Citation: Yong Liu, Hong Yang, Shanshan Gong, Yaqing Liu, Xingzhong Xiong. A daily activity feature extraction approach based on time series of sensor events[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5173-5189. doi: 10.3934/mbe.2020280
[1] | R. Bai, H. Y. Fan, J. F. Zhang, The effect of physical activity on cognitive function in older adults, Adv. Psychol. Sci., 19 (2011), 1777-1787. |
[2] | P. N. Dawadi, D. J. Cook, M. Schmitter-Edgecombe, Automated cognitive health assessment using smart home monitoring of complex tasks, IEEE T. Syst. Man Cy-S., 43 (2013), 1302-1313. |
[3] | S. Houidi, F. Auger, H. B. A. Sethomb, D. Fourer, L. Miègevillea, Multivariate event detection methods for non-intrusive load monitoring in smart homes and residential buildings, Energ. Buildings, 208 (2020). |
[4] | S. Tanga, V. Kalavallya, K. Y. Nga, J. Parkkinen, Development of a prototype smart home intelligent lighting control architecture using sensors onboard a mobile computing system, Energ. Buildings, 138 (2017), 368-376. |
[5] | Jordan D. Clark, Brennan D. Lessb, Spencer M. Duttonb, Iain S. Walkerb, Max H. Sherman, Efficacy of occupancy-based smart ventilation control strategies in energy efficient homes in the United States, Build. Environ., 156 (2019), 253-267. |
[6] | K. D. Feuz, D. J. Cook, Collegial Activity Learning between Heterogeneous Sensors, Knowl. Inf. Syst., 53 (2017), 337-364. |
[7] | S. Aminikhanghahi, T. Wang, D. J. Cook, Real-Time Change Point Detection with Application to Smart Home Time Series Data, IEEE T. Knowl. Data En., 31 (2019), 1010-1022. |
[8] | W. Deng, J. Xu, Y. Song, H. Zhao, An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application, Int. J. Bio-Inspir. Com., 15 (2020), 1-10. |
[9] | R. Chen, S. K. Guo, X. Z. Wang, T. L. Zhang, Fusion of multi-RSMOTE with fuzzy integral to classify bug reports with an imbalanced severity distribution, IEEE T. Fuzzy Syst., 27 (2019), 2406-2420. |
[10] | J. Wan, M. J. O'Grady, G. M. P. O'Hare, Dynamic sensor event segmentation for real-time activity recognition in a smart home context, Pers. Ubiquit. Comput., 19 (2015), 287-301. |
[11] | J. Guo, Y. Mu, M. D. Xiong, Y. Q. Liu, J. X. Gu, Activity feature solving based on TF-IDF for activity recognition in smart homes, Complexity, (2019). |
[12] | H. Yang, S. Gong, Y. Liu, Z. Lin, Y. Qu, A Multi-task Learning Model for Daily Activity Forecast in Smart Home, Sensors-Basel, 20 (2020). |
[13] | H. M. Zhao, H. D. Liu, J. J. Xu, W. Deng, Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine, IEEE T. Instrum. Meas., 69 (2019), 4165-4172. |
[14] | W. Deng, H. M. Zhao, L. Zou, G. Y. Li, X. H. Yang, D. Q. Wu, A novel collaborative optimization algorithm in solving complex optimization problems, Soft Comput., 21 (2017), 4387-4398. |
[15] | N. Yala, B. Fergani, A. Fleury, Towards improving feature extraction and classification for activity recognition on streaming data, J. Amb. Intel. Hum. Comp., 8 (2017), 177-189. |
[16] | Y. Q. Liu, Y. Mu, K. Y. Chen, Y. M. Li, J. H. Guo, Daily activity feature selection in smart homes based on pearson correlation coefficient, Neural Process. Lett., 51 (2020), 1771-1787. |
[17] | W. Deng, H. M. Zhao, X. H. Yang, J. X. Xiong, M. Sun, B. Li, Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment, Appl. Soft Comput., 59 (2017), 288-302. |
[18] | H. Zhao, J. Zheng, W. Deng, Y. Song, Semi-supervised broad learning system based on manifold regularization and broad network, IEEE T. Circuits-I, 67 (2020), 983-994. |
[19] | Y. Q. Liu, X. X. Wang, Z. G. Zhai, R. Chen, B. Zhang, Y. Jiang, Timely daily activity recognition from headmost sensor events, ISA T., 94 (2019), 379-390. |
[20] | L. Chen, C. Nugent, M. Mulvenna, D. Finlay, X. Hong, M. Poland, A logical framework for behaviour reasoning and assistance in a smart home, Int. J. Assist. Robot. Mechat., 9 (2008), 20-33. |
[21] | D. Riboni, C. Bettini, COSAR: hybrid reasoning for context-aware activity recognition, Pers. Ubiquit. Comput., 15 (2011), 271-289. |
[22] | L. Chen, C. D. Nugent, H. Wang, A knowledge-driven approach to activity recognition in smart homes, IEEE T. Knowl. Data En., 24 (2011), 961-974. |
[23] | N. D. Rodríguez, M. P. Cuéllar, J. Lilius, et al., A survey on ontologies for human behavior recognition, ACM Comput. Surv., 46 (2014). |
[24] | M. H. M. Noor, Z. Salcic, K. I-K. Wang, Enhancing ontological reasoning with uncertainty handling for activity recognition, Knowl. Inf. Syst., 114 (2016), 47-60. |
[25] | G. Meditskos, S. Dasiopoulou, I. Kompatsiaris, MetaQ: A knowledge-driven framework for context-aware activity recognition combining SPARQL and OWL 2 activity patterns, Pervasive Mob. Comput., 25 (2016), 104-124. |
[26] | G. Okeyo, L. Chen, H. Wang, R. Sterritt, Dynamic sensor data segmentation for real-time knowledge-driven activity recognition, Pervasive Mob. Comput., 10 (2014), 155-172. |
[27] | O. Brdiczka, P. Reignier, J. L. Crowley, Detecting individual activities from video in a smart home, International Conference on Knowledge-Based Intelligent Informational and Engineering Systems (KES 2007), 2007, 363-370. Available from: https://link.springer.com/chapter/10.1007%2F978-3-540-74819-9_45. |
[28] | D. J. Cook, M. Schmitter-Edgecombe, Assessing the quality of activities in a smart environment, Method. Inform. Med., 48 (2009), 480-485. |
[29] | W. Deng, H. Liu, J. Xu, H. Zhao, Y. Song, An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE T. Instrum. Meas., (2020). Available from: https://ieeexplore.ieee.org/document/9046849 |
[30] | U. Maurer, A. Rowe, A. Smailagic, Location and Activity Recognition Using eWatch: A Wearable Sensor Platform, Workshop on Ambient Intelligence in Everyday Life, 2005. Available from: https://link.springer.com/chapter/10.1007%2F11825890_4. |
[31] | T. Van. Kasteren, A. Noulas, G. Englebienne, B. Kröse, Accurate activity recognition in a home setting, Proceedings of the 10th international conference on Ubiquitous computing (UbiComp 2008), 2008, 1-9. Available from: https://dl.acm.org/doi/10.1145/1409635.1409637. |
[32] | T. B. Moeslund, A. Hilton, V. Krüger, A survey of advances in vision-based human motion capture and analysis, Comput. Vis. Image Und., 104 (2006), 90-126. |
[33] | N. Oliver, A. Garg, E. Horvitz, Layered representations for learning and inferring office activity from multiple sensory channels, Comput. Vis. Image Und., 96 (2004), 163-180. |
[34] | O. Brdiczka, J. L. Crowley, P. Reignier, Learning situation models in a smart home, IEEE T. Syst. Man Cy. B, 39 (2009), 56-63. |
[35] | Y. Tong, R. Chen, J. Gao, Hidden State Conditional Random Field for Abnormal Activity Recognition in Smart Homes, Entropy-Switz., 17 (2015), 1358-1378. |
[36] | F. A., Machot, S. Ranasinghe, J. Plattner, N. Jnoub, Human activity recognition based on real life scenarios, 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops 2018), 2018, 3-8. Available from: https://ieeexplore.ieee.org/document/8480138. |
[37] | J. Wan, M. Li, M. OGrady, X. Gu, M. A. Alawlaqi, G. OHare, Time-bounded activity recognition for ambient assisted living, IEEE T. Emerg. Top. Com., (2018), Available from: https://ieeexplore.ieee.org/document/8464268. |
[38] | J. Medina-Quero, S. Zhang, C. Nugent, M. Espinilla, Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition, Expert Syst. Appl., 114 (2018), 441-453. |
[39] | Y. Q. Liu, D. T. Ouyang, Y. Liu, R. Chen, A novel approach based on time cluster for activity recognition of daily living in smart homes, Symmetry-Basel, 9 (2017). |
[40] | T. Gu, Z. Wu, X. Tao, H. K. Pung, J. Lu, epSCIAR: An emerging patterns based approach to sequential, interleaved and concurrent activity recognition, 7th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2009), 2009. Available from: https://ieeexplore.ieee.org/document/4912776 |
[41] | P. Rashidi, D. J. Cook, Keeping the resident in the loop: Adapting the smart home to the user, IEEE T. Syst. Man Cy. A, 39 (2009), 949-959. |
[42] | T. Huỳnh, B. Schiele, Unsupervised discovery of structure in activity data using multiple eigenspaces, 2nd International Workshop on Location- and Context-Awareness (LoCA 2006), 2006. 151-167. Available from: https://link.springer.com/chapter/10.1007%2F11752967_11. |
[43] | J. Wen, M. Zhong, Z. Wang, Activity recognition with weighted frequent patterns mining in smart environments, Expert Syst. Appl., 42 (2015), 6423-6432. |
[44] | S. Nasreen, M. A. Azam, U. Naeem, M. A. Ghazanfar, A. Khalid, Recognition framework for inferring activities of daily living based on pattern mining, Arab. J. Sci. Eng., 41 (2016), 3113-3126. |
[45] | N. Twomey, D. Diethe, I. Craddock, I. Craddock, P. Flach, Unsupervised learning of sensor topologies for improving activity recognition in smart environments, Neurocomputing, 234 (2017), 93-106. |
[46] | H. Y. Yatbaz, S. Eraslan, Y. Yesilada, E. Ever, Activity Recognition Using Binary Sensors for Elderly People Living Alone: Scanpath Trend Analysis Approach, IEEE Sens. J., 19 (2019), 7575-7582. |
[47] | H. T. Malazi, M. Davari, Combining emerging patterns with random forest for complex activity recognition in smart homes, Appl. Intell., 48 (2018), 315-330. |
[48] | N. Yala, B. Fergani, A. Fleury, Towards improving feature extraction and classification for activity recognition on streaming data, J. Amb. Intel. Hum. Comp., 8 (2017), 177-189. |
[49] | G. L. Chen, A. G. Wang, S. H. Zhao, L. Liu, C. Y. Chang, Latent feature learning for activity recognition using simple sensors in smart homes, Multimed. Tools Appl., 77 (2018), 15201-15219. |
[50] | A. R. Sanabria, T. W. Kelsey, S. Dobson, J. Ye, Representation learning for minority and subtle activities in a smart home environment, J. Amb. Intel. Smart En., 11 (2019), 495-513. |
[51] | H. Alhakbani, M. M. Al-Rifaie, Feature Selection Using Stochastic Diffusion Search, Proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017), 2017, 385-392. Available from: https://dl.acm.org/doi/10.1145/3071178.3079193. |
[52] | D. Cook, A. S. Crandall, B. L. Thomas, N. C. Krishnan, CASAS: A smart home in a box, Comput., 46 (2013), 62-69. |
[53] | N. C. Krishnan, D. J. Cook, Activity recognition on streaming sensor data, Pervas. Mob. Comput., 10 (2014), 138-154. |