Research article Special Issues

On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel

  • Received: 14 November 2021 Revised: 12 December 2021 Accepted: 16 December 2021 Published: 23 December 2021
  • MSC : 46S40, 47H10, 54H25

  • The present research investigates the Susceptible-Infected-Recovered (SIR) epidemic model of childhood diseases and its complications with the Atangana-Baleanu fractional derivative operator in the Caputo sense (ABC). With the aid of the Elzaki Adomian decomposition method (EADM), the approximate solutions of the aforesaid model are discussed by exerting the Adomian decomposition method. By employing the fixed point postulates and the Picard–Lindelöf approach, the stability, existence, and uniqueness consequences of the model are demonstrated. Furthermore, we illustrate the essential hypothesis for disease control in order to find the role of unaware infectives in the spread of childhood diseases. Besides that, simulation results and graphical illustrations are presented for various fractional-orders. A comparison analysis is shown with the previous findings. It is hoped that ABC fractional derivative and the projected algorithm will provide new venues in futuristic studies to manipulate and analyze several epidemiological models.

    Citation: Saima Rashid, Fahd Jarad, Fatimah S. Bayones. On new computations of the fractional epidemic childhood disease model pertaining to the generalized fractional derivative with nonsingular kernel[J]. AIMS Mathematics, 2022, 7(3): 4552-4573. doi: 10.3934/math.2022254

    Related Papers:

  • The present research investigates the Susceptible-Infected-Recovered (SIR) epidemic model of childhood diseases and its complications with the Atangana-Baleanu fractional derivative operator in the Caputo sense (ABC). With the aid of the Elzaki Adomian decomposition method (EADM), the approximate solutions of the aforesaid model are discussed by exerting the Adomian decomposition method. By employing the fixed point postulates and the Picard–Lindelöf approach, the stability, existence, and uniqueness consequences of the model are demonstrated. Furthermore, we illustrate the essential hypothesis for disease control in order to find the role of unaware infectives in the spread of childhood diseases. Besides that, simulation results and graphical illustrations are presented for various fractional-orders. A comparison analysis is shown with the previous findings. It is hoped that ABC fractional derivative and the projected algorithm will provide new venues in futuristic studies to manipulate and analyze several epidemiological models.



