Citation: Jana Zatloukalova, Kay Raum. High frequency ultrasound assesses transient changes in cartilage under osmotic loading[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 5190-5211. doi: 10.3934/mbe.2020281
[1] | S. R. Eisenberg, A. J. Grodzinsky, Swelling of articular cartilage and other connective tissues: Electromechanochemical forces, J. Orthop. Res., 3 (1985), 148-159. |
[2] | V. C. Mow, J. M. Schoonbeck, Contribution of donnan osmotic pressure towards the biphasic compressive modulus of articular cartilage, Trans. Orthop. Res. Soc., 9 (1984), 262. |
[3] | A. Maroudas, Physicochemical properties of articular cartilage, Adult Articular Cartilage, (1979), 215-290. |
[4] | A. Maroudas, J. Mizrahi, E. P. Katz, E. J. Wachte, M. Soudry, Physicochemical properties and functional behavior of normal and osteoarthritic human cartilage, Articular Cartilage Biochem., (1986) 311-329. |
[5] | D. A. Narmoneva, J. Y. Wang, L. A. Setton, Nonuniform swelling-induced residual strains in articular cartilage, J. Biomech., 32 (1999), 401-408. |
[6] | D. A. Narmoneva, J. Y. Wang, L. A. Setton, A noncontacting method for material property determination for articular cartilage from osmotic loading, Biophy. J., 81 (2001), 3066-3076. |
[7] | C. M. Flahiff, D. A. Narmoneva, J. L. Huebner, V. B. Kraus, F. Guilak, L. A. Setton, Osmotic loading to determine the intrinsic material properties of guinea pig knee cartilage, J. Biomech., 35 (2002), 1285-1290. |
[8] | C. M. Flahiff, V. B. Kraus, J. L. Huebner, L. A. Setton, Cartilage mechanics in the guinea pig model of osteoarthritis studied with an osmotic loading method, Osteoarthritis Cartilage, 12 (2004), 383-388. |
[9] | C. C. B. Wang, X. E. Guo, D. Sun, V. C. Mow, G. A. Ateshian, C. T. Hung, The functional environment of chondrocytes within cartilage subjected to compressive loading: A theoretical and experimental approach, Biorheology, 39 (2002), 11-25. |
[10] | W. M. Lai, J. S. Hou, V. C. Mow, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Eng., 113 (1991), 245-258. |
[11] | V. C. Mow, G. A. Ateshian, W. M. Lai, W. Y. Gu, Effects of fixed charges on the stress - relaxation behavior of hydrated soft tissues in a confined compression problem, J. Solids Struct., 35 (1998), 4945-4962. |
[12] | L. Qin, Y. Zheng, C. Leung, A. Mak, W. Choy, K. Chan, Ultrasound detection of trypsin-treated articular cartilage: its association with cartilaginous proteoglycans assessed by histological and biochemical methods, J. Bone Miner. Metab., 20 (2002), 281-287. |
[13] | J. Töyräs, M. S. Laasanen, S. Saarakkala, M. J. Lammi, J. Rieppo, J. Kurkijärvi, et al., Speed of sound in normal and degenerated bovine articular cartilage, Ultrasound Med. Biol., 29 (2003) 447-454. |
[14] | Y. P. Zheng, J. Shi, L. Qin, S. G. Patil, V. C. Mow, K. Y. Zhou, Dynamic depth-dependent osmotic swelling and solute diffusion in articular cartilage monitored using real-time ultrasound, Ultrasound Med. Biol., 30 (2004), 841-849. |
[15] | Y. P. Zheng, M. H. Lu, Q. Wang, Ultrasound elastomicroscopy using water jet and osmosis loading: Potentials for assessment for articular cartilage, Ultrasonics, 44 (2006), e203-e209. |
[16] | Q. Wang, Y. P. Zheng, G. Leung, W. L. Lam, X. Guo, H. B. Lu, et al., Altered osmotic swelling behavior of proteoglycan-depleted bovine articular cartilage using high frequency ultrasound, Phys. Med. Biol., 53 (2008), 2537-2552. |
[17] | Q. Wang, Y. P. Zheng, H. J. Niu, A. F. T. Mak, Extraction of mechanical properties of articular cartilage from osmotic swelling behavior monitored using high frequency ultrasound, J. Biomech. Eng., 129 (2007), 413-422. |
[18] | Q. Wang, Y. P. Zheng, Non-contact evaluation of osmosis-induced shrinkage and swelling behavior of articular cartilage in situ using high-frequency ultrasound, Instrum. Sci. Tech., 34 (2006), 317- 334. |
[19] | Q. Wang, Y. Y. Yang, H. J. Niu, W. J. Zhang, Q. J. Feng, W. F. Chen, An ultrasound study of altered hydration behaviour of proteoglycan-degraded articular cartilage, BMC Musculoskeletal Disord., 14:289 (2013), 1-7. |
[20] | V. C. Mow, S. C. Kuei, W. M. Lai, C. G. Armstrong, Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments, ASME J. Biomech. Eng., 102 (1980), 73-84. |
[21] | M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164. |
[22] | C. Truesdell, Thermodynamics of diffusion, in Rational Thermodynamics, Springer, New York, 1985. |
[23] | R. M. Bowen, Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci., 18 (1980), 1129-1148. |
[24] | A. Maroudas, Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport, Biorheology, 12 (1975), 233-248. |
[25] | R. Chang, L. J. Kaplan, The donnan equilibrium and osmotic pressure, J. Chem. Edu., 54 (1977), 218-219. |
[26] | W. M. Lai, W. Y. Gu, V. C. Mow, Flows of electrolytes through charged hydrated biological tissue, Appl. Mech. Rev., 47 (1994), 277-281. |
[27] | J. M. Mansour, V. C. Mow, The permeability of articular cartilage under compressive strain and at high pressures, J. Bone Jt. Surg., 58 (1976), 509-516. |
[28] | W. Y. Gu, W. M. Lai, V. C. Mow, A triphasic analysis of negative osmotic flows through charged hydrated soft tissues, J. Biomech., 30 (1997), 71-78. |
[29] | W. M. Lai, W. Y. Gu, V. C. Mow, On the conditional equivalence of chemical loading and mechanical loading on articular cartilage, J. Biomech., 31 (1998), 1181-1185. |
[30] | J. A. Buckwalter, H. J. Mankin, A. J. Grodzinsky, Articular cartilage and osteoarthritis, Instr. Course Lect., 54 (2005), 465-480. |
[31] | A Dictionary of Units of Measurement, 2018. Available from: www.unc.edu/${{\rm{\tilde r}}}$owlett/units/index.html. |
[32] | J. P. Paul, Loading on normal hip and knee joints replacement, in Advances in Hip and Knee Joint Technology, (eds. M. Schaldach and D. Hohmann), Springer-Verlag, Berlin, (1976), 53-77. |
[33] | A. Maroudas, C. Bannon, Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans, Biorheology, 18 (1981), 619-632. |
[34] | A. Maroudas, Balance between swelling pressure and collagen tension in normal and degenerate cartilage, Nature, 260 (1976), 808-809. |
[35] | W. Wilson, D. Bradley, Specific volume of sea water as a function of temperature, pressure and salinity, Deep-Sea Res.,15 (1968), 355-363. |
[36] | A. Abazari, R. B. Thompson, J. A. W. Eliott, L. E. McGann, Transport phenomena in articular cartilage cryopreservation as predicted by the modified triphasic model and the effect on natural inhomogeneities, Biophys. J.,102 (2012), 1284-1293. |
[37] | S. G. Patil, Y. P. Zheng, J. Y. Wu, J. Shi, Measurement of depth-dependence and anisotropy of ultrasound speed of bovine articular cartilage in-vitro, Ultrasound Med. Biol., 30 (2004), 953- 963. |
[38] | W. Y. Gu, W. M. Lai, V. C. Mow, A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: Passive transport and swelling behaviors, J. Biomech. Eng., 120 (1998), 169- 180. |