Integral inequalities involving exponential convexity are significant in both theoretical and applied mathematics. In this paper, we establish a new Hermite-Hadamard type inequality for the class of exponentially convex functions by using the concept of $ (\alpha-s) $ exponentially convex function. Additionally, using the well-known Hermite-Hadamard and Ostrowski inequalities, we establish several new integral inequalities. These newly obtained results contain several well-known results as special cases. Finally, new estimations for the trapezoidal formula have been provided, illustrating the practical applications of the research.
Citation: Attazar Bakht, Matloob Anwar. Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications[J]. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364
Integral inequalities involving exponential convexity are significant in both theoretical and applied mathematics. In this paper, we establish a new Hermite-Hadamard type inequality for the class of exponentially convex functions by using the concept of $ (\alpha-s) $ exponentially convex function. Additionally, using the well-known Hermite-Hadamard and Ostrowski inequalities, we establish several new integral inequalities. These newly obtained results contain several well-known results as special cases. Finally, new estimations for the trapezoidal formula have been provided, illustrating the practical applications of the research.
[1] | S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science Direct Working Paper, 2003. |
[2] | I. Gelfand, R. Silverman, Calculus of variations, Mineola: Dover Publications, 2000. |
[3] | A. Renyi, Probability theory, Mineola: Dover Publications, 2007. |
[4] | F. Asenjo, A calculus of antinomies, Notre Dame J. Formal Logic, 7 (1966), 103–105. http://dx.doi.org/10.1305/ndjfl/1093958482 |
[5] | O. Almutairi, A. Kılıçman, Generalized integral inequalities for Hermite-Hadamard-type inequalities via s-convexity on fractal sets, Mathematics, 7 (2019), 1065. http://dx.doi.org/10.3390/math7111065 doi: 10.3390/math7111065 |
[6] | D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. http://dx.doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3 |
[7] | S. Rashid, M. Noor, K. Noor, F. Safdar, Y. Chu, Hermite-Hadamard type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 956. http://dx.doi.org/10.3390/math7100956 doi: 10.3390/math7100956 |
[8] | V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. http://dx.doi.org/10.1007/978-1-4613-0071-7 |
[9] | V. Kiryakova, Generalized fractional calculus and applications, New York: CRC Press, 1993. |
[10] | D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequat. Math., 83 (2012), 143–151. http://dx.doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1 |
[11] | H. Gunawan, Eridani, Fractional integrals and generalized Olsen inequalities, Kyungpook Math. J., 49 (2009), 31–39. http://dx.doi.org/10.5666/KMJ.2009.49.1.031 doi: 10.5666/KMJ.2009.49.1.031 |
[12] | H. Srivastava, K. Tseng, S. Tseng, J. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese J. Math., 14 (2010), 107–122. http://dx.doi.org/10.11650/twjm/1500405730 doi: 10.11650/twjm/1500405730 |
[13] | Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. http://dx.doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8 |
[14] | C. Luo, T. Du, M. Kunt, Y. Zhang, Certain new bounds considering the weighted Simpson-like type inequality and applications, J. Inequal. Appl., 2018 (2018), 332. http://dx.doi.org/10.1186/s13660-018-1924-3 doi: 10.1186/s13660-018-1924-3 |
[15] | S. Kaijser, L. Nikolova, L. Persson, A. Wedestig, Hardy-type inequalities via convexity, Math. Inequal. Appl., 8 (2005), 403–417. http://dx.doi.org/10.7153/MIA-08-38 doi: 10.7153/MIA-08-38 |
[16] | M. Kunt, İ. İşcan, Hermite-Hadamard-Fejér type inequalities for p-convex functions, Arab Journal of Mathematical Sciences, 23 (2017), 215–230. http://dx.doi.org/10.1016/j.ajmsc.2016.11.001 doi: 10.1016/j.ajmsc.2016.11.001 |
[17] | B. Gavrea, I. Gavrea, On some Ostrowski type inequalities, General Mathematics, 18 (2010), 33–44. |
[18] | A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115 (2002), 260–288. http://dx.doi.org/10.1006/jath.2001.3658 doi: 10.1006/jath.2001.3658 |
[19] | A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal., 43 (2005), 909–923. http://dx.doi.org/10.1137/S0036142903435958 doi: 10.1137/S0036142903435958 |
[20] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comp., 73 (2004), 1365–1384. http://dx.doi.org/10.1090/S0025-5718-03-01622-3 doi: 10.1090/S0025-5718-03-01622-3 |
[21] | A. Guessab, Approximations of differentiable convex functions on arbitrary convex polytopes, Appl. Math. Comput., 240 (2014), 326–338. http://dx.doi.org/10.1016/j.amc.2014.04.075 doi: 10.1016/j.amc.2014.04.075 |
[22] | J. Moré, W. Rheinboldt, On P- and S-functions and related classes of n-dimensional nonlinear mappings, Linear Algebra Appl., 6 (1973), 45–68. http://dx.doi.org/10.1016/0024-3795(73)90006-2 doi: 10.1016/0024-3795(73)90006-2 |
[23] | S. Ozcan, I. Iscan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. http://dx.doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2 |
[24] | S. Dragomir, C. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., 57 (1998), 377–385. http://dx.doi.org/10.1017/S0004972700031786 doi: 10.1017/S0004972700031786 |
[25] | X. Zhang, W. Jiang, Some properties of log-convex function and applications for the exponential function, Comput. Math. Appl., 63 (2012), 1111–1116. http://dx.doi.org/10.1016/j.camwa.2011.12.019 doi: 10.1016/j.camwa.2011.12.019 |
[26] | K. Murota, A. Shioura, M-convex function on generalized polymatroid, Math. Oper. Res., 24 (1999), 95–105. http://dx.doi.org/10.1287/moor.24.1.95 doi: 10.1287/moor.24.1.95 |
[27] | S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696. http://dx.doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403 |
[28] | M. Avci, H. Kavurmaci, M. Emin Özdemir, New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171–5176. http://dx.doi.org/10.1016/j.amc.2010.11.047 doi: 10.1016/j.amc.2010.11.047 |
[29] | I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. |
[30] | T. Toplu, M. Kadakal, I. Iscan, On n-polynomial convexity and some related inequalities, AIMS Mathematics, 5 (2020), 1304–1318. http://dx.doi.org/10.3934/math.2020089 doi: 10.3934/math.2020089 |
[31] | B. Feng, M. Ghafoor, Y. Chu, M. Qureshi, X. Feng, C. Yao, et al., Hermite-Hadamard and Jensen's type inequalities for modified (p, h)-convex functions, AIMS Mathematics, 5 (2020), 6959–6971. http://dx.doi.org/10.3934/math.2020446 doi: 10.3934/math.2020446 |
[32] | M. Tunc, E. Gov, Ü. Şanal, On tgs-convex function and their inequalities, Facta Univ.-Ser. Math., 30 (2015), 679–691. |
[33] | A. Bakht, M. Anwar, Hermite-Hadamard and Ostrowski type inequalities via $\alpha$-exponential type convex functions with applications, AIMS Mathematics, 9 (2024), 9519–9535. http://dx.doi.org/10.3934/math.2024465 doi: 10.3934/math.2024465 |
[34] | M. Kadakal, I. Iscan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. http://dx.doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1 |
[35] | E. Nwaeze, M. Khan, A. Ahmadian, M. Ahmad, A. Mahmood, Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions, AIMS Mathematics, 6 (2021), 1889–1904. http://dx.doi.org/10.3934/math.2021115 doi: 10.3934/math.2021115 |
[36] | P. Korus, An extension of the Hermite-Hadamard inequality for convex and s-convex functions, Aequat. Math., 93 (2019), 527–534. http://dx.doi.org/10.1007/s00010-019-00642-z doi: 10.1007/s00010-019-00642-z |
[37] | M. Tariq, J. Nasir, S. Sahoo, A. Mallah, A note on some Ostrowski type inequalities via generalized exponentially convexity, J. Math. Anal. Model., 2 (2021), 1–15. http://dx.doi.org/10.48185/jmam.v2i2.216 doi: 10.48185/jmam.v2i2.216 |
[38] | S. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract., 6 (2022), 42. http://dx.doi.org/10.3390/fractalfract6010042 doi: 10.3390/fractalfract6010042 |
[39] | S. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, n-polynomial exponential type p-convex function with some related inequalities and their applications, Heliyon, 6 (2020), e05420. http://dx.doi.org/10.1016/j.heliyon.2020.e05420 doi: 10.1016/j.heliyon.2020.e05420 |
[40] | S. Kemali, Hermite-Hadamard type inequality for s-convex functions in the fourth sense, TJMCS, 13 (2021), 287–293. http://dx.doi.org/10.47000/tjmcs.925182 doi: 10.47000/tjmcs.925182 |
[41] | M. Awan, M. Noor, K. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405–409. http://dx.doi.org/10.12785/amis/120215 doi: 10.12785/amis/120215 |
[42] | N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. http://dx.doi.org/10.1186/s13660-019-2047-1 doi: 10.1186/s13660-019-2047-1 |
[43] | P. Cerone, S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. http://dx.doi.org/10.1515/dema-2004-0208 doi: 10.1515/dema-2004-0208 |
[44] | S. Dragomir, S. Wang, A new inequality of Ostrowski's type in $ L_1 $ norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., 28 (1997), 239–244. http://dx.doi.org/10.5556/j.tkjm.28.1997.4320 doi: 10.5556/j.tkjm.28.1997.4320 |
[45] | S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 33 (1997), 15–20. http://dx.doi.org/10.1016/S0898-1221(97)00084-9 doi: 10.1016/S0898-1221(97)00084-9 |
[46] | S. Dragomir, S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105–109. http://dx.doi.org/10.1016/S0893-9659(97)00142-0 doi: 10.1016/S0893-9659(97)00142-0 |