, J. Huang, D. Nualart, S. Tindel, Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency, Electron. J. Probab., 20 (2015), 1–50. http://dx.doi.org/10.1214/EJP.v20-3316 doi: 10.1214/EJP.v20-3316 |
[17] | Y. Lyu, Spatial asymptotics for the Feynman-Kac formulas driven by time-dependent and space-fractional rough Gaussian fields with the measure-valued initial data, Stochastic Process. Appl., 143 (2022), 106–159. http://dx.doi.org/10.1016/j.spa.2021.10.003 doi: 10.1016/j.spa.2021.10.003 |
[18] | Y. Lyu, H. Li, Almost surely time-space intermittency for the parabolic Anderson model with a log-correlated Gaussian field, Acta Math. Sci., 43 (2023), 608–639. http://dx.doi.org/10.1007/s10473-023-0209-1 doi: 10.1007/s10473-023-0209-1 |
[19] | M. Gubinelli, N. Perkowski, KPZ reloaded, Commun. Math. Phys., 349 (2017), 165–269. http://dx.doi.org/10.1007/s00220-016-2788-3 doi: 10.1007/s00220-016-2788-3 |
[20] | N. Perkowski, SPDEs, classical and new, Freie Universität Berlin, 2020. |
[21] | L. Chen, Y. Hu, D. Nualart, Two-point correlation function and Feynman-Kac formula for the stochastic heat equation, Potential Anal., 46 (2017), 779–797. https://doi.org/10.1007/s11118-016-9601-y doi: 10.1007/s11118-016-9601-y |
[22] | J. Huang, K. Lê, D. Nualart, Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise, Ann. Inst. Henri. Poincar. Probab. Stat., 53 (2017), 1305–1340. http://dx.doi.org/10.1214/16-AIHP756 doi: 10.1214/16-AIHP756 |
[23] | M. I. Gelfand, N. Ya. Vilenkin, Applications of harmonic analysis, Academic Press, 1964. https://doi.org/10.1016/C2013-0-12221-0 |