Research article Special Issues

Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions

  • Received: 20 March 2021 Accepted: 07 September 2021 Published: 16 September 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • In accordance with the quantum calculus, the quantum Hermite-Hadamard type inequalities shown in recent findings provide improvements to quantum Hermite-Hadamard type inequalities. We acquire a new $ q{_{\kappa_1}} $-integral and $ q{^{\kappa_2}} $-integral identities, then employing these identities, we establish new quantum Hermite-Hadamard $ q{_{\kappa_1}} $-integral and $ q{^{\kappa_2}} $-integral type inequalities through generalized higher-order strongly preinvex and quasi-preinvex functions. The claim of our study has been graphically supported, and some special cases are provided as well. Finally, we present a comprehensive application of the newly obtained key results. Our outcomes from these new generalizations can be applied to evaluate several mathematical problems relating to applications in the real world. These new results are significant for improving integrated symmetrical function approximations or functions of some symmetry degree.

    Citation: Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh. Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions[J]. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769

    Related Papers:

  • In accordance with the quantum calculus, the quantum Hermite-Hadamard type inequalities shown in recent findings provide improvements to quantum Hermite-Hadamard type inequalities. We acquire a new $ q{_{\kappa_1}} $-integral and $ q{^{\kappa_2}} $-integral identities, then employing these identities, we establish new quantum Hermite-Hadamard $ q{_{\kappa_1}} $-integral and $ q{^{\kappa_2}} $-integral type inequalities through generalized higher-order strongly preinvex and quasi-preinvex functions. The claim of our study has been graphically supported, and some special cases are provided as well. Finally, we present a comprehensive application of the newly obtained key results. Our outcomes from these new generalizations can be applied to evaluate several mathematical problems relating to applications in the real world. These new results are significant for improving integrated symmetrical function approximations or functions of some symmetry degree.



    加载中


    [1] D. O. Jackson, T. Fukuda, O. Dunn, On a $q$-definite integrals, Quarterly J. Pure Appl. Math., 41 (1910), 193–203.
    [2] T. Ernst, A comprehensive treatment of $q$-calculus, Basel: Springer, 2012.
    [3] H. Gauchman, Integral inequalities in $q$-calculus, Comput. Math. Appl., 47 (2004), 281–300. doi: 10.1016/S0898-1221(04)90025-9
    [4] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002.
    [5] J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 121. doi: 10.1186/1029-242X-2014-121
    [6] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. doi: 10.1186/1687-1847-2013-282
    [7] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251.
    [8] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793.
    [9] Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via ($\alpha, m$)-convexity, J. Inequal. Appl., 2018 (2018), 1–24. doi: 10.1186/s13660-017-1594-6
    [10] N. Alp, M. Z. Sarıkaya, M. Kunt, İ. İşcan, $q$-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. doi: 10.1016/j.jksus.2016.09.007
    [11] H. Kalsoom, S. Rashid, M. Idrees, Y. M. Chu, D. Baleanu, Two-variable quantum integral inequalities of simpson-type based on higher-order generalized strongly preinvex and quasi-preinvex functions, Symmetry, 12 (2020), 1–20.
    [12] Y. Deng, H. Kalsoom, S. Wu, Some new quantum Hermite-Hadamard-type estimates within a class of generalized $ (s, m) $-preinvex functions, Symmetry, 11 (2019), 1283. doi: 10.3390/sym11101283
    [13] H. Kalsoom, J. Wu, S. Hussain, M. A. Latif, Simpson's type inequalities for co-ordinated convex functions on quantum calculus, Symmetry, 11 (2019), 768. doi: 10.3390/sym11060768
    [14] H. Kalsoom, M. Idrees, D. Baleanu, Y. M. Chu, New estimates of $ q_1q_2 $-Ostrowski-type inequalities within a class of n-polynomial prevexity of functions, J. Funct. Spaces, 2020 (2020), 1–13.
    [15] X. You, H. Kara, H. Budak, H. Kalsoom, Quantum inequalities of Hermite-Hadamard type for r-convex functions, J. Math., 2021 (2021), 1–14.
    [16] H. Chu, H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, Y. M. Chu, et al., Quantum analogs of Ostrowski-type inequalities for Raina's function correlated with coordinated generalized $ \Phi $-convex functions, Symmetry, 12 (2020), 308. doi: 10.3390/sym12020308
    [17] T. S. Du, C. Y. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228.
    [18] S. Bermudo, P. Kórus, J. N. Valdés, On $q$-Hermite-Hadamard inequalities for general convex functions, Acta Math. Hung., 162 (2020), 364–374. doi: 10.1007/s10474-020-01025-6
    [19] H. M. Srivastava, Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol., Trans. A: Sci., 44 (2020), 327–344. doi: 10.1007/s40995-019-00815-0
    [20] J. Hadamard, Etude sur les proprié tés des fonctions entéres et en particulier dune fonction considerée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
    [21] P. O. Mohammed, New generalized Riemann-Liouville fractional integral inequalities for convex functions, J. Math. Inequal., 15 (2021), 511–519.
    [22] H. M. Srivastava, Z. H. Zhang, Y. D. Wu, Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables, Math. Comput. Model., 54 (2011), 2709–2717. doi: 10.1016/j.mcm.2011.06.057
    [23] M. A. Alqudah, A. Kashuri, P. O. Mohammed, T. Abdeljawad, M. Raees, M. Anwar, et al., Hermite-Hadamard integral inequalities on coordinated convex functions in quantum calculus, Adv. Differ. Equ., 2021 (2021), 1–29. doi: 10.1186/s13662-020-03162-2
    [24] H. Kalsoom, S. Hussain, S. Rashid, Hermite-Hadamard type integral inequalities for functions whose mixed partial derivatives are co-ordinated preinvex, Punjab Univ. J. Math., 52 (2020), 63–76.
    [25] P. O. Mohammed, C. S. Ryoo, A. Kashuri, Y. S. Hamed, K. M. Abualnaja, Some Hermite-Hadamard and Opial dynamic inequalities on time scales, J. Inequal. Appl., 2021 (2021), 1–11. doi: 10.1186/s13660-020-02526-2
    [26] P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math., 22 (2019), 539–549. doi: 10.1080/09720502.2019.1643552
    [27] H. Kalsoom, S. Hussain, Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions, Punjab Univ. J. Math., 2019 (2019), 65–75.
    [28] A. Fernandez, P. Mohammed, Hermite‐Hadamard inequalities in fractional calculus defined using Mittag‐Leffler kernels, Math. Methods Appl. Sci., 44 (2021), 8414–8431. doi: 10.1002/mma.6188
    [29] T. Weir, B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
    [30] B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 72–75.
    [31] D. L. Zu, P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim., 6 (1996), 714–726. doi: 10.1137/S1052623494250415
    [32] K. Nikodem, Z. S. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 5 (2011), 83–87. doi: 10.15352/bjma/1313362982
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1990) PDF downloads(105) Cited by(2)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog