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Abstract: A central arrangement A was termed free if the module of A-derivations was a free module.
The combinatorial structure of arrangements was heavily influenced by the freeness. Yet, there has
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1. Introduction

Let V be an {-dimensional vector space over a field K of characteristic 0. An arrangement of
hyperplanes A is a finite collection of codimension one affine subspaces in V. An arrangement (A is
called central if every hyperplane H € A goes through the origin.

Let V* be the dual space of V, and § = §(V*) be the symmetric algebra over V*. A K-linear map
6:S — § is called a derivation if for f,g € S,

0(fg) = f0(g)+g0(f).
Let Derg (S) be the S-module of derivations. When A is central, for each H € A, choose ay € V*
with ker(ay) = H. Define an S -submodule of Dery (S ), called the module of A-derivations by
D(A) :={0 € Derg (S) |0 (ay) € ayS forall H € A}.

The arrangement A is called free if D (A) is a free S -module. Then, D (A) has a basis comprising of
¢ homogeneous elements. For an affine arrangement A in V, ¢A denotes the cone over (A [7], which
is a central arrangement in an (£ + 1)-dimensional vector space by adding the new coordinate z.


https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.20241658

34828

Let E = R be an ¢-dimensional Euclidean space with a coordinate system xi, ..., x;, and let ® be
a crystallographic irreducible root system in the dual space E*. Let ®* be a positive system of ®@. For
a € ®* and k € Z, define an affine hyperplane H, ; by

Hyy:={veE|(a,v) =k}.

The Shi arrangement Shi (£) was introduced by Shi in the study of the Kazhdan-Lusztig representation
theory of the affine Weyl groups in [9] by

Shi(€) := {Hyy |@ € ®*,0 < k < 1},

when the root system is of type A,_;.
For m € Zs, the extended Shi arrangement Shi* of the type @ is an affine arrangement defined by

Shi* := (H,i |a € @, —m+ 1 <k < m).

There are a lot of researches on the freeness of the cones over the extended Shi arrangements [1,3,4].
The first breakthrough was the proof of the freeness of multi-Coxeter arrangements with constant
multiplicities by Terao in [13]. Combining it with algebro-geometric method, Yoshinaga proved the
freeness of the extended Shi arrangements in [15]. Nevertheless, there has been limited progress in
constructing their bases, and a universal method for determining these bases remains elusive. For
types A,_1, By, Cy, and Dy, explicit bases for the cones over the Shi arrangements were constructed
in [6, 10, 11]. Notably, a basis for the extended Shi arrangements of type A, was established in [2].
Recently, Suyama and Yoshinaga constructed explicit bases for the extended Shi arrangements of type
A, using discrete integrals in [12]. Feigin et al. presented integral expressions for specific bases of
certain multiarrangements in [5]. In these studies, Suyama and Terao first constructed a basis for the
derivation module of the cone over the Shi arrangement, as detailed in [11], with Bernoulli polynomials
playing a central role in their approach. The following definitions are pertinent to this result.
For (k, k) € (ZZO)Z, the homogenization polynomial of degree k; + k, + 1 is defined by

1 k X
By (x,2) 1= 2 Z m( | ){B'Q“‘“ (2)- e},
2

where By (x) denotes the k-th Bernoulli polynomial and By (0) = By denotes the k-th Bernoulli number.
Using this polynomial, the basis for 9 (¢Shi (£)) was constructed as follows.

Theorem 1.1. [/, Theorem 3.5] The arrangement cShi ({) is free with the exponents (O, 1,0 H). The
homogeneous derivations

m = 81 +82+~-+0{»,

n = Xlal + x282 +---+ Xgag + z@z,

@ ._ ki +k k -
o= (x5 = X - Z D, ORI B (30.2) O
i=1 O<ki<j-1
0<ky<t—j-1
form a basis for D (cShi (£)), where 1 < j<{—1and d;(1 <i <), 0, denote 2 o ,— respectively. I[u .
represents the elementary symmetric function in the variables {x,, x,.1, ..., X,} of degree kforl <u<

v <4
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The above conclusion was reached by using Saito’s criterion, which is a crucial theorem for
determining the basis of a free arrangement.

