This paper presents the stability theorem for the $ T $-Picard iteration scheme and establishes the existence and uniqueness theorem for fixed points concerning $ T $-mean nonexpansive mappings within $ b $-metric-like spaces. The outcome of our fixed point theorem substantiated the existence and uniqueness of solutions to the Fredholm-Hammerstein integral equations defined on time scales. Additionally, we provided two numerical examples from distinct time scales to support our findings empirically.
Citation: Zeynep Kalkan, Aynur Şahin, Ahmad Aloqaily, Nabil Mlaiki. Some fixed point and stability results in $ b $-metric-like spaces with an application to integral equations on time scales[J]. AIMS Mathematics, 2024, 9(5): 11335-11351. doi: 10.3934/math.2024556
This paper presents the stability theorem for the $ T $-Picard iteration scheme and establishes the existence and uniqueness theorem for fixed points concerning $ T $-mean nonexpansive mappings within $ b $-metric-like spaces. The outcome of our fixed point theorem substantiated the existence and uniqueness of solutions to the Fredholm-Hammerstein integral equations defined on time scales. Additionally, we provided two numerical examples from distinct time scales to support our findings empirically.
[1] | S. Banach, Sur les opérations dans les ensembles abstraites et leurs applications, Fund. Math., 3 (1922), 133–187. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | R. P. Agarwal, Ü. Aksoy, E. Karapınar, İ. M. Erhan, $F$-contraction mappings on metric-like spaces in connection with integral eqautions on time scales, RACSAM, 114 (2020). https://doi.org/10.1007/s13398-020-00877-5 doi: 10.1007/s13398-020-00877-5 |
[3] | D. R. Kumar, Common fixed point results under $w$-distance with applications to nonlinear integral equations and nonlinear fractional differential equations, Math. Slovaca, 71 (2021), 1511–1528. https://doi.org/10.1515/ms-2021-0068 doi: 10.1515/ms-2021-0068 |
[4] | M. Younis, I. Altun, V. Chauhan, Graphical structure of extended $b$-metric spaces: An application to the transverse oscillations of a homogeneous bar, Int. J. Nonlin. Sci. Num., 23 (2022), 1239–1252. https://doi.org/10.1515/ijnsns-2020-0126 doi: 10.1515/ijnsns-2020-0126 |
[5] | D. R. Kumar, Common solution to a pair of nonlinear Fredholm and Volterra integral equations and nonlinear fractional differential equations, J. Comput. Appl. Math., 404 (2022). https://doi.org/10.1016/j.cam.2021.113907 doi: 10.1016/j.cam.2021.113907 |
[6] | W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330. https://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468 |
[7] | A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via $A\nu$-$\alpha$-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi $b$-metric space, AIMS Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363 |
[8] | M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in $S$-metric spaces, AIMS Math., 8 (2023), 4407–4441. https://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220 |
[9] | M. Younis, D. Singh, L. Chen, M. Metwali, A study on the solutions of notable engineering models, Math. Model. Anal., 27 (2022), 492–509. https://doi.org/10.3846/mma.2022.15276 |
[10] | M. Younis, H. Ahmad, L. Chen, M. Han, Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations, J. Geom. Phys., 192 (2023). https://doi.org/10.1016/j.geomphys.2023.104955 doi: 10.1016/j.geomphys.2023.104955 |
[11] | F. E. Browder, Nonexpansive nonlinear operators in a Banach spaces, P. Natl. Acad. Sci. USA, 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041 |
[12] | D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312 |
[13] | S. Zhang, About fixed point theory for mean nonexpansive mapping in Banach spaces, J. Sichuan Univ., 2 (1975), 67–68. |
[14] | A. A. Mebawondu, C. Izuchukwu, H. A. Abass, O. T. Mewomo, Some results on generalized mean nonexpansive mapping in complete metric spaces, Bol. Soc. Parana. Mat., 40 (2022), 1–16. https://doi.org/10.5269/bspm.44174 doi: 10.5269/bspm.44174 |
[15] | J. Morales, E. Rojas, Some results on $T$ Zamfirescu operators, Rev. Notas Mat., 5 (2009), 64–71. |
[16] | I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
[17] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[18] | S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[19] | A. A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory A., 2012 (2021). https://doi.org/10.1186/1687-1812-2012-204 doi: 10.1186/1687-1812-2012-204 |
[20] | M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on $b$-metric-like spaces, J. Inequal. Appl., 2013 (2013). https://doi.org/10.1186/1029-242X-2013-402 doi: 10.1186/1029-242X-2013-402 |
