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Abstract: The present research investigates the Susceptible-Infected-Recovered (SIR) epidemic
model of childhood diseases and its complications with the Atangana-Baleanu fractional derivative
operator in the Caputo sense (ABC). With the aid of the Elzaki Adomian decomposition method
(EADM), the approximate solutions of the aforesaid model are discussed by exerting the Adomian
decomposition method. By employing the fixed point postulates and the Picard-Lindel6f approach,
the stability, existence, and uniqueness consequences of the model are demonstrated. Furthermore, we
illustrate the essential hypothesis for disease control in order to find the role of unaware infectives in the
spread of childhood diseases. Besides that, simulation results and graphical illustrations are presented
for various fractional-orders. A comparison analysis is shown with the previous findings. It is hoped
that ABC fractional derivative and the projected algorithm will provide new venues in futuristic studies
to manipulate and analyze several epidemiological models.
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1. Introduction

Childhood infections are among the highly prevalent types of infectious diseases. Influenza,
hepatitis, chickenpox, malaria, rubella and tetanus are illustrations of infections. Vaccination of


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022254

4553

children is recommended by healthcare personnel to prevent them from contracting such infections.
Vaccination has had a crucial effect in diminishing the prevalence of contagious illnesses in children.
On the other hand, preventable diseases constitute a significant global health hazard. Vaccination has
a considerable influence on the prevention of infectious illnesses in infants. Therefore, among the
most vital aspects of preventative health initiatives is childhood diseases (CHD). Numerous
physicians and mathematicians are interested in the dynamics of diseases such as Haq et al. [1],
Koca [2], Khan et al. [3], Ullah et al. [4] and Singh et al. [5].

Vaccinations are the more efficient way to prevent illnesses in babies. As a result, developing a
framework that anticipates the strongest performance of vaccine effectiveness needed is critical to
preventing the development of such illnesses. In 1974, the World Health Organization’s (WHO)
“Extensive Immunization Program (EPI)” was established to expand vaccine availability for all
children. =~ Mathematical simulations are frequently employed to acquire a clearer and more
comprehensive knowledge of the mechanisms of illness dissemination in children and to assess
preventive approaches [6—8].

The scientists employed nonlinear systems to solve real-world challenges in a variety of fields. For
physicians, the concept of dynamical problems is well-known. It is gaining popularity in a variety
of professions and is exploring various facets of the aforementioned domain [9-15]. Several experts
produced fractional-order differential equations throughout the past three decades. It was widely used
to overcome significant challenges in a variety of disciplines; see [16-28]. Existence, stability analysis,
simulation and optimal approaches are some of the noted features that have lately been introduced. The
fractional derivative operators were proposed by several researchers, such as Caputo [29], Podlubny
[30], Hilfer [31], Baleanu et al. [32], Singh et al. [33], Kumar et al. [34] and henceforth. Atangana-
Baleanu [35] recently proposed a new concept of a fractional order derivative incorporating Mittag-
Leffler as a non-singular kernel, and the authors [33] highlighted the further attributes. Employing
fractional derivatives and implementing them into the CHD model has resulted in a variety of scientific
findings.

All of the research aforementioned constructed a mechanistic and chaotic mathematical framework
of CHD spread mechanisms, but none of them explored the fractional order feature of the paradigm.
Unfortunately, no progress has been made in investigating the fractional-order behaviour of the CHD
model, which correlates with the ABC fractional derivative operator up to this point.

Our aim is that we split the disease-affected community into three epidemiological categories in the
paradigm described in this article: a susceptible category (S), an infected category (I), and a removed
category (R) designating inoculated as well as healed individuals having persistent immunization.

In 2012, Arafa and other academics resurrected the classical childhood illness transmission
dynamics [36]. The model is described as follows:

@ — (1 -P)yv—BSI-HS,

do

% =BSI—-(y + v, (1.1)
dR _

@ =Pv+yI-vR

where S = s/N, I = ¢/N, R = t/N, N = s+ + . The vaccine’s efficiency is 100 percent in this
scenario, and N assumed to be variable. Thus, v represents the birth rate, S reflects the general contact
rate of a vulnerable individual with an infectious person, y represents the infected individual’s recover-
ability and readmission into the eliminated class, and P represents the immunized population at birth
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(with 0 < P < 1). Recently, Haq et al. [37] established the numerical solutions of fractional CHDs,
Baleanu et al. [38] projected the exhibiting of prevalent CHDs via Caputo-Fabrizio in the frame of the
Laplace transform, and Singh et al. [39] investigated vaccination of the SIR model.

In 1980, Adomian first proposed the Adomian decomposition method (ADM). This approach is
useful for solving systems of differential equations numerically and analytically [40, 41]. The
Adomian approach handles nonlinear DEs and the system of fractional DEs without requiring a
Lagrange multiplier, intricate integrals, or any more variables.

Adopting the above propensity, we use a recently developed arbitrary order derivative in the CHD
model. The fundamental objective of this paper is to examine the CHD model by applying a
revolutionary ABC fractional derivative operator and to describe the intricacies of the uniqueness and
existence of the aforesaid model solution by aiding a fixed point postulate and the Picard-Lindelof
technique.

The following is a summary of the considerations in the design of this article: The ABC derivative
of arbitrary order is investigated in Section 2. Furthermore, the existence theory of the mechanism
is presented in Section 3. An algorithm is established with the correlation of the Elzaki transform
and ADM. By employing the contraction mapping theorem and the Picard—Lindelof technique, the
uniqueness and existence of the solutions to the system are analyzed in Section 4. Some simulation and
tabulation consequences are debated in Section 5. Finally, in Section 6, we summarise the concluding
remarks and future directions.

2. Preliminaries

The study of hypotheses and the use of derivatives and integrals of contested mappings is known as
fractional calculus. In the subsequent ongoing area, we use essential terminology and findings obtained
from fractional calculus theory.

Definition 2.1. ( [30]) The Caputo fractional derivative structure is stated as

o
1 £ (x)
e f P dx, n—-1<a<n,
0

‘D = 2.1)

d" _
d_g“f(Q)’ a = n.

Definition 2.2. ( [35]) For f € H,(&,3), & < B, « € [0, 1] and The ABC fractional derivative is stated
as follows:

Y
B RN
et = o [ rioE,] - M=  Jax 2.2)

where B(a) in (2.2) is the normalization function with B(a) = B(0) = B(1) = 1.

Definition 2.3. ( [35]) Let @ € [0, 1], then the integral of fractional order @ of the function f of the
ABC-operator is defined as

e
ABC 7a _ l-a @ f N2
I00) = 5@ + s [ e % dx 23)
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Definition 2.4. ( [42]) A set M involving exponential function is defined as

M={f() : Fe. 11,1, > 0.]f(0)] < zet, if o€ (=1y x [0, 0)l}. (2.4)

where 7 is a finite number, but /;, [, may be finite or infinite.

Definition 2.5. ( [42,43]) A mapping f(o) having Elzaki transform is described as

(9

E{f(0))(®) = U(®) = f 0o, 030, Vel bl 2.5)
0

Theorem 2.6. ( [44])(Convolution property). The subsequent consequence holds true for Elzaki
transform:

E{f, «£,} = w 'E(f)) = E(f,). (2.6)

Definition 2.7. ( [44]) The CFD form of Elzaki transform is described as:
n-1
E{ DS (£(0))}(w) = 0™ U(w) - Z W E90), n—1<a<n. 2.7)

k=0

Definition 2.8. ( [45]) The ABC fractional derivative formation of Elzaki transform is described as

B(a) (u(w)
w

E{3*Dy(f@))(w) = —=——

- a)f(O)), 2.8)
where E{f(0)}(w) = W(w).
3. A fractional CHDs model

It is necessary to modify the integer-order form to arbitrary setting in order to numerically
investigate the effect of biological components and to approximate the emergence and spread of
CHDs. As a result, in this study, we deduce the paradigm (1.1) for the Atangana-Baleanu derivative
operator supplied as

DgS(0) = ©i(0.8(0)) = (1 =Py - S(0)(0) — ¥S(0),
DY) = (0. 1(0) = S ~ (¥ + V(o)
DiR@ = Os(0,R(0) = Py +7I(0) — VR(©). (3.1)

where 47D signifies the ABC fractional derivative operator having fractional order @, i.e.,0 < @ < 1
and the ICs Sp(0) = S(0), In(0) = I(0), Ro(e) = R(0).
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3.1. Existence and uniqueness of fractional CHDs model

In what follows, we demonstrate that (3.1) has a fixed point. To do this, we utilize (3.1) as follows:

“5D2S(0) = ©(0,S(0)),
ABCDEI(Q) = 0s(0,I(0)),

Taking into consideration the Definition 2.3 in the aforesaid system, we have

Q
5@ - 80) = 55501(0.50)) + 55y | ©1(0.S@)e - %" dx.
0

0
10) - 1(0) = £20,(0,5(0)) + 525 [ ©2(0. S(©@)(0 — )" dx, (3.3)
0

o
R(0) - R() = 555030, 8(0) + 5557 [ ©3(0 S(@)(e = %) dx.
0

Furthermore, we show that the kernels ®;,®,,®; satisfy both the Lipschitz and contraction
assumptions.

Theorem 3.1. The kernel @,(o, S(0)) preserves the Lipschitz assumptions as well as contraction if the
inequality

0<pBy+v<l (3.4)

is satisfied.

Proof. Assume that ©,(0,S(0)) = (1 — P)v — 8S(0)I(0) — vS(0).
For S and S, we attain

|@1e.5) - 010.8w)|| = ||((1 - P - SN - vS@) - ((1 - Py - S (@) - VS (0))

< AlLo)||[St) - Sw)|| + v||St) - S)||
< @) +»|S© -Sw)||
< K|St -S| (3.5)

where K; = By + v, and ||I(Q)|| = max,ey, [[I(0)ll < x1 is a bounded mapping.

Thus, (3.5) holds the Lipschitz assumption for ®; and also 0 < By + v < 1, shows that ®, is a
contraction.

Analogously, the Lipschitz assumption for ®, and ®; are presented as follows:

|@s(0.10) - Ox60.Tt0))|| < Ki[l1@) ~Tio)|,
|o3(. R@@) - 030, R@))| < Ki[|R@) - R, (3.6)

where K, = By, +7y+vand K3 = v and ||S(Q)|| = maxX,ey, [IS(O)Il < x» is a bounded mapping. Moreover,
if0<By,+y+v<land0 <v < 1,then ®, and ®; are contraction.
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Therefore, in view of kernels, (3.3) can be written in a recursive manner as follows:

1 -
Q)=S0 =Sl = o )( 1(0.8u-1) — ©1(0,8,2))

Y
@ N
+ B(Q’)F(Q) f(G)l(Q’ Snfl) - @1(@, Sth))(Q —X) ldX,
0

ﬁ(@z(é), L,-1) — ©2(0, I”_Z))

,00) =L -1_1(0) =
o
N a-
+ W f(®2(@a In—]) - @2(@, In—2))(Q _ X) 1dX,

1-
Q) =Ri@-Ril0 = Fo )(@)3(@, 1) = 030, R, )

Q
’ B(c:l"(a) f (030, Rc1) - O3(0. Ru2) (@ — X" 'dx,  (3.7)
0

supplemented by the initial conditions Sy(0) = S(0), Io(0) = I(0) and Ry(0) = R(0). Applying the
norm on (3.7), then we have

) - 5,10

HB( ) 1(Q,Sn—1)—®1(Q,Sn_2))

@
+m f (©1(0.8,-1) - ©1(0,8,2))(0 - x)*dx|
0

< %E—Jf”(&(@ Si-1) — @1 (o, S"—2))H

@ ool . . .
+WH f(@l(g, S.-1) — 0o, Sn_z))(g -X) dXH (By triangular inequality).
0

(3.8)

In view of Lipschitz assumption (3.6), we obtain

|en@]| = [8:@ - S-10)
[
<K 113;3 $,11(0) = 8,200 + K1 roses Of -S| -xax. (39

Thus, we attain

Q
|2 < KIMH 0@ + KigSs Of li@||e-xax. G.10)
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Analogously, we attain

HQZn(Q)H Kz B(@) ‘QQ(n 1)(Q)H+K2Wf” 2n— 1)(9)”(9 x)*"dx,

HQ3n(Q)H K3B()

Also, we can express that

$.,(0) = > Q1(0), 1@ = )" D,(0), Ru(@) = ) ,(0).