Theorem 1.2. [8, Saito’s criterion] Let A be a central arrangement, and Q (A) be the defining
polynomial of A. Given 0y, ...,0; € D (A), the following two conditions are equivalent:

(1) detM (64, ...,6,) = Q(A),

(2) 6y,...,6; form a basis for D (A) over S,
where M (6,,...,0;) = (Gj (x,-))M denotes the coefficient matrix, and A = B means that A = cB,
c € K\ {0}.

This theorem provides a useful tool for determining when a set of derivations forms a basis for the
module of derivations associated with a central arrangement.

Leta, =(1,...,1)" and B; = (x1,...,x,)" be the £ x 1 column vectors, and define lpf? = 1&5.‘7) (x;)
for]1 <i<{, 1< j<{-1.Suyuma and Terao in [11] proved the equality

ar B (v))
detM (7]1, n2, l//(f), N (;_)1) = det LI Jex(t-1) =z 1—[ (.Xm - xn)(xm - Xy — Z)’
0 < le(f—l) L+ Dx(€+1) 1<m<n<(
which yields
¢ .
det (af (wfg J?)W_D) = ]—[ (X = %) (X — Xy — 2). (1.1)

1<m<n<¢

A graph G = (V,E) is defined as an ordered pair, where the set V = {1,2,...,{} represents the
vertex set, and E is a collection of two-element subsets of V. If {i, j} € E for some i, j € V, then
{i, j} is referred to as an edge. Writing {i, j} € G implies {i, j} € E. Let U C V, and define E (U) =
i, j}1i,je€ Ui, j} € E}. We say U induces a subgraph Gy, = (U, E (U)). Specifically, we use the
symbol Ky for the induced subgraph of the complete graph K,. For i < j, the interval notation [i, j]
represents {i,i + 1,..., j}.

For a graph G on the vertex set {1,2, ..., ¢}, the arrangement Shi (G) was defined in [14] by

Shi(G) ={{xp, —x, =0} [{m,n} e GYU{{x,, —x, = 1}|[1 Km<n<{}.
Then, Shi (G) is an arrangement between the Linial arrangement
Ux,—x, =1} |1 <m<n<{},

and the Shi arrangement Shi (£). Write A (G) := ¢Shi (G). It was classified to be free according to the
following theorem.

Theorem 1.3. [14, Theorem 3] The arrangement A (G) is free if and only if G consists of all edges of
three complete induced subgraphs Gy, 5, G0, Gio,c-1, where 1 < s < L, t < s+1. The free arrangement
A (G) has exponents (0, 1, (€ - 1)Hs2 fs"“)for s<Candt> 1, and (O, 1, f‘)‘l)for s=Cort=1.

For s,t € Z*, we may define the arrangement
Als,t]i= AKpe) Ul —x, =0} [2<n<s < U{x, —x, =0} |1 <t <m< -1}

By Theorem 1.3, for 1 < s < { and t < s + 1, the arrangement A [s, 7] is free with exponents
(0.1, = )= 1) for s < Land ¢ > 1, and (0, 1,£7") for s = Lort = 1.

For 0 < g < ¢ -2, we write Alq] := A[€—-1,{—q], then A|q] is free with exponents
(0,1, (£ - 1y, £9).
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2. Main results

In this section, based on the conclusions of Suyama and Terao, we provide an explicit construction
of the basis for D (A[q]), 0 < g < € — 2. First, we shall establish a basis for D (A [0]), which is the
ingredient of the basis for D (A [q]).

Theorem 2.1. For 1 < j < { — 2, define homogeneous derivations

905‘0) =T Z Z (_1)kl+kzlflkzl 1]IE/+12];2 1 By (3> 2) 0,
0<k; <j-1 |
0<ky<t—j-2
-1

¢ = | = xe -0, € DALOD,

s=1

where

{xi, l<i<t-1,
yi = .
x+z, i=¢.

Then, the derivations ny, 1, go(lm, cees 9020)1 form a basis for D (A[0]).

Proof. Write 905,0) = goio) (x),1<i<?{ 1< j<{-1,and from the definitions of 4,05.0) and 1,//5.[), we can
get
o) =y, @.1)

forl <i<¢-1,1< j<¢-2. Consequently, for | <m < n < {—1, it follows that cp§0) (X — x,)
is divisible by x,, — x,, and ¢ (x,, — x, — 2) is divisible by x,, — x, —z. For 1 < m < £ — 1, let the

5

. (mk) . .
congruence notation =" in the subsequent calculation denote modulo the ideal (x,, — x, — kz) . We
derive

(m, l)

905.0) Xy —X¢—2) = (xj — Xji1 — z) Z (—l)k“rkzlfllj1 1]1612];2 1 [B/q ks (Xm> 2) = By iy (X + 2, Z)] = 0,

0<k;<j-1
0<hkpy<t—j-2

which implies that ¢ (x,, — x, — z) is divisible by x,, — x, — z. Thus, ¢ € D (A[0]) for 1 < j < £-2.
Therefore, we have 7y, 17, 90(10), e, 9020)1 € D (A[0]). Additionally, we obtain

detM (171, n, (,0(10), e (,020)1)

) )
1 ‘:011 9"152 0
= (=D *'zdet] 1 © ) :
(=1)" zde 1()0 Dl Petea B 0
1 (péol) QOE»OE 2 [T(xs—xe—2)
s=1 0
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0) 0)
-1 L e, 901[2

= (-D"'z[ ] oo = xe = 2) det SR
=1 (0) (0)
N 1 (’0[_1’1 e 90[ L2 - Dx(e-1)
-1
0
= (—1)€+1Z l_[ (Xs — Xy — Z) det( Q1 (<pl(’J)
s=1

)(13:’35—1,13;’36—2) )(f_l)x([_l)'

According to the equalities (1.1) and (2.1), we have

(0) .
det( -1 ("Di,j )(131‘35—1,13]5[—2) ) = l_[ (X = X)) (X = X = 2)-

1<m<n<t-1

Hence, we obtain

0 0
detM (771,772,90(1 ), e ’905’ )1)

-1
ﬁzl_[(xs—X[—Z) l_[ (xm_xn)(xm_xn_z)
s=1

s= 1<m<n<(-1
=z 1—[ (-xm_xn) n (-xm_-xn_z)
1<m<n<l-1 1<m<n<{(
= Q(A[0]).
By applying Theorem 1.2, we conclude that the derivations 171,772,90(10),...,90(0) form a basis for
D (AL0]). ]

Definition 2.1. For 1 < g <{¢-2, 1< j<{-1, define the homogeneous derivations
0

‘)Oja IS]Sf—q—Z,
j-1
(Xj+l_X€) ( —x]+1—z) [Z 1(,09, {—qg—-1<j<{-3,
()O(g) = 0 j ) a=t-q—
/ oo+ (t—a-1)¢), j=t-2,
a=l—q-1
j-2
(3 = x) @) + () = xj01 =) L (t-a-2¢)  j=l-1
a=l—q—

To prove the derivations 7, 1,, go(f), e ,goi,q)l form a basis for D (A[q]), first we prove all such

derivations belong to the module D (A [q]).

Theorem 2.2. For 1 <m<{-1,1< j<{-2, we have

60 o= 20)"E (=2 (3 = 2 2 1_[ (% = Xp = 2) l—[ (% = Xpn). (2.2)

s=j+2

Proof. We have the following congruence relation of polynomials modulo the ideal (x,, — x/) .

QO§O) (Xm _ )Cg) — (xj — Xjr1 — Z) Z (_1)k1+k2[f1]jl 1][612/;2 1] [qu Ko (xm,z) Bkl,k2 ()C[ + Z, Z)]

0<k;<j-1
0<kp<t—j-2
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(m.0) ki+ka+1 pj—ki=1 yl—j—ko—
0<k1<j-1
0<ky<t—j-2

ko
_ v, _ _ ki+ko+1 yj—ki—=1 yt—j—kr=2 ki+ky+1 xm+Z _m
—(x] Lyl Z) Z =D 1[1] 1]I[j+2f 1° ( z z
0<ki<j-1

0<ky<t—j-2

j-1 (—j-2

= (- Z)( — Xj41 — )Z[Elkl ][ (x, +Z)]k1 Z [f :2/;21 (- xm)kz

= (-2 (x; = xju1 - 2 ]_[(xs—xm—a ]—[ (X, = ).

s=j+2

We complete the proof. O

-1
Remark 2.1. In equality (2.2), we observe that [| (xy — x,,) =0 for j+2 <m < € — 1. This implies
s=j+2

(O)(xm—x{)isdivisiblebyxm—x[forlSij—3andj+2£m£€—1.

that ¢

According to Remark 2.1, for 1 < j < £ — g — 2, we have 905.0) (x,, — x¢) 1s divisible by x,, — x, for
{ —qg < m < ¢—1, which implies that 905. = 9050) € D(Alq]). Therefore, to prove the derivations

belong to the module D (A [q]), it suffices to prove ¢§.q) eD(Alg])fort—g-1<j<t-1.
For the sake of convenience in the proof, let us introduce the notations for f, g, h € Z*,

h h
A][cg’h] = n (xs - xf), Bg.g’h] = n (xs - Xy — z).

s=g s=g

If g > h, we agree that AEg’h] = B][cg’h] =1.

Lemma 2.1. For any u,v,w € Z* that satisfy4 < {—j+1 <u<{-2,3<v<{-2,and3 <w < {-2,
we have the following three equalities:

{—u,j—1 € u+l, a+2, u,a
Bl = A § (= -0 Al e 23
a={—u
-2

BI T =0+ DA 4 Y (C—a= D (=X — D ALZTIB 24

{—v-1 {—v—1
a={—v—1

-3
—w, (-2 {—w, (-2 2,6-2 {—w—1,a—1
B = wAl e N (- a-2) (4 — X — ) ALY, 2.5)
£ 1

Proof. We will only prove equality (2.5) by induction on w. The proofs of equalities (2.3) and (2.4)
are similar. For w = 3,

-3
a=t-4
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= 3(x¢-3 — Xp—a)(Xp—2 — Xp—4) + 2(Xp—s — Xp-3 — 2)(Xp—2 — Xp-4) + (Xp—3 — Xp—2 — 2)(=2)

= (X¢—3 — Xp—4 — 2)(Xp—2 — Xp—a — 2)
_ plt-3.6-2]
- Be—4

9

and the equality holds. Assume that for w = k < £ — 3, the equality holds. Then, we replace x,_,_; with
X¢_k—2, and multiply both sides of the equality by (x;_x_1 — x,x—2 — 2) to get

[6—k—1,0-2] _ [6—k+1,6-2] [6—k,(-2]
Bg_k_z = (k= 1) (xXpor2 — Xe—k — 2) (Xppo1 — Xpp2 — 2) Ag_k_z +k(Xek-1 — Xpk—2 — 2) Ag_k_z
-3
2,6-2]p[0~k-2,a-1
+ Z (£ —a—2) (X, = X1 — 7) Al22IBLk2al]
a=0-k
=3
[6—k—1,6-2] [a+2,6-2] g [6~k—2,a~1]
= e+ DAL e 3T (0= a=2) (i = xan — D ARZEIBE N,
a=t—k=2
We have completed the induction. m|

Lemma 2.2. The derivation ¢§q) belongs to the module D (A|q]) for2 <g<t-2andt-q-1<j<
- 3.
Proof. For2 < g<{-2and j={-gq—1,itis evident from Remark 2.1 that

QD([Z)q_] = (xf—q - -xt’) 902(1)11—1 €D (ﬂ [q]) .

For3<g<{-2and{—-q < j < {-3, we will establish this by induction on g. From Theorem 2.2,
forl—qg<m<{-1, we have

j-1
0 0
O (= x0) = (X010 = x0) @ (0 = x0) = (%) = 01 = 2) @ (X = X¢)
a=0-q—-1
j-1
(m,0) j+1,6-1 1,6—q-2 {—g-1,j-1 a+2,j {—g—1,a-1
2 (<) (x) = a1 — 2) A BL gLt N - Al Bl e
a={—q-1

(1) For g = 3, we get

3 0)

(m (=2,0-11R[1,6-5
@ o = x0) = (=2) (-3 — Xpa — ) Al TUIBL T (s — x0)

If m = €—3,0-2,¢—1, then we have ¢, (x,, — x,) "= 0, which indicates that ¢, (x,, — x,) is divisible
by X — x; form = £ = 3,£ = 2,£ — 1. Therefore, ¢ € D (A[3]).

(2) For g = k < £ -3, assume that ¢ € D (A[k]), which implies that ¢’ (x,, — x,) is divisible by
Xp—xpfor{—k<m<€-1.

For g = k + 1, we observe that

(k+1) k)

0
¥; =9 o

(Xj = Xju1 = 2@y -

According to the induction hypothesis and Remark 2.1, it is sufficient to prove that
@V (xp_i1 — x¢) is divisible by x,_-; — x;. By using the equality (2.3), we obtain

k+1
905- - (X1 — X¢)

AIMS Mathematics Volume 9, Issue 12, 34827-34837.
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j-1
szjl] [a+2.] 5 [6~k-2,a-11
gkl Z (xa_xa+l_Z)Agk1ng1
a=0—k-2
[a+2.7] o [e=k,a-1]
A B, o

t’ k+l]
Z (Xa — Xar1 — 2) —k—1

[¢-kj-1]
B/ e k-1
a=0—k

(-k=1,0 JHLE-T| o 11,0-k-3
= (Z)( '_xj+1_Z)A£[k1 ]ngl :

[j+1.6-1] 5 [1,0-k-2]
Al Bl

= (-2’ (xj — Xj+1 — Z)

=0.

Therefore, ga(.k”) (X¢—i—1 — X¢) is divisible by x,_;_; — x;, and it follows that <p(k+1) € DAk+1)

Consequently, we can conclude that forany3 <g<{-2and{—qg < j<{-3, 90(”) eD(Alq]). o
Lemma 2.3. The derivation go(q) belongs to the module D (A |q]) for 1 <qg <€ -2.

Proof. From Theorem 2.2, we can get the following equality for{ —g <m < ¢ -1

(-2
@y Con =) = @) (G = x)+ ) (L=a= D (o —x))
a=l—q-1
( 0) -2
B[]f 1] +( Z) Z ([ a— 1)(-xa Xasl _Z)A[a+2f I]B[la 1]
a=l—q-1

— Xx¢) 1s divisible

(1) For g = 1, 2, this conclusion is straightforward to verify.
(2) For ¢ = k < ¢ — 3, assume that ¢\, € D (A[k]), which implies that ¢\, (x,,

by x,, —xefor{ —k<m<{€-1.
For g = k + 1, we have
o) = o + (k+ D, .
By using the equality (2.4), we have
(k+1) (k2100 op1,e-11 S la+2,6-11[1a-1]
(i —x) = -BY (-0 ) (C—a— D= xa — ) ALRTIBI
a=t—k-2

L)
2
(C—a—-1)(x, — X441 — Z)AE,“ +2,0 I]Bt’[kk lla 1]]

-
_ pllLt-k-1] [6—k,t—1] [(—k,t—1]
- B{’—k—l [ Bf k—1 + (k + 1)IA{’—k—l +
a={—k—1

€ D(Alk + 1]). Hence, we may conclude that forany 1 < g < ¢ -2
|

Remark 2.1, we have ¢"

Y e D(Alq)).

=0.
Therefore, ¢, ) (x¢—g—1 — x¢) 1s divisible by x,_;_; — x;. According to the induction hypothesis and
Pe2

Lemma 2.4. The derivation go(q) belongs to the module D (A [q])for 1 <g<£-2

Proof. First, from Theorem 2.2, for £ — g < m < £ — 1, we can get
-3
(L =a=2)¢) (xn—x¢)

(xm_xf)"‘(xf | =X —2)
a=0—g-1

(X = x0) = (X1 = X0) @
Volume 9, Issue 12, 34827-34837.
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(-3
(m.0) 1.0-1 2.0-1p[la-1
= — (1 = ) BT+ () (o =X =) Y (€= a = 2) (% — Yot — 2) Al BLA,

a=l—q-1

(1) For g = 1,2, it is obvious that (pi,‘i)l e D(Alq)).
(2) For ¢ = k < ¢ — 3, assume that ¢, € D (A[k]), which implies that ¢\ (x,, — x,) is divisible
by x, —x,for{ —k<m < €-1.

For g = k + 1, we can see

k+1 k 0
901(9_4—1 : = ‘10(5_)1 + k(x[—l - Xe— Z) ‘1057_)]{_2-

By using the equality (2.5), we have

k+1
90§_+1 )(xf—k—l — X¢)

-3
(~k=1,0) 1= 2.0-1]gglla-1
= = G = e DB (O —x =) ) (C—a=2) (g = Xan — ) AT TBL]
a=—k-2
16—k-1
= (xe1 = Xeop—1) (Xe1 — Xpop1 — 2) BL_k_l ]
-3
t-kl-2 k-2 2,621 [(—k-1a-1
_Bg’—k—l "+ kA[f—k—l "+ Z (6 =a—=2)(xa = Xar1 = 2) Ag’a—;—l ]Bg’—k—l -t
a={(—k-1

=0.

Therefore, goék_ﬁl) (X¢—g—1 — x¢) 1s divisible by x,—;_; — x;. According to the induction hypothesis and

Remark 2.1, we have t,ai,k_ﬁl) € D(Alk + 1]). Hence, we may conclude that forany 1 < g < € -2,

¢, € D(Alg)). o
From the above proof, we finally conclude that <p(q) - ,<p§,q_)1 belong to the module D (A [¢]).

1 9
Theorem 2.3. For 1 < g < { — 2, the derivations 1y, s, go(lq), ce (pi,q_)l form a basis for D (A[q]).

Proof. According to Lemmas 2.2-2.4, it suffices to prove that

detM(nl’ 2, 90(1q)’ e ,(p;q_)l) = Q(\ﬂ [CI]) .
Let
71 :(q’q_ 1""71’1)T
and
y2=((q=1) oy = X0 —2),(q = 2) (Xpo1 = Xp = 2) v s Xeot = Xp — 2,0, %,y — x0)"

be the (¢ + 1) X 1 column vectors, and define a matrix

Xe—qg — X — (x[—q = Xp—g+1 — Z) o = (X3 — X2 —2)
0 Xe—g+1 — X¢ o = (X3 — X2 —2)
M =
(g+Dx(g—1) 0 0 o Yo — X;
0 0 ... 0
0 0 ... 0

AIMS Mathematics Volume 9, Issue 12, 34827-34837.
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Write M(y41yx(g+1):= (M(q+l)><(q—l)’ Y1 72), then

-1
det Mg 1yx(g+1) = l_[ (x5 = Xx¢).
s={—q
Thus, we obtain the following equality
E, Oc—
@ . @ _ N () t=q Yie-gxg+n |
(771’ 772’ ()01 9 ’¢€_1)(€+1)X(5+1) (nl’ 7]29 QOI ’ ")05_1)( 0(q+1)><([_q) M(q+1)><(q+1)

Hence,

detM (n] s 112, ‘p(lq)a R Qo(g‘i)l)

= det M (11,72, 6" . ¢, ) det Miguipuigen)

-1
=z l_[ (X = Xn) l—[ (X = Xn = 2) l—[ (x5 = x¢)
1<m<n<-1 1<m<n<{ s=l—q

= 0(Alql).

We complete the proof. O
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