The main purpose of this study was to produce abundant new types of soliton solutions for the Radhakrishnan-Kundu-Lakshmanan equation that represents unstable optical solitons that emerge from optical propagations through the use of birefringent fibers. These new types of soliton solutions have behaviors that are bright, dark, W-shaped, M-shaped, periodic trigonometric, and hyperbolic and were not realized before by any other method. These new forms have been detected by using four different techniques, which are, the extended simple equation method, the Paul-Painlevé approach method, the Ricatti-Bernoulli-sub ODE, and the solitary wave ansatz method. These new solitons will be arranged to create a soliton catalog with new impressive behaviors and they will contribute to future studies not only for this model but also for the optical propagations through birefringent fiber.
Citation: Emad H. M. Zahran, Omar Abu Arqub, Ahmet Bekir, Marwan Abukhaled. New diverse types of soliton solutions to the Radhakrishnan-Kundu-Lakshmanan equation[J]. AIMS Mathematics, 2023, 8(4): 8985-9008. doi: 10.3934/math.2023450
The main purpose of this study was to produce abundant new types of soliton solutions for the Radhakrishnan-Kundu-Lakshmanan equation that represents unstable optical solitons that emerge from optical propagations through the use of birefringent fibers. These new types of soliton solutions have behaviors that are bright, dark, W-shaped, M-shaped, periodic trigonometric, and hyperbolic and were not realized before by any other method. These new forms have been detected by using four different techniques, which are, the extended simple equation method, the Paul-Painlevé approach method, the Ricatti-Bernoulli-sub ODE, and the solitary wave ansatz method. These new solitons will be arranged to create a soliton catalog with new impressive behaviors and they will contribute to future studies not only for this model but also for the optical propagations through birefringent fiber.
[1] | A. Bekir, E. H. M. Zahran, Bright and dark soliton solutions for the complex Kundu-Eckhaus equation, Optik, 223 (2020), 165233. https://doi.org/10.1016/j.ijleo.2020.165233 doi: 10.1016/j.ijleo.2020.165233 |
[2] | A. Bekir, E. H. M. Zahran, Three distinct and impressive visions for the soliton solutions to the higher-order nonlinear Schrö dinger equation, Optik, 228 (2021), 166157. https://doi.org/10.1016/j.ijleo.2020.166157 doi: 10.1016/j.ijleo.2020.166157 |
[3] | A. Bekir, E. H. M. Zahran, New vision for the soliton solutions to the complex Hirota-dynamical model, Phys. Scripta, 96 (2021), 055212. https://doi.org/10.1088/1402-4896/abe889 doi: 10.1088/1402-4896/abe889 |
[4] | A. Biswas, 1-soliton solution of the K (m, n) equation with generalized evolution, Phys. Lett. A, 372 (2008), 4601–4602. https://doi.org/10.1016/j.physleta.2008.05.002 doi: 10.1016/j.physleta.2008.05.002 |
[5] | H. Triki, A. M. Wazwaz, Bright and dark soliton solutions for a K (m, n) equation with t-dependent coefficients, Phys. Lett. A, 373 (2009), 2162–2165. https://doi.org/10.1016/j.physleta.2009.04.029 doi: 10.1016/j.physleta.2009.04.029 |
[6] | H. Triki, A. M. Wazwaz, Bright and dark solitons for a generalized Korteweg-de Vries-modified Korteweg-de Vries equation with high-order nonlinear terms and time-dependent coefficients, Can. J. Phys., 89 (2011), 253–259. https://doi.org/10.1139/P11-015 doi: 10.1139/P11-015 |
[7] | N. A. Kudryashov, The Painlevé approach for finding solitary wave solutions of nonlinear non-integrable differential equations, Optik, 183 (2019), 642–649. https://doi.org/10.1016/j.ijleo.2019.02.087 doi: 10.1016/j.ijleo.2019.02.087 |
[8] | A. Bekir, E. H. M. Zahran, Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach, Opt. Quantum Electron., 53 (2021), 118. https://doi.org/10.1007/s11082-021-02754-w doi: 10.1007/s11082-021-02754-w |
[9] | A. Bekir, E. H. M. Zahran, Painlevé approach and its applications to get new exact solutions of three biological models instead of its numerical solutions, Int. J. Mod. Phys. B, 34 (2020), 2050270. https://doi.org/10.1142/S0217979220502707 doi: 10.1142/S0217979220502707 |
[10] | A. Bekir, E. H. M. Zahran, New visions of the soliton solutions to the modified nonlinear Schrodinger equation, Optik, 232 (2021), 166539. https://doi.org/10.1016/j.ijleo.2021.166539 doi: 10.1016/j.ijleo.2021.166539 |
[11] | M. S. M. Shehata, H. Rezazadeh, E. H. M. Zahran, E. Tala-Tebue, A. Bekir, New optical soliton solutions of the perturbed Fokas-Lenells equation, Commun. Theor. Phys., 71 (2019), 1275c1280. https://doi.org/10.1088/0253-6102/71/11/1275 doi: 10.1088/0253-6102/71/11/1275 |
[12] | A. Bekir, E. H. M. Zahran, New multiple-different impressive perceptions for the solitary solution to the magneto-optic waveguides with anti-cubic nonlinearity, Optik, 240 (2021), 166939. https://doi.org/10.1016/j.ijleo.2021.166939 doi: 10.1016/j.ijleo.2021.166939 |
[13] | A. Biswas, Y. Yildirim, E. Yasar, M. F. Mahmood, A. S. Alshomrani, Q. Zhou, et al., Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes, Optik, 163 (2018), 126–136. https://doi.org/10.1016/j.ijleo.2018.02.109 |
[14] | N. A. Kudryashov, D. V. Safonova, A. Biswas, Painleve analysis and a solution to the traveling wave reduction of the Radhakrishnan-Kundu-Lakshmanan equation, Regul. Chaotic Dyn., 24 (2019), 607–614. https://doi.org/10.1134/S1560354719060029 doi: 10.1134/S1560354719060029 |
[15] | H. U. Rehman, M. S. Saleem, A. M. Sultan, M. Iftikhar, Comments on dynamics of optical solitons with Radhakrishnan-Kundu-Lakshmanan model via two reliable integration schemes, Optik, 178 (2019), 557–566. https://doi.org/10.1016/j.ijleo.2018.12.010 doi: 10.1016/j.ijleo.2018.12.010 |
[16] | T. A. Sulaiman, H. Bulut, G. Yel, S. S. Atas, Optical solitons to the fractional perturbed Radhakrishnan-Kundu-Lakshmanan model, Opt. Quant. Electron., 50 (2018), 372. https://doi.org/10.1007/s11082-018-1641-7 doi: 10.1007/s11082-018-1641-7 |
[17] | B. Sturdevant, D. A. Lott, A. Biswas, Topological 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation with nonlinear dispersion, Mod. Phys. Lett. B, 24 (2010), 1825–1831. https://doi.org/10.1142/S0217984910024109 doi: 10.1142/S0217984910024109 |
[18] | S. Arshed, A. Biswas, P. Guggilla, A. S. Alshomrani, Optical solitons for Radhakrishnan-Kundu-Lakshmanan equation with full nonlinearity, Phys. Lett. A, 384 (2020), 126191. https://doi.org/10.1016/j.physleta.2019.126191 doi: 10.1016/j.physleta.2019.126191 |
[19] | A. Bansal, A. Biswas, M. F. Mahmood, Q. Zhou, M. Mirzazadeh, A. S. Alshomrani, et al., Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by Lie group analysis, Optik, 163 (2018), 137–141. https://doi.org/10.1016/j.ijleo.2018.02.104 |
[20] | A. Biswas, 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation, Phys. Lett. A, 373 (2009), 2546–2548. https://doi.org/10.1016/j.physleta.2009.05.010 doi: 10.1016/j.physleta.2009.05.010 |
[21] | A. Biswas, Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis, Optik, 171 (2018), 217–220. https://doi.org/10.1016/j.ijleo.2018.06.043 doi: 10.1016/j.ijleo.2018.06.043 |
[22] | A. Biswas, M. Ekici, A. Sonmezoglu, A. S. Alshomrani, Optical solitons with Radhakrishnan, Kundu, Lakshmanan equation by extended trial function scheme, Optik, 160 (2018), 415–427. https://doi.org/10.1016/j.ijleo.2018.02.017 doi: 10.1016/j.ijleo.2018.02.017 |
[23] | N. A. Kudryashov, The Radhakrishnan-Kundu-Lakshmanan equation with arbitrary refractive index and its exact solutions, Optik, 238 (2021), 166738. https://doi.org/10.1016/j.ijleo.2021.166738 doi: 10.1016/j.ijleo.2021.166738 |
[24] | D. D. Ganji, A. Asgari, Z. Z. Ganji, Exp-function based solution of nonlinear Radhakrishnan, Kundu and Laskshmanan (RKL) equation, Acta Appl. Math., 104 (2008), 201–209. https://doi.org/10.1007/s10440-008-9252-0 doi: 10.1007/s10440-008-9252-0 |
[25] | O. Gonzalez-Gaxiola, A. Biswas, Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by Laplace-Adomian decomposition method, Optik, 179 (2019), 434–442. https://doi.org/10.1016/j.ijleo.2018.10.173 doi: 10.1016/j.ijleo.2018.10.173 |
[26] | A. Neirameh, Soliton solutions modeling of generalized Radhakrishnan-Kundu-Lakshmanan equation, J. Appl. Phys., 8 (2018), 71–80. https://doi.org/10.22051/JAP.2019.21375.1099 doi: 10.22051/JAP.2019.21375.1099 |
[27] | S. S. Singh, Solutions of Kudryashov-Sinelshchikov equation and generalized Radhakrishnan-Kundu-Lakshmanan equation by the first integral method, Int. J. Phys. Res., 4 (2016), 37–42. https://doi.org/10.14419/ijpr.v4i2.6202 doi: 10.14419/ijpr.v4i2.6202 |
[28] | B. Ghanbari, J. F. Gómez-Aguilar, Optical soliton solutions for the nonlinear Radhakrishnan-Kundu-Lakshmanan equation, Mod. Phys. Lett. B, 33 (2019), 1950402. https://doi.org/10.1142/S0217984919504025 doi: 10.1142/S0217984919504025 |
[29] | S. Rehman, J. Ahmad, Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing, Alex. Eng. J., 60 (2021), 1339–1354. https://doi.org/10.1016/j.aej.2020.10.055 doi: 10.1016/j.aej.2020.10.055 |
[30] | Y. Yıldırım, A. Biswas, M. Ekici, H. Triki, O. Gonzalez-Gaxiol, A. K. Alzahrani, et al., Optical solitons in birefringent fibers for Radhakrishnan-Kundu-Lakshmanan equation with five prolific integration norms, Optik, 208 (2020), 164550. https://doi.org/10.1016/j.ijleo.2020.164550 doi: 10.1016/j.ijleo.2020.164550 |
[31] | Y. Yıldırım, A. Biswas, Q. Zhou, A. S. Alshomrani, M. R. Belic, Optical solitons in birefringentfibers for Radhakrishnan-Kundu-Lakshmanan equation with acouple of strategic integration architectures, Chin. J. Phys., 65 (2020), 341–354. https://doi.org/10.1016/j.cjph.2020.02.029 doi: 10.1016/j.cjph.2020.02.029 |
[32] | J. H. He, Exp-function method for fractional differential equations, Int. J. Nonlinear Sci. Numer. Simul., 14 (2013), 363–366. https://doi.org/10.1515/ijnsns-2011-0132 doi: 10.1515/ijnsns-2011-0132 |
[33] | Y. Tian, J. Liu, A modified exp-function method for fractional partial differential equations, Therm. Sci., 25 (2021), 1237–1241. https://doi.org/10.2298/TSCI200428017T doi: 10.2298/TSCI200428017T |
[34] | F. Y. Ji, C. H. He, J. J. Zhang, A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar, Appl. Math. Modell., 82 (2020) 437–448. https://doi.org/10.1016/j.apm.2020.01.027 doi: 10.1016/j.apm.2020.01.027 |
[35] | J. H. He, N. Qie, C. H. He, Solitary waves travelling along an unsmooth boundary, Results Phys., 24 (2021), 104104. https://doi.org/10.1016/j.rinp.2021.104104 doi: 10.1016/j.rinp.2021.104104 |
[36] | J. H. He, W. F. Hou, C. H. He, T. Saeed, T. Hayat, Variational approach to fractal solitary waves, Fractals, 29 (2021), 2150199. https://doi.org/10.1142/S0218348X21501991 doi: 10.1142/S0218348X21501991 |
[37] | C. X. Liu, Periodic solution of fractal Phi-4 equation, Therm. Sci., 25 (2021), 1345–1350 https://doi.org/10.2298/TSCI200502032L |
[38] | J. H. He, E. D. Yusry, Periodic property of the time-fractional Kundu-Mukherjee-Naskar equation, Results Phys., 19 (2020), 103345. https://doi.org/10.1016/j.rinp.2020.103345 doi: 10.1016/j.rinp.2020.103345 |
[39] | J. H. He, Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation, Results Phys., 17 (2020), 103031. https://doi.org/10.1016/j.rinp.2020.103031 doi: 10.1016/j.rinp.2020.103031 |
[40] | J. H. He, W. F. Hou, N. Qie, K. A. Gepreel, A. H. Shirazi, H. M. Sedighi, Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators, Facta Univ. Ser. Mech. Eng., 19 (2021), 199–208. https://doi.org/10.22190/FUME201205002H doi: 10.22190/FUME201205002H |
[41] | Y. Zhao, Y. B. Lei, Y. X. Xu, S. L. Xu, H. Triki, A. Biswas, et al., Vector spatiotemporal solitons and their memory features in cold rydberg gases, Chin. Phys. Lett., 39 (2022), 034202. https://doi.org/10.1088/0256-307X/39/3/034202 doi: 10.1088/0256-307X/39/3/034202 |
[42] | S. L. Xu, Y. B. Lei, J. T. Du, Y. Zhao, R. Hua, J. H. Zeng, Three-dimensional quantum droplets in spin-orbit-coupled Bose-Einstein condensates, Chaos Solitons Fract., 164 (2022), 112665. https://doi.org/10.1016/j.chaos.2022.112665 doi: 10.1016/j.chaos.2022.112665 |
[43] | K. Y. Huang, Y. Zhao, S. Q. Wu, S. L. Xu, M. R. Belic, B. A. Malomed, Quantum squeezing of vector slow-light solitons in a coherent atomic system, Chaos Solitons Fract., 163 (2022), 112557. https://doi.org/10.1016/j.chaos.2022.112557 doi: 10.1016/j.chaos.2022.112557 |
[44] | T. A. Nofal, Simple equation method for nonlinear partial differential equations and its applications, J. Egypt. Math. Soc., 24 (2016), 204–209. https://doi.org/10.1016/j.joems.2015.05.006 doi: 10.1016/j.joems.2015.05.006 |
[45] | N. A. Kudryashov, V. B. Loguinova, Extended simplest equation method for nonlinear differential equations, Appl. Math. Comput., 205 (2008), 396–402. https://doi.org/10.1016/j.amc.2008.08.019 doi: 10.1016/j.amc.2008.08.019 |
[46] | Y. L. Ma, C. B. Li, Q. Wang, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036 |
[47] | G. B. Whitham, Comments on periodic waves and solitons, IMA J. Appl. Math., 32 (1984), 353–366. https://doi.org/10.1093/imamat/32.1-3.353 doi: 10.1093/imamat/32.1-3.353 |