J=1 J=1 J=1

Next, to find the existence result, we surmise the subsequent theorem.
Theorem 3.2. The CHDs model (3.1) has a solution, if there exists T* such that

Lo o T ko m=123...
B(a) B(a)I'(@)

'Q%(n 1)(@)“ +K3W‘[HQ3(" 1)(@)”(@ x)""'dx.

(3.11)

(3.12)

Proof. Since the mappings S(0), I(0) and R(o) are bounded. Also, the kernels satisfies Lipschitz

assumptions. Applying recursive technique on (3.10) and (3.11), we attain

1-a o” n
By X B(a)r(a)]

1l—-« e o“ ]”
B(a)  B(@)(a)

l-a o 1
Qu(0)]| < ||Ru(0)| [K3 B(a) K3W]

Qo) < 8.0 x

(0] < [LO)|%:

(3.13)

As a result, the mappings Q,(0),,(0) and Q3,(0) presented in (3.13) have a solution that is
continuous. Furthermore, we show that the mappings presented in (3.13) enable the solutions of (3.1),

we surmise that

S(0) = S(0) = S,(0) — Sx(0)s
I(0) - 1(0) = L,(0) - Z,(0),
R(0) = R(0) = R,(0) = R,(0),

where S,,(0), Z,(0) and R,(0) denotes the remainder terms of the solution.
Therefore, we have

< 2 [ores@) - 0ue.s, )

(3.14)
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14
a -
+W fH®1(X, S(X)) - ®I(X, S”_I(X))H(Q _ X) ldx

1

*B@ TKS - S| + Blar@ )r( ) Ki||S =S| (3.15)
After a recursive process, we attain
T*a n+1 il
Is: {B( ) B(a)r(a)} Kire (3.16)

where a = ||S -S,- || Applying limit on obtaining equation as n tends to co, we find ||S,1(Q)|| — 0.Ina

To demonstrate the uniqueness of the solutions, we surmise that the system (3.1) has different
solution such that S;(p), I;(0) and R;(p), then we have the following:

S(0) = Si(0) 10,8(0)) — ©1(0,S 1(@)))

1=
" Bla )(

@
+m f(®l(Q’ S(0) - 0,(o, Sl(Q)))(Q _x)*dx.
0

Applying norm on above equation, we have

[s@-si0) 1(©.5(0)) ~ ©1(0.$10))

=

B(a)l"( )IHQI(@S(Q)) 010, 1(9))“(@ )"~ dx.

In view of Lipschitz assumptions (3.6), we have

s -si0] = 55xils©-sio
B I5@ - 8@ (3.17)
This yields, we have
[s0)-s10)(1 - 5%+ 5 < (3.18)
O

Theorem 3.3. The system of (3.1) has a unique solution if the subsequent assumption satisfy

a

1 (3.19)

(l—l_al( +Q—)>O
B(@) B(a)I'(@)
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Proof. Assume that the hypothesis of (3.17) satisfy

st - SI(Q)H(I _ %(_;;Kl + B(aé;(li(oz)) <0, (3.20)

which shows that HS(Q) -S (Q)H = 0. Hence, we conclude S(o0) = S;(0). Analogously, we can continue
the same procedure for I and R. O

4. Approximation technique and solution

4.1. Configuration of Elzaki Adomian decomposition method
In order to find the solution of the system (3.1), employing the Elzaki transform
E[**“D3S(0)|(w) = E[(1 - P)v - BS(0)I(0) - vS(0)],

E[ **“D1(0)] = E[BS(0)I(0) — (¥ + )I(0)],
E[“*“DgR(0)] = E[Pv + yI(0) — vR(0)].

It follows that

o (23— S(0)) = E[(1 - P)v - SS(0)(0) - vS(0)],
S (FR2 — 1(0)) = E[BS(0)1(0) — (¥ + V1)),
St (HB2L — wR(0)) = E[Py +¥1(0) - VR(0)]-

wr+1-a w

Now, supplementing the initial conditions and employing the inverse Elzaki transform on the aforesaid
system of equations, we have

S(0) = S(0) + B[ 42L2B[(1 - Py - S(@1(0) - ¥S(@)]

1) = 10) + B[ 5258 0)l0) - (0 + 1)) | 4.1
R() = RO) + B[ % 52E[Py +)10) - vR(@)] |

Suppose that the infinite series formulation of S(p), I(0) and R(p) are represented as
S(o) = i Su(0), (o) = i L.(0), R(o) = i R, (0), (4.2)
n=0 n=0 n=0
whilst the nonlinear term
S()X(o) = i An(0) (4.3)
n=0

are dealt by the Adomian polynomial stated as

A0) = r(n+ i [ZaKsK(Q)ZaKIK@] K (4.4)
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The first three polynomials are presented as

So(@)Ih(p), n =0,
Aq0) = {So@1i(0) + Si1(0)o(0), n=1,
2500 (0) + 28,011 (o) + 285(0)1o(0), n =2.

plugging (4.2)—(4.4) into (4.1), we attain

Mg

B[ 3 8,(0)] = &S(0) + 52| (1 - Py =5 £ S,(0) £ Lie) v £ S,60)].
B| X L) = «10) + wBt‘)aE[ﬁ T i@ i) L(o) - (y +v) 20 1,,@], (4.5)

B[ 3 Ry(0)] = *RO) + ijl)“E[Pv + ygo I, - vg‘,o Rn(g)].

0

n

M8

8

Comparing both sides of (4.5) presents the subsequent recursive algorithm, we have

E[So] = ’S(0),

@yl -
B[S = T w70 - Py = BB A©) -~ ElSo@)]]
a 1 -
ElS:] = g |@' Py - BB @) - EIS @]
) a 1 -
ElSi] = T [0 - Py~ BEIAQ)] - VEIS, @]
E[l,] = ’I0),
@yl —
BL] = g AR - O + VB
a 1 —
BlL) = T LA @] - 0+ VB @]
I
Blla] = g FELAQ)] - 0+ VB
E[Ry] = w’R(0),
a 1=
BR] = T oy 4B (0] R,
@4 =
B[R] = TPy + yE(L @) - E[R )]
@y ] —
ER,] = TPy +ElL@)] vER, ] (4.6)

By employing the inverse Elzaki transform, we attain the iterative terms as follows:

So = So,
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S, = (IB_(;)V[F(ZQ: -] B(So];o(;)ﬂ‘)) [r(ZQ: 5+ (=)
_(IIB_Z(I:;)V2 [r(czy;gial) +2a(l - “)rz(cf; TR “)2]’
5= (IB_(;)V[F(ZQ: pr-o)- _ +B[jg)+ —
x[r(gjygfn +2a(l - “)r(cf: ntd- 0‘)2]
_B(S?;(Z)(Z)S = [F(ZZQTD +2e(l - “)r(ag i TR “)2] - PI)Bf(f)I o
x[rgjfial) 1301 - O‘)F(zoi 55 + 3a(l - “)Zr(ag—:l) F(- a)3],
I = L,
L= ?BS((:;) [F(ZQ: p - 2l (%:a))/) [r(zéf n - @)
2= gf—g;(ﬁsolo — (y +v) = (v +v)BSoly — (¥ + V)
X[r(czy;gial) +2a(l- “)r(agi ntd- a)z]
_ﬂIO(ﬁ@SBOZI(Oo; = [rgzvgial) +20(l ) : pra-er|- - P)T.;Zfl° -
3 3a 2a a
x[m +3a2(1 - TR a)zﬁ +(1- a/)3],
R, = Ry,
R =~ ]gl((;)_ = [F(Z{l nta- @)|- BZL)[F(ZZQTD t2el-arg + ntd- @
- BI(’;) [F(ZQ: TR R +IB%VZ)()QJ; R
X[r(czy;gial) + 2a(1 - “)r(agi TR a)z] - Bl:z;)
X[F(Z;Qial) +30%(1 - “)r(zizi 55 + 3a(l - “)zr(ag—:n +(-a) 4.7

Analogously, one can achieve the additional components. Hence, the infinite series solution of (3.1) is
presented as:

S(0) = So(0) +S1(0) +82(0) + ...,
I(0) = In(0) + Li(0) + L(0) + ..., (4.8)
R(0) = Ro(0) + Ri(0) + Ra(0) + ...
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4.2. Numerical solution and discussion

In this analysis, we utilize Sg = 1,1, = 0.5, Ry =0, v =04, 8 =0.8, y = 0.03,P; = 0.9 and
the EADM yields an approximate solution in the form of an infinite series. Thus, we compute the first
four terms of (4.8) as follows:

S =1- O’é?i)zo(nﬁf TR “)) - 0.14;(6;))8 O(r(czigial) +2a(1 = a)r(ag—:l) w(d- “)2)
_0%)31(30(“;“;93:1) +3a2(1 - a)% +3a(l - a)zl“(a/g—j-l) +(1-a))

o) =0+ ?Biif(r(fl TR @)- Ogiio(r(czigfl) +2ol - “)F(ag—in +(1 =)
+%‘Z(i‘;(r(§;{a1) +30%(1 - a)% +3a(l - “)2r(ag—:1) +(1- a)3),

R = (I)Biif(r(giy ptd- “)) - 0';?;)20(r(§;@:) +2a(1 = Cy)r(ag—:l) +(1= 0‘)2)
—Ol'glj(ic;o(rg;gf 5t 303(1 - a)% +3a(l - “)Zr(ag—in (- a)3). (4.9)

In Figure 1, the estimated solutions of several segments versus the provided data and pertaining to
various fractional orders have been shown. Furthermore, the outcomes reveal that the response is
constantly contingent on the time-fractional derivative and parametric settings. According to
inoculation, the prevalence of the cured group progressively improves as the number of the vulnerable
group diminishes. As shown in Figure 1, for a short period of time, responsiveness diminishes,
resulting in a reduction in infection, as illustrated in Figure 2. Figure 3 depicts a typical case of
glucose intolerance. This can be seen in the graphs for excessive plasma concentrations, where
despite considerable increases in adjusted glucose metabolism concentrations in the liver, glycogen
synthesis generation could be completely inhibited. The fractional-order derivative corresponds to the
growth and contraction of distinct components. For a short period of time, the involved procedure is
rapid on a small fractional order, but subsequently it reverses and remains sluggish on the identical
lesser fractional order. As a result, in biological models, the fractional calculus depicts systemic
mechanisms of deterioration and regeneration. The diffraction peaks and their associated vibrational
frequencies are identical across scenarios; however, the timeframe of these peaks varies. Within
fractional orders, the investigated model’s transitory vibrations are considerably more spread out than
those of its integer-order counterpart, whereby responses have prolonged interepidemic intervals. As
a consequence, we arrived at the conclusion that, relying on the attribute values, the fractional-order
framework simultaneously cumulates to the classical model and matches statistics equally, or
incorporates data more accurately and excels the conventional paradigm.

Tables 1-3 exhibit the findings of the model of epidemic CHDs using Caputo, Caputo-Fabrizio,
and ABC fractional derivatives for the susceptible class(S), infected class(I), and removed class(R),
respectively. The summary statistics of the local stability investigations are supported by exisiting
results provided by Haq et al. [37] and Baleanu et al. [38]. We proceeded by presenting several standard
stability conclusions for a simplistic formula, as well as their application to a scenario in which the
framework was reinforced substantially feasible by including a category of incubating persons and a
group of biologically protective children.
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0 2 4 6 8 10

T

[ 0=1 == 0=0.9 = 0=08 0=0.7 = 0:=0.6|

(a)

Figure 1. Simulation of susceptible group S(o) for different fractional order @ =
1, 0.9, 0.8, 0.7, 0.6.

0 2 4 6 8 10

T( thneinweefs )

[ 0=1 == 0=0.9 = 0=08 0=0.7 = 0:=0.6|

(@
Figure 2. Simulation of infected group I(o) for different fractional order @ =
1, 0.9, 0.8, 0.7, 0.6.
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Figure 3.

0

2 4

6 8

T( thneinweefs )

10

[=—0=1 = 0=009

o=0.8

0=0.7 = 0:=0.6|

1, 0.9, 0.8, 0.7, 0.6.

(a)

Simulation of removed group R(o) for different fractional order @ =

Table 1. Analysis among the solutions of the CHDs model in the Caputo fractional derivative
D2 [37], Caputo-Fabrizio “¥D® [38] and Atangana-Baleanu fractional derivative in the
Caputo sense “2¢D? for S(o).

0 ‘D' =07 Da=07) 45D a=07 D=09) D*a=09) 45D =0.9)
0.1 53254x107!  49673x 107!  4.6457 x 107! 9.5907 x 107! 8.9987x10! 8.0459 x 107!
02 4.6534x107"  39846x 107" 3.2426x 107" 82342x 1072  7.8945x 1072  7.0285x 107!
0.3 77789 x 107" 6.7789x 107" 6.0087 x 10™' 25673 x 107" 1.9999 x 10! 1.9807 x 107!
04 5.0000x 107" 49999 x 107" 4.9727x 107" 8.0099 x 1072 8.0000x 1072 7.9055 x 1072
0.5 —4.0060x 107" -3.9889x 10" —-3.5590 x 1072 4.0000 x 107" 3.9999 x 10~!  3.9146 x 107!
0.6 -23452x107" —-1.9445x 107" -1.4732x10"" 32378 x 107> 29889 x 1072  2.8317 x 107!
0.7 -3.8809x 107! -2.8998x 10~ -2.5703x 107! 23334x 107"  1.9344x1072  1.7227x 107!
0.8 —4.0092x 107" —-3.9987 x 107" -3.6520x 10™!  6.0001 x 1072 5.9991 x 1072 5.8529 x 1072
0.9 -53423x107" -4.9924x 107" —-47263x107! —6.0022x 1072 —-5.9992x 1072  —5.8002 x 1072
1.0 -6.8870x 107"  —59991 x 107" -5.7886 x 10°"  —2.0090 x 10~!  —1.9939 x 10~'  —1.7730 x 10!
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Table 2. Analysis among the solutions of the CHDs model in the Caputo fractional derivative
D2 [37], Caputo-Fabrizio ““D® [38] and Atangana-Baleanu fractional derivative in the

Caputo sense 42D for I(p).

o ‘Da=07) CDYUa=07) 25DYa=0.7) ‘D a=09) CSFD¥a=09) A4B5Da=0.9)
0.1 6.0023x107" 58871x10!  52585x 107!  6.3465x 107"  5.8912x 10! 5.5334 x 107!
02 6.1200x 1071 59233x 107! 53392x 107! 7.1022x 107" 5.9909x 10~!  5.7221 x 107!
03 6.9982x 1071 59833x 10!  54100x 107" 6.1122x 107" 5.9999x 10~'  5.9330 x 107!
04 6.0100x 107"  5.8842x 107"  54820x 10!  7.8881 x 107!  6.7723x 10" 6.1708 x 107!
0.5 63889x 107" 59844x 107!  55639x 107!  7.0821 x 10~ 6.8891 x 10! 6.4370 x 10~
0.6 63241x1071 59999x 10! 56613x1071  7.2312x 107! 67778 x 107 6.7328 x 107!
0.7 6.1188x 10" 5.8800x 10! 57821 x 10!  8.1817x 107!  7.7623x 10" 7.0587 x 107!
0.8 6.0000x 107" 59999 x 10!  5.9318x 10!  8.0023 x 10~!  7.9988 x 10~}  7.4152x 10~!
09 7.7478x 107" 69999 x 10! 6.1157x 10! 8.8000 x 10~'  8.0001 x 10! 7.8025 x 10~
1.0 7.4458x 107" 6.9901 x 10°!  6.3394x 10~ 9.3114x 10!  8.8891 x 10~!  8.2213 x 10~

Table 3. Analysis among the solutions of the CHDs model in the Caputo fractional derivative
D@ [37], Caputo-Fabrizio D [38] and Atangana-Baleanu fractional derivative in the
Caputo sense 2D for R(p).

o D=07) CFD*a=07) 4Dl a=07) D%=09) D% =09) 45D a=0.9)
0.1 26611x10°" 1.9911x 10" 17711 x 10" 2.0001 x 10-"  1.9590 x 10" 1.4498 x 10~
02 3.0012x107"  29345x 107" 2.0212x10""  3.0079 x 10! 2.9988 x 10~ 2.0347 x 10~
03 3.9345x 107" 29999 x 107! 2.1549x 107! 3.2000 x 10~!  2.9563x 10~!  2.5365 x 10~
04 3.0012x107"  2.8921x 107"  22101x 107"  3.5663x 10"  2.9912x10~!  2.9702 x 10~
0.5 3.0003x10°"  2.9900x 10~ 22038 x 10~ 4.0000 x 10" 3.9982x 10~ 3.3429 x 10~
0.6 3.1101x107"  3.9999x 10°!  2.1461 x 101 4.0044 x 10~"  3.9899 x 10! 3.6584 x 10!
07 3.0081x107"  3.9900x 107"  2.0431x 107"  5.0000 x 10™"  4.1231x 10! 3.9192 x 10~
0.8 25622x10°"  2.0077x 107" 1.8996x 10~  5.0012x 10"  4.8912x 10"!  4.1267 x 10~
09 2.0001x10°" 34491x 107"  1.7189x 10"  5.0099 x 10-!  4.9888 x 10! 4.2818 x 10~
1.0 2.6702x 107" 25556x 107" 1.5031 x 10! 5.6540 x 107! 5.0034 x 10~'  4.3856 x 10~

5. Some mathematical aspects of CHD model

5.1. Existence approach by Picard—Lindelof technique

Theorem 5.1. System of Eq (3.1) has a solutions by employing the Picard—Lindeldf technique.

Proof. By means of kernels defined in (3.2), we have

AIMS Mathematics

01(0,S(0)) = (1 = P)v — BS(0)I(0) — vS(0),
0,(0,1(0)) = BS(0)I(0) — (v + v)I(0),

Os(0, R(0)) = Py + yI(0) — vR(p),

(5.1)

Volume 7, Issue 3, 4552-4573.



4567

where ©(0,S(0)), ©,(0,1(0)) and ®;3(0,R(0)) are contraction mappings according to (3.6),

respectively.
Assume that
T, = sup ©1(0,S(0)|, T2 = sup [©:(0,S(0))]. 3= sup |®i(0,S(0))| (5.2)
;. ay by ay.b3
where

Qu b =lo—ai,0+al| X [0, =b,0; +b] =W, XY,

OQub, =lo—ai,0+al X [@r = by, 0, + by] = Wy X 13,

Qu by = lo—ai,0+a)| X [0 = b3,0, + b3] = W) X V3.
Taking the Picard operator, we have

DQ:OW,Y,Y5,Y3) = QW Y, 1), ¥3), (5.3)

presented as follows:

D=(0) = Eol0) + Alo, (9(9))B f (0 =) AKX, O(x))dx, (5.4

(a ) B(Q)F(a)

where  E(0) = {S(0), I(0), R(0)}, Eo(0) = {{1,(,834 and
Ao, O(0)) = {O1(0,S(0)), (0, 1(0)), O3(0, R(0)}-

Next, we surmise that the solutions of the fractional CHD model are bounded in a specified time
domain,

|2, < max{©,0,,05)

5@ - Zot0)] = ||Ate. 00 f (0 - %" Ax, O(x))ax]|

B(a) B(Q)F(a)

< 3 e 00 + g f (0 - %" |[acx, ©x))ax

< (1 - N lo”
T\ B(e) B(o)(@)

)max{Yl, Y2, Y3} <pl <Y, (5.5)

then we have

< Y
p<—.
4
Taking into account the fixed point postulate via the Banach space with the metric, we get
|02 - 0%y|| = sup |E, - ). (5.6)
o0 oW,

Now we have

- I8 2100 - a0, =200 55

chal — ®E, )
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o
+B(a§yl“(a) f ©- X)a_l[A(X’ =100 ~ A, EZ(X))] dx
0

< 5 3@ 2100 - s Z:000)

Q
*er(a) f (o- x)“-lHA(x, 21(%)) ~ A, Ex()Jdx

< 5 (o) + oo [E00 - Z)|
- 0'¢ - -
= (B(a) <+ B(a)r(a)) =10 - S|
- :z(x)H, r<1. (5.7)

Since Z is a contraction and p{ < 1. Also, the introduced operator, @ is contraction. Thus, the CHD
model concerning the ABC derivative presented in (3.1) has a fixed point. O

5.2. Stability analysis

Assume that (¢, ||.||) denotes a Banach space and U signifies a self-map of ¢. Also, suppose that
h,e1 = W(U, h,) be a recursive scheme. Surmise that a fixed point set 8(Zf) of U has at least one
element. Suppose that