[21] | N. Hussain, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed points of contractive mappings in $b$-metric-like spaces, The Scientific World J., 2014 (2014). https://doi.org/10.1155/2014/981578 doi: 10.1155/2014/981578 |
[22] | H. H. Alsulami, S. Gülyaz, E. Karapınar, İ. M. Erhan, An Ulam stability result on quasi-$b$-metric-like spaces, Open Math., 14, (2016), 1087–1103. https://doi.org/10.1515/math-2016-0097 doi: 10.1515/math-2016-0097 |
[23] | K. Jain, J. Kaur, Some fixed point results in $b$-metric spaces and $b$-metric-like spaces with new contractive mappings, Axioms, 10 (2021). https://doi.org/10.3390/axioms10020055 doi: 10.3390/axioms10020055 |
[24] | S. K. Prakasam, A. J. Gnanaprakasam, Ö. Ege, G. Mani, S. Haque, N. Mlaiki, Fixed point for an $ \mathbb{O}g\mathfrak{F} $-c in $ \mathbb{O} $-complete $b$-metric-like spaces, AIMS Math., 8 (2023), 1022–1039. https://doi.org/10.3934/math.2023050 doi: 10.3934/math.2023050 |
[25] | Z. Kalkan, A. Şahin, Some new results in partial cone $b$-metric space, Commun. Adv. Math. Sci., 3 (2020), 67–73. https://doi.org/10.33434/cams.684102 doi: 10.33434/cams.684102 |
[26] | D. R. Kumar, M. Prabavathy, S. Radenovic, On existence and approximation of common fixed points in $b$-metric spaces, Asian-Eur. J. Math., 15 (2022). https://doi.org/10.1142/S1793557122500309 doi: 10.1142/S1793557122500309 |
[27] | I. D. Arandelovic, Z. D. Mitrovic, A. Aloqaily, N. Mlaiki, The results of common fixed points in $b$-metric spaces, Symmetry, 15 (2023), 1344. https://doi.org/10.3390/sym15071344 doi: 10.3390/sym15071344 |
[28] | A. Beiranvand, S. Moradi, M. Omid, H. Pazandeh, Two fixed point theorems for special mappings, arXiv Preprint, 2009. |
[29] | M. Öztürk, M. Başarır, On some common fixed point theorems for $f$-contraction mappings in cone metric spaces, Int. J. Math. Anal., 5 (2011), 119–127. https://doi.org/10.1186/1687-1812-2011-93 doi: 10.1186/1687-1812-2011-93 |
[30] | C. T. Aage, P. G. Golhare, On fixed point theorems in dislocated quasi $b$-metric spaces, Int. J. Adv. Math., 2016 (2016), 55–70. https://doi.org/10.1186/s13663-016-0565-9 doi: 10.1186/s13663-016-0565-9 |
[31] | K. Zoto, P. S. Kumari, Fixed point theorems for $s$-$\alpha$ contractions in dislocated and $b$-dislocated metric spaces, Thai J. Math., 17 (2019), 263–276. |
[32] | A. M. Zaki, A. O. Ismail, A note on cone metric spaces, Curr. Sci. Int., 11 (2022), 319–328. |
[33] | H. Aydi, A. Felhi, S. Sahmim, On common fixed points for $\alpha -\psi $ contractions and generalized cyclic contractions in $b$-metric-like spaces and consequences, J. Nonlinear Sci. Appl., 9 (2016), 2492–2510. https://doi.org/10.22436/jnsa.009.05.48 doi: 10.22436/jnsa.009.05.48 |
[34] | K. Calderón, A. Padcharoen, J. M. Moreno, Some stability and strong convergence results for the algorithm with perturbations for a $T$-Ciric quasicontraction in CAT(0) spaces, J. Inequal. Appl., 2023 (2023). https://doi.org/10.1186/s13660-022-02911-z doi: 10.1186/s13660-022-02911-z |
[35] | A. M. Harder, T. L. Hicks, Some stability results for fixed point iteration procedures, Math. Japon., 33 (1988), 693–706. |
[36] | V. Berinde, Iterative approximation of fixed points, Berlin: Springer-Verlag, 2007. https://doi.org/10.1109/SYNASC.2007.49 |
[37] | S. Hilger, Analysis on measure chains a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153 |
[38] | M. Bohner, A. Peterson, Dynamic equations on time scales, Boston/Berlin: Birkhauser, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[39] | R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl., 4 (2001), 535–557. https://doi.org/10.7153/mia-04-48 doi: 10.7153/mia-04-48 |
[40] | G. S. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285 (2003), 107–127. https://doi.org/10.1016/S0022-247X(03)00361-5 doi: 10.1016/S0022-247X(03)00361-5 |
[41] | S. Georgiev, Integral equations on time scales, Paris: Atlantis Press, 2016. https://doi.org/10.2991/978-94-6239-228-1 |
[42] | Z. Kalkan, A. Şahin, Some new stability results of Volterra integral equations on time scales, Maltepe J. Math., 4 (2022), 44–54. https://doi.org/10.47087/mjm.1145159 doi: 10.47087/mjm.1145159 |
[43] | X. Hu, Y. Li, Multiplicity result to a system of over-determined Fredholm fractional integro-differential equations on time scales, AIMS Math., 7 (2022), 2646–2665. https://doi.org/10.3934/math.2022149 doi: 10.3934/math.2022149 |
[44] | A. Pouria, The numerical solution of Fredholm-Hammerstein integral equations by combining the collocation method and radial basis functions, Filomat, 33 (2019), 667–682. https://doi.org/10.2298/FIL1903667A doi: 10.2298/FIL1903667A |
[45] | U. Kohlenbach, Some logical metatheorems with applications in functional analysis, T. Am. Math. Soc., 357 (2004), 89–128. https://doi.org/10.1090/S0002-9947-04-03515-9 doi: 10.1090/S0002-9947-04-03515-9 |