This paper focused on establishing results regarding the existence of solutions for a class of nonlocal terminal value problems involving hybrid implicit nonlinear fractional differential equations with the $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer fractional derivative, which includes both finite delay and anticipation arguments. Our analysis was based on the Banach fixed point technique, and the Schauder and Krasnoselskii fixed point theorems. Moreover, illustrative examples were considered to support our new results.
Citation: Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez. On the nonlocal hybrid $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer inverse problem with delay and anticipation[J]. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112
This paper focused on establishing results regarding the existence of solutions for a class of nonlocal terminal value problems involving hybrid implicit nonlinear fractional differential equations with the $ ({\mathsf{k}}, {\rm{\mathsf{φ}}}) $-Hilfer fractional derivative, which includes both finite delay and anticipation arguments. Our analysis was based on the Banach fixed point technique, and the Schauder and Krasnoselskii fixed point theorems. Moreover, illustrative examples were considered to support our new results.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006. |
[2] | M. Benchohra, S. Bouriah, A. Salim, Y. Zhou, Fractional differential equations: a coincidence degree approach, Boston: De Gruyter, 2024. https://doi.org/10.1515/9783111334387 |
[3] | M. Benchohra, E. Karapınar, J. E. Lazreg, A. Salim, Fractional differential equations: new advancements for generalized fractional derivatives, Springer, 2023. https://doi.org/10.1007/978-3-031-34877-8 |
[4] | K. Liu, J. Wang, D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for $\psi$-Hilfer fractional-order delay differential equations, Adv. Differ. Equations, 2019 (2019), 50. https://doi.org/10.1186/s13662-019-1997-4 doi: 10.1186/s13662-019-1997-4 |
[5] | J. P. Kharade, K. D. Kucche, On the impulsive implicit $\psi$-Hilfer fractional differential equations with delay, Math. Methods Appl. Sci., 43 (2020), 1938–1952. https://doi.org/10.1002/mma.6017 doi: 10.1002/mma.6017 |
[6] | R. Diaz, C. Teruel, ${q, {k}}$-generalized gamma and beta functions, J. Nonlinear Math. Phys., 12 (2005), 118–134. https://doi.org/10.2991/jnmp.2005.12.1.10 doi: 10.2991/jnmp.2005.12.1.10 |
[7] | S. Mubeen, G. M. Habibullah, ${k}$-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[8] | Y. M. Chu, M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, Generalizations of Hermite-Hadamard like inequalities involving $\chi _{{\kappa }}$-Hilfer fractional integrals, Adv. Differ. Equations, 2020 (2020), 594. https://doi.org/10.1186/s13662-020-03059-0 doi: 10.1186/s13662-020-03059-0 |
[9] | J. V. da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005 |
[10] | A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, On ${k}$-generalized $\psi$-Hilfer boundary value problems with retardation and anticipation, Adv. Theory Nonlinear Anal. Appl., 6 (2022), 173–190. https://doi.org/10.31197/atnaa.973992 doi: 10.31197/atnaa.973992 |
[11] | A. Salim, M. Benchohra, J. E. Lazreg, E. Karapınar, On ${k}$-generalized $\psi$-Hilfer impulsive boundary value problem with retarded and advanced arguments, J. Math. Ext., 15 (2021), 1–39. https://doi.org/10.30495/JME.SI.2021.2187 doi: 10.30495/JME.SI.2021.2187 |
[12] | A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour, J. Tariboon, A mathematical theoretical study of a coupled fully hybrid ($\kappa, \varphi$)-fractional order system of BVPs in generalized Banach spaces, Symmetry 15 (2023), 1041. https://doi.org/10.3390/sym15051041 |
[13] | S. Krim, S. Abbas, M. Benchohra, E. Karapinar, Terminal value problem for implicit Katugampola fractional differential equations in $b$-metric spaces, J. Funct. Spaces, 2021 (2021), 1–7. https://doi.org/10.1155/2021/5535178 doi: 10.1155/2021/5535178 |
[14] | A. Almalahi, K. Panchal, On the theory of $\psi$-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ. Math. Phys., 14 (2021), 161–177. https://doi.org/10.17516/1997-1397-2021-14-2-161-177 doi: 10.17516/1997-1397-2021-14-2-161-177 |
[15] | S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629–2645. https://doi.org/10.3934/math.2020171 doi: 10.3934/math.2020171 |
[16] | J. E. N. Valdés, Generalized fractional Hilfer integral and derivative, Contrib. Math., 2 (2020), 55–60. https://doi.org/10.47443/cm.2020.0036 doi: 10.47443/cm.2020.0036 |
[17] | A. Granas, J. Dugundji, Fixed point theory, Springer-Verlag, 2003. https://doi.org/10.1007/978-0-387-21593-8 |