    加载中


    [1] F. Haq, K. Shah, G. Rahman, M. Shahzad, Numerical analysis of fractional order model of HIV-1 infection of $CD4^{+}$ T-cells, Comput. Methods Differ. Eq., 5 (2017), 1–11.
    [2] I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, IJOCTA, 8 (2018), 17–25. http://dx.doi.org/10.11121/ijocta.01.2018.00532 doi: 10.11121/ijocta.01.2018.00532
    [3] A. A. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math. Model. Nat. Phenom., 14 (2019), 311. http://dx.doi.org/10.1051/mmnp/2018074 doi: 10.1051/mmnp/2018074
    [4] S. Ullah, M. A. Khan, M. Farooq, Z. Hammouch, D. Baleanu, A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative, Discrete Cont. Dyn. Syst., 13 (2020), 975–993. http://dx.doi.org/10.3934/dcdss.2020057 doi: 10.3934/dcdss.2020057
    [5] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504–515. http://dx.doi.org/10.1016/j.amc.2017.08.048 doi: 10.1016/j.amc.2017.08.048
    [6] X.-P. Li, N. Gul, M. A. Khan, R. Bilal, A. Ali, M. Y. Alshahrani, et al., A new Hepatitis B model in light of asymptomatic carriers and vaccination study through Atangana-Baleanu derivative, Results Phys., 29 (2021), 104603. http://dx.doi.org/10.1016/j.rinp.2021.104603 doi: 10.1016/j.rinp.2021.104603
    [7] X.-P. Li, Y. Wang, M. A. Khan, M. Y. Alshahrani, T. Muhammad, A dynamical study of SARS-COV-2: A study of third wave, Results Phys., 29 (2021), 104705. http://dx.doi.org/10.1016/j.rinp.2021.104705 doi: 10.1016/j.rinp.2021.104705
    [8] X.-P. Li, H. Al Bayatti, A. Din, A. Zeb, A vigorous study of fractional order COVID-19 model via ABC derivatives, Results Phys., 29 (2021), 104737. http://dx.doi.org/10.1016/j.rinp.2021.104737 doi: 10.1016/j.rinp.2021.104737
    [9] S.-S. Zhou, M. I. Khan, S. Qayyum, B. C. Prasannakumara, R. N. Kumar, S. U. Khan, et al., Nonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganisms, Int. J. Mod. Phys. B, 35 (2021), 2150145. http://dx.doi.org/10.1142/S0217979221501459 doi: 10.1142/S0217979221501459
    [10] Y.-Q. Song, H. Waqas, K. Al-Khaled, U. Farooq, S. U. Khan, M. I. Khan, et al., Bioconvection analysis for Sutterby nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: A Marangoni and solutal model, Alex. Eng. J., 60 (2021), 4663–4675. http://dx.doi.org/10.1016/j.aej.2021.03.056 doi: 10.1016/j.aej.2021.03.056
    [11] Y.-Q. Song, S. A. Khan, M. Imran, H. Waqas, S. U. Khan, M. I. Khan, et al., Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk, Alex. Eng. J., 60 (2021), 4607–4618. http://dx.doi.org/10.1016/j.aej.2021.03.053 doi: 10.1016/j.aej.2021.03.053
    [12] Y.-Q. Song, M. Hassan, S. U. Khan, M. I. Khan, S. Qayyum, Y.-M. Chu, et al., Thermal and boundary layer flow analysis for MWCNT-SiO2 hybrid nanoparticles: an experimental thermal model, Mod. Phys. Lett. B, 35 (2021), 2150303. http://dx.doi.org/10.1142/S0217984921503036 doi: 10.1142/S0217984921503036
    [13] J. F. Li, H. Jahanshahi, S. Kacar, Y.-M. Chu, J. F. Gómez-Aguilar, N. D. Alotaibi, et al., On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control, Chaos Soliton. Fract., 145 (2021), 110681. http://dx.doi.org/10.1016/j.chaos.2021.110681 doi: 10.1016/j.chaos.2021.110681
    [14] P.-Y. Xiong, A. Almarashi, H. A. Dhahad, W. H. Alawee, A. Issakhov, Y.-M. Chu, Nanoparticles for phase change process of water utilizing FEM, J. Mol. Liq., 334 (2021), 116096. http://dx.doi.org/10.1016/j.molliq.2021.116096 doi: 10.1016/j.molliq.2021.116096
    [15] P.-Y. Xiong, A. Hamid, Y.-M. Chu, M. I. Khan, R. J. P. Gowda, R. N. Kumar, et al., Dynamics of multiple solutions of Darcy-Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point, Eur. Phys. J. Plus, 136 (2021), 315. http://dx.doi.org/10.1140/epjp/s13360-021-01294-2 doi: 10.1140/epjp/s13360-021-01294-2
    [16] M. A. Dokuyucu, E. Celik, H. Bulut, H. M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur. Phys. J. Plus, 133 (2018), 92. http://dx.doi.org/10.1140/epjp/i2018-11950-y doi: 10.1140/epjp/i2018-11950-y
    [17] H. Kang, X. Fu, Epidemic spreading and global stability of an SIS model with an infective vector on complex networks, Commun. Nonlinear Sci. Numer. Simul., 27 (2015), 30–39. http://dx.doi.org/10.1016/j.cnsns.2015.02.018 doi: 10.1016/j.cnsns.2015.02.018
    [18] X. Liu, Y. Liu, Y. Zhang, Z. Chen, Z. Tang, Q. Xu, et al., Pre-existing immunity with high neutralizing activity to 2009 pandemic H1N1 influenza virus in shanghai population, PloS ONE, 8 (2013), e58810. http://dx.doi.org/10.1371/journal.pone.0058810 doi: 10.1371/journal.pone.0058810
    [19] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. -M. Chu, Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations, Math. Method. Appl. Sci, 2021, in press. http://dx.doi.org/10.1002/mma.7954
    [20] R. K. Upadhyay, P. Roy, Spread of a disease and its effect on population dynamics in an Eco-epidemiological system, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4170–4184. http://dx.doi.org/10.1016/j.cnsns.2014.04.016 doi: 10.1016/j.cnsns.2014.04.016
    [21] E. Ucar, N. Ozdemir, E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 308. http://dx.doi.org/10.1051/mmnp/2019002 doi: 10.1051/mmnp/2019002
    [22] T. Zhang, X. Meng, Y. Song, T. Zhang, A stage-structured predator-prey si model with disease in the prey and impulsive effects, Math. Model. Anal., 18 (2013), 505–528. http://dx.doi.org/10.3846/13926292.2013.840866 doi: 10.3846/13926292.2013.840866
    [23] A. Atangana, B. S. T. Alkahtani, Analysis of the keller-segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439–4453. http://dx.doi.org/10.3390/e17064439 doi: 10.3390/e17064439
    [24] S.-B. Chen, S. Rashid, M. A. Noor, Z. Hammouch, Y.-M. Chu, New fractional approaches for $n$-polynomial $P$-convexity with applications in special function theory, Adv. Differ. Equ., 2020 (2020), 543. http://dx.doi.org/10.1186/s13662-020-03000-5 doi: 10.1186/s13662-020-03000-5
    [25] S.-B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y.-M. Chu, A new approach on fractional calculus and probability density function, AIMS Mathematics, 5 (2020), 7041–7054. http://dx.doi.org/10.3934/math.2020451 doi: 10.3934/math.2020451
    [26] S.-B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y.-M. Chu, Integral inequalities via Raina's fractional integrals operator with respect to a monotone function, Adv. Differ. Equ., 2020 (2020), 647. http://dx.doi.org/10.1186/s13662-020-03108-8 doi: 10.1186/s13662-020-03108-8
    [27] S.-B. Chen, S. Saleem, M. N. Alghamdi, K. S. Nisar, A. Arsalanloo, A. Issakhov, et al., Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins, Case Stud. Therm. Eng., 25 (2021), 100939. http://dx.doi.org/10.1016/j.csite.2021.100939 doi: 10.1016/j.csite.2021.100939
    [28] S.-B. Chen, S. Soradi-Zeid, H. Jahanshahi, R. Alcaraz, J. F. Gómez-Aguilar, S. Bekiros, et al., Optimal control of time-delay fractional equations via a joint application of radial basis functions and collocation method, Entropy, 22 (2020), 1213. http://dx.doi.org/10.3390/e22111213 doi: 10.3390/e22111213
    [29] M. Caputo, Elasticita e Dissipazione, Bologna: Zanichelli, 1969.
    [30] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [31] R. Hilfer, Applications of fractional calculus in physics, Singapore: Word Scientific, 2000.
    [32] D. Baleanu, Z. B. Guvenc, J. A. Tenreiro Machado, New trends in nanotechnology and fractional calculus applications, Dordrecht: Springer, 2010. http://dx.doi.org/10.1007/978-90-481-3293-5
    [33] J. Singh, D. Kumar, D. Baleanu, On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag–Leffler type kernel, Chaos, 27 (2017), 103113. http://dx.doi.org/10.1063/1.4995032 doi: 10.1063/1.4995032
    [34] D. Kumar, J. Singh, D. Baleanu, Sushila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag–Leffler type kernel, Physica A, 492 (2018), 155–167. http://dx.doi.org/10.1016/j.physa.2017.10.002 doi: 10.1016/j.physa.2017.10.002
    [35] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
    [36] A. A. M. Arafa, S. Z. Rida, M. Khalil, Solutions of fractional order model of childhood disease dynamics with constant vaccination strategy, Math. Sci. Lett., 1 (2012), 17–23. http://dx.doi.org/10.12785/msl/010103 doi: 10.12785/msl/010103
    [37] F. Haq, M. Shahzad, S. Muhammad, H. A. Wahab, G. U. Rahman, Numerical analysis of fractional order epidemic model of childhood diseases, Discrete Dyn. Nat. Soc., 2017 (2017), 4057089. http://dx.doi.org/10.1155/2017/4057089 doi: 10.1155/2017/4057089
    [38] D. Baleanu, S. M. Aydogn, H. Mohammadi, S. Rezapour, On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method, Alex. Eng.. J., 59 (2020), 3029–3039. http://dx.doi.org/10.1016/j.aej.2020.05.007 doi: 10.1016/j.aej.2020.05.007
    [39] H. Singh, J. Dhar, H. S. Bhatti, S. Chandok, An epidemic model of childhood disease dynamics with maturation delay and latent period of infection, Model. Earth Syst. Environ., 2 (2016), 79. http://dx.doi.org/10.1007/s40808-016-0131-9 doi: 10.1007/s40808-016-0131-9
    [40] S. Rashid, Z. Hammouch, H. Aydi, A. G. Ahmad, A. M. Alsharif, Novel computations of the time-fractional Fisher's model via generalized fractional integral operators by means of the Elzaki transform, Fractal Fract., 5 (2021), 94. http://dx.doi.org/10.3390/fractalfract5030094 doi: 10.3390/fractalfract5030094
    [41] S. Rashid, K. T. Kubra, J. L. G. Guirao, Construction of an approximate analytical solution for multi-dimensional fractional Zakharov–Kuznetsov equation via Aboodh Adomian decomposition method, Symmetry, 13 (2021), 1542. http://dx.doi.org/10.3390/sym13081542 doi: 10.3390/sym13081542
    [42] T. M. Elzaki, The new integral transform Elzaki transform, Global Journal of Pure and Applied Mathematics, 7 (2011), 57–64.
    [43] A. A. Alderremy, T. M. Elzaki, M. Chamekh, New transform iterative method for solving some Klein-Gordon equations, Results Phys., 10 (2018), 655–659. http://dx.doi.org/10.1016/j.rinp.2018.07.004 doi: 10.1016/j.rinp.2018.07.004
    [44] A. H. Sedeeg, A coupling Elzaki transform and homotopy perturbation method for solving nonlinear fractional heat-like equations, American Journal of Mathematical and Computer Modelling, 1 (2016), 15–20.
    [45] M. Yavuz, T. Abdeljawad, Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel, Adv. Differ. Equ., 2020 (2020), 367. http://dx.doi.org/10.1186/s13662-020-02828-1 doi: 10.1186/s13662-020-02828-1
    [46] Y. Qing, B. E. Rhoades, T-stability of Picard iteration in metric space, Fixed Point Theory Appl., 2008 (2008), 418971. http://dx.doi.org/10.1155/2008/418971 doi: 10.1155/2008/418971
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1978) PDF downloads(105) Cited by(3)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog