Research article

Construction of new fractional inequalities via generalized $ n $-fractional polynomial $ s $-type convexity

  • Received: 20 March 2024 Revised: 19 July 2024 Accepted: 25 July 2024 Published: 12 August 2024
  • MSC : 26D10, 26D15, 26E60, 90C23

  • This paper focuses on introducing and investigating the class of generalized $ n $-fractional polynomial $ s $-type convex functions within the framework of fractional calculus. Relationships between the novel class of functions and other kinds of convex functions are given. New integral inequalities of Hermite-Hadamard and Ostrowski-type are established for our novel generalized class of convex functions. Using some identities and fractional operators, new refinements of Ostrowski-type inequalities are presented for generalized $ n $-fractional polynomial $ s $-type convex functions. Some special cases of the newly obtained results are discussed. It has been presented that, under some certain conditions, the class of generalized $ n $-fractional polynomial $ s $-type convex functions reduces to a novel class of convex functions. It is interesting that, our results for particular cases recaptures the Riemann-Liouville fractional integral inequalities and quadrature rules. By extending these particular types of inequalities, the objective is to unveil fresh mathematical perspectives, attributes, and connections that can enhance the evolution of more resilient mathematical methodologies. This study aids in the progression of mathematical instruments across diverse scientific fields.

    Citation: Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin. Construction of new fractional inequalities via generalized $ n $-fractional polynomial $ s $-type convexity[J]. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163

    Related Papers:

  • This paper focuses on introducing and investigating the class of generalized $ n $-fractional polynomial $ s $-type convex functions within the framework of fractional calculus. Relationships between the novel class of functions and other kinds of convex functions are given. New integral inequalities of Hermite-Hadamard and Ostrowski-type are established for our novel generalized class of convex functions. Using some identities and fractional operators, new refinements of Ostrowski-type inequalities are presented for generalized $ n $-fractional polynomial $ s $-type convex functions. Some special cases of the newly obtained results are discussed. It has been presented that, under some certain conditions, the class of generalized $ n $-fractional polynomial $ s $-type convex functions reduces to a novel class of convex functions. It is interesting that, our results for particular cases recaptures the Riemann-Liouville fractional integral inequalities and quadrature rules. By extending these particular types of inequalities, the objective is to unveil fresh mathematical perspectives, attributes, and connections that can enhance the evolution of more resilient mathematical methodologies. This study aids in the progression of mathematical instruments across diverse scientific fields.



    加载中


    [1] A. O. Akdemir, A. Karaoğlan, M. A. Ragusa, E. Set, Fractional integral inequalities via Atangana-Baleanu operators for convex and concave functions, J. Funct. Spaces, 2021 (2021), 1055434. https://doi.org/10.1155/2021/1055434 doi: 10.1155/2021/1055434
    [2] S. Aslan, A. O. Akdemir, New estimations for quasi-convex functions and $\left(h, m\right) $-convex functions with the help of Caputo-Fabrizio fractional integral operators, Electron. J. Appl. Math., 1 (2023), 38–46. https://doi.org/10.61383/ejam.20231353 doi: 10.61383/ejam.20231353
    [3] A. Kashuri, M. A. Ali, M. Abbas, H. Budak, New inequalities for generalized $m$-convex functions via generalized fractional integral operators and their applications, Int. J. Nonlinear Anal. Appl., 10 (2019), 275–299. https://doi.org/10.22075/ijnaa.2019.18455.2014 doi: 10.22075/ijnaa.2019.18455.2014
    [4] M. A. Latif, New inequalities involving $k$-fractional integral for $h$-convex functions and their applications, Punjab Univ. J. Math., 55 (2023), 205–222. https://doi.org/10.52280/pujm.2023.55(5-6)03 doi: 10.52280/pujm.2023.55(5-6)03
    [5] W. Liu, L. Liu, Properties of Hadamard fractional integral and its application, Fractal Fract., 6 (2022), 670. https://doi.org/10.3390/fractalfract6110670 doi: 10.3390/fractalfract6110670
    [6] M. Z. Sarıkaya, Z. Dahmani, M. E. Kiriş, F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45 (2016), 77–89.
    [7] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, H. Budak, Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract., 6 (2022), 175. https://doi.org/10.3390/fractalfract6030175 doi: 10.3390/fractalfract6030175
    [8] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Vienna: Springer, 1997.
    [9] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [10] P. Agarwal, J. Choi, R. B. Paris, Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., 8 (2015), 451–466.
    [11] A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. https://doi.org/10.3390/math9020122 doi: 10.3390/math9020122
    [12] S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential $s$-convex functions, Turk. J. Sci., 5 (2020), 140–146.
    [13] R. E. Gutiérrez, J. M. Rosário, J. T. Machado, Fractional order calculus: Basic concepts and engineering applications, Math. Probl. Eng., 2010 (2010), 375858. https://doi.org/10.1155/2010/375858 doi: 10.1155/2010/375858
    [14] R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives, Phys. Chem. B, 104 (2000), 3914–3917.
    [15] C. Li, D. Qian, Y. Q. Chen, On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., 2011 (2011), 562494. https://doi.org/10.1155/2011/562494 doi: 10.1155/2011/562494
    [16] M. Kadakal, İ. İşcan, H. Kadakal, Construction of a new generalization for n-polynomial convexity with their certain inequalities, Hacettepe J. Math. Stat., 2024. https://doi.org/10.15672/hujms.1310861
    [17] M. Kadakal, H. Kadakal, İ. İşcan, Semi $P$ -geometric-arithmetically functions and some new related inequalities, Filomat, 37 (2023), 7017–7028. https://doi.org/10.2298/FIL2321017K doi: 10.2298/FIL2321017K
    [18] M. A. Latif, Fejér-type inequalities for harmonically convex functions and related results, Symmetry, 15 (2023), 1602. https://doi.org/10.3390/sym15081602 doi: 10.3390/sym15081602
    [19] S. Özcan, M. Kadakal, İ. İşcan, H. Kadakal, Generalized strongly $n$-polynomial convex functions and related inequalities, Bound. Value Probl., 2024 (2024), 32. https://doi.org/10.1186/s13661-024-01838-2 doi: 10.1186/s13661-024-01838-2
    [20] M. Tariq, S. I. Butt, Some Ostrowski-type integral inequalities via generalized harmonic convex functions, Open J. Math. Sci., 5 (2021), 200–208. https://doi.org/10.30538/oms2021.0157 doi: 10.30538/oms2021.0157
    [21] S. I. Butt, M. Tariq, A. Aslam, H. Ahmad, T. A. Nofal, Hermite-Hadamard type inequalities via generalized harmonic exponential convexity and applications, J. Funct. Spaces, 2021 (2021), 5533491. https://doi.org/10.1155/2021/5533491 doi: 10.1155/2021/5533491
    [22] S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of $h$-convex functions, Math. Methods Appl. Sci., 44 (2021), 2364–2380. https://doi.org/10.1002/mma.5893 doi: 10.1002/mma.5893
    [23] S. Özcan, Hermite-Hadamard type inequalities for exponential type multiplicatively convex functions, Filomat, 37 (2023), 9777–9789. https://doi.org/10.2298/FIL2328777O doi: 10.2298/FIL2328777O
    [24] S. Özcan, Some integral inequalities of Hermite-Hadamard type for multiplicatively $s$-preinvex functions, Int. J. Math. Model. Comput., 9 (2019), 253–266.
    [25] M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some new Hermite-Hadamard and related inequalities for convex functions via $(p, q)$-integral, Entropy, 2 (2021), 828. https://doi.org/10.3390/e23070828 doi: 10.3390/e23070828
    [26] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
    [27] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1937), 226–227. https://doi.org/10.1007/BF01214290 doi: 10.1007/BF01214290
    [28] S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized $K$-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629–2645. https://doi.org/10.3934/math.2020171 doi: 10.3934/math.2020171
    [29] S. Rashid, İ. İşcan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via $n$ polynomials $s$-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 264. https://doi.org/10.1186/s13662-020-02720-y doi: 10.1186/s13662-020-02720-y
    [30] İ. İşcan, Construction of a new class of functions with their some properties and certain inequalities: $n$-Fractional polynomial convex functions, Miskolc Math. Notes, 24 (2023), 1389–1404. https://doi.org/10.18514/mmn.2023.4142 doi: 10.18514/mmn.2023.4142
    [31] S. Mubeen, G. M. Habibullah, $k$-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [32] R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179–192.
    [33] Z. H. Yang, W. M. Qian, Y. M. Chu, W. Zhang, On rational bounds for the gamma function, J. Inequal. Appl., 2017 (2017), 210. https://doi.org/10.1186/s13660-017-1484-y doi: 10.1186/s13660-017-1484-y
    [34] T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 896483. https://doi.org/10.1155/2011/896483 doi: 10.1155/2011/896483
    [35] G. Farid, M. Usman, Ostrowski-type fractional integral inequalities for $s$-Godunova-Levin functions via $k$-fractional integrals, Proyecciones, 36 (2017), 753–767. https://doi.org/10.4067/S0716-09172017000400753 doi: 10.4067/S0716-09172017000400753
    [36] J. Park, On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals, Appl. Math. Sci., 9 (2015), 3057–3069. https://doi.org/10.12988/AMS.2015.53248 doi: 10.12988/AMS.2015.53248
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(424) PDF downloads(50) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog