Research article

A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time

  • Received: 09 October 2022 Revised: 25 January 2023 Accepted: 07 February 2023 Published: 10 April 2023
  • MSC : 35R11, 65N06

  • A new fourth-order explicit grouping iterative method is constructed for the numerical solution of the fractional sub-diffusion equation. The discretization of the equation is based on fourth-order finite difference method. Captive fractional discretization having functions with a weak singularity at $ t = 0 $ is used for time and similarly, the space derivative is approximated with the help of fourth-order approximation. Furthermore, the convergence and stability of the scheme are analyzed. Finally, the accuracy and validity are investigated by some numerical examples.

    Citation: Muhammad Asim Khan, Norma Alias, Umair Ali. A new fourth-order grouping iterative method for the time fractional sub-diffusion equation having a weak singularity at initial time[J]. AIMS Mathematics, 2023, 8(6): 13725-13746. doi: 10.3934/math.2023697

    Related Papers:

  • A new fourth-order explicit grouping iterative method is constructed for the numerical solution of the fractional sub-diffusion equation. The discretization of the equation is based on fourth-order finite difference method. Captive fractional discretization having functions with a weak singularity at $ t = 0 $ is used for time and similarly, the space derivative is approximated with the help of fourth-order approximation. Furthermore, the convergence and stability of the scheme are analyzed. Finally, the accuracy and validity are investigated by some numerical examples.



