A central arrangement $ \cal{A} $ was termed free if the module of $ \cal{A} $-derivations was a free module. The combinatorial structure of arrangements was heavily influenced by the freeness. Yet, there has been scarce exploration into the construction of their bases. In this paper, we constructed the explicit bases for a class of free arrangements that positioned between the cone of Linial arrangements and Shi arrangements.
Citation: Meihui Jiang, Ruimei Gao. A basis construction for free arrangements between Linial arrangements and Shi arrangements[J]. AIMS Mathematics, 2024, 9(12): 34827-34837. doi: 10.3934/math.20241658
A central arrangement $ \cal{A} $ was termed free if the module of $ \cal{A} $-derivations was a free module. The combinatorial structure of arrangements was heavily influenced by the freeness. Yet, there has been scarce exploration into the construction of their bases. In this paper, we constructed the explicit bases for a class of free arrangements that positioned between the cone of Linial arrangements and Shi arrangements.
[1] | T. Abe, Divisionally free arrangements of hyperplanes, Invent. Math., 204 (2016), 317–346. http://dx.doi.org/10.1007/s00222-015-0615-7 doi: 10.1007/s00222-015-0615-7 |
[2] | T. Abe, D. Suyama, A basis construction of the extended Catalan and Shi arrangements of the type $A_2$, J. Algebra, 493 (2018), 20–35. http://dx.doi.org/10.1016/j.jalgebra.2017.09.024 doi: 10.1016/j.jalgebra.2017.09.024 |
[3] | T. Abe, H. Terao, The freeness of Shi-Catalan arrangements, Eur. J. Combin., 32 (2011), 1191–1198. http://dx.doi.org/10.1016/j.ejc.2011.06.005 doi: 10.1016/j.ejc.2011.06.005 |
[4] | T. Abe, H. Terao, Free filtrations of affine Weyl arrangements and the ideal-Shi arrangements, J. Algebr. Comb., 43 (2016), 33–44. http://dx.doi.org/10.1007/s10801-015-0624-z doi: 10.1007/s10801-015-0624-z |
[5] | M. Feigin, Z. Wang, M. Yoshinaga, Integral expressions for derivations of multiarrangements, arXiv: 2309.01287. http://dx.doi.org/10.48550/arXiv.2309.01287 |
[6] | R. Gao, D. Pei, H. Terao, The Shi arrangement of the type $D_\ell$, Proc. Japan Acad. Ser. A Math. Sci., 88 (2012), 41–45. http://dx.doi.org/10.3792/pjaa.88.41 doi: 10.3792/pjaa.88.41 |
[7] | P. Orlik, H. Terao, Arrangements of hyperplanes, Berlin: Springer-Verlag, 1992. http://dx.doi.org/10.1007/978-3-662-02772-1 |
[8] | K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 265–291. |
[9] | J. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Berlin: Springer-Verlag, 2006. http://dx.doi.org/10.1007/BFb0074968 |
[10] | D. Suyama, A basis construction for the Shi arrangement of the type $B_\ell$ or $C_\ell$, Commun. Algebra, 43 (2015), 1435–1448. http://dx.doi.org/10.1080/00927872.2013.865051 doi: 10.1080/00927872.2013.865051 |
[11] | D. Suyama, H. Terao, The Shi arrangements and the Bernoulli polynomials, Bull. Lond. Math. Soc., 44 (2012), 563–570. http://dx.doi.org/10.1112/blms/bdr118 doi: 10.1112/blms/bdr118 |
[12] | D. Suyama, M. Yoshinaga, The primitive derivation and discrete integrals, SIGMA, 17 (2021), 038. http://dx.doi.org/10.3842/sigma.2021.038 doi: 10.3842/sigma.2021.038 |
[13] | H. Terao, Multiderivations of Coxeter arrangements, Invent. Math., 148 (2002), 659–674. http://dx.doi.org/10.1007/s002220100209 doi: 10.1007/s002220100209 |
[14] | Z. Wang, G. Jiang, Free subarrangements of Shi arrangements, Graph. Combinator., 38 (2022), 59. http://dx.doi.org/10.1007/s00373-021-02399-2 doi: 10.1007/s00373-021-02399-2 |
[15] | M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math., 157 (2004), 449–454. http://dx.doi.org/10.1007/s00222-004-0359-2 doi: 10.1007/s00222-004-0359-2 |