    加载中


    [1] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [2] A. H. Bhrawy, E. H. Doha, D. Baleanu, S. S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys., 293 (2015), 142–156. https://doi.org/10.1016/j.jcp.2014.03.039 doi: 10.1016/j.jcp.2014.03.039
    [3] S. S. Ezz-Eldien, E. H. Doha, Fast and precise spectral method for solving pantograph type Volterra integro-differential equations, Numer. Algorithms, 81 (2019), 57–77. https://doi.org/10.1007/s11075-018-0535-x doi: 10.1007/s11075-018-0535-x
    [4] S. S. Ezz-Eldien, Y. Wang, M. A. Abdelkawy, M. A. Zaky, A. A. Aldraiweesh, J. T. Machado, Chebyshev spectral methods for multi-order fractional neutral pantograph equations, Nonlinear Dyn., 100 (2020), 3785–3797. https://doi.org/10.1007/s11071-020-05728-x doi: 10.1007/s11071-020-05728-x
    [5] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, I. K. Youssef, Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J. Comput. Appl. Math., 384 (2021), 113157. https://doi.org/10.1016/j.cam.2020.113157 doi: 10.1016/j.cam.2020.113157
    [6] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
    [7] O. P. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn., 29 (2002), 145–155. https://doi.org/10.1023/A:1016539022492 doi: 10.1023/A:1016539022492
    [8] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: a discrete random walk approach, Nonlinear Dyn., 29 (2002), 129–143. https://doi.org/10.1023/A:1016547232119 doi: 10.1023/A:1016547232119
    [9] X. J. Yang, The fractional calculus, New York: Academic Press, 1974.
    [10] Z. Z. Sun, X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [11] J. Y. Shen, Z. Z. Sun, R. Du, Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time, East Asian J. Appl. Math., 8 (2018), 834–858. https://doi.org/10.4208/eajam.010418.020718 doi: 10.4208/eajam.010418.020718
    [12] M. R. Cui, Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation, Numer. Algorithms, 62 (2013), 383–409. https://doi.org/10.1007/s11075-012-9589-3 doi: 10.1007/s11075-012-9589-3
    [13] P. Zhuang, F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Algorithms Comput. Technol., 1 (2007), 1–16. https://doi.org/10.1260/174830107780122667 doi: 10.1260/174830107780122667
    [14] Y. N. Zhang, Z. Z. Sun, Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation, J. Sci. Comput., 59 (2014), 104–128. https://doi.org/10.1007/s10915-013-9756-2 doi: 10.1007/s10915-013-9756-2
    [15] C. C. Ji, Z. Z Sun, The high-order compact numerical algorithms for the two-dimensional fractional sub-diffusion equation, Appl. Math. Comput., 269 (2015), 775–791. https://doi.org/10.1016/j.amc.2015.07.088 doi: 10.1016/j.amc.2015.07.088
    [16] T. Wang, Y. M. Wang, A modified compact ADI method and its extrapolation for two-dimensional fractional subdiffusion equations, J. Appl. Mathe. Comput., 52 (2016), 439–476. https://doi.org/10.1007/s12190-015-0949-8 doi: 10.1007/s12190-015-0949-8
    [17] S. Y. Zhai, X. L. Feng, Investigations on several compact ADI methods for the 2D time fractional diffusion equation, Numer. Heat Transf. Part B Fund., 69 (2016), 364–376. https://doi.org/10.1080/10407790.2015.1097231 doi: 10.1080/10407790.2015.1097231
    [18] K. L. Ming, N. H. M. Ali, New explicit group iterative methods in the solution of three dimensional hyperbolic telegraph equations, J. Comput. Phys., 294 (2015), 382–404. https://doi.org/10.1016/j.jcp.2015.03.052 doi: 10.1016/j.jcp.2015.03.052
    [19] M. A. Khan, N. Alias, I. Khan, F. M. Salama, S. M. Eldin, A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional Cable equation, Sci. Rep., 13 (2023), 1549. https://doi.org/10.1038/s41598-023-28741-7 doi: 10.1038/s41598-023-28741-7
    [20] A. T. Balasim, N. H. M. Ali, Group iterative methods for the solution of two-dimensional time-fractional diffusion equation, AIP Conf. Proc., 1750 (2016), 030003. https://doi.org/10.1063/1.4954539 doi: 10.1063/1.4954539
    [21] A. Ajmal, N. H. M. Ali, On skewed grid point iterative method for solving 2D hyperbolic telegraph fractional differential equation, Adv. Differ. Equ., 2019 (2019), 303. https://doi.org/10.1186/s13662-019-2238-6 doi: 10.1186/s13662-019-2238-6
    [22] M. A. Khan, N. H. M. Ali, High-order compact scheme for the two-dimensional fractional Rayleigh-Stokes problem for a heated generalized second-grade fluid, Adv. Differ. Equ., 2020 (2020), 1–21. https://doi.org/10.1186/s13662-020-02689-8 doi: 10.1186/s13662-020-02689-8
    [23] M. R. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009), 7792–7804. https://doi.org/10.1016/j.jcp.2009.07.021 doi: 10.1016/j.jcp.2009.07.021
    [24] I. Karatay, N. Kale, S. R. Bayramoglu, A new difference scheme for time fractional heat equations based on the Crank-Nicholson method, Fract. Calc. Appl. Anal., 16 (2013), 892–910. https://doi.org/10.2478/s13540-013-0055-2 doi: 10.2478/s13540-013-0055-2
    [25] M. Abbaszadeh, A. Mohebbi, A fourth-order compact solution of the two-dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term, Comput. Math. Appl., 66 (2013), 1345–1359. https://doi.org/10.1016/j.camwa.2013.08.010 doi: 10.1016/j.camwa.2013.08.010
    [26] A. T. Balasim, N. H. M. Ali, A rotated Crank-Nicolson iterative method for the solution of two-dimensional time-fractional diffusion equation, Indian J. Sci. Technol., 8 (2015), 1–8. https://doi.org/10.17485/ijst/2015/v8i32/92045 doi: 10.17485/ijst/2015/v8i32/92045
    [27] M. A. Khan, N. H. M Ali, Fourth-order compact iterative scheme for the two-dimensional time fractional sub-diffusion equations, Math. Stat., 8 (2020), 52–57. https://doi.org/10.13189/ms.2020.081309 doi: 10.13189/ms.2020.081309
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1041) PDF downloads(40) Cited by(5)

Article outline

Figures and Tables

Figures(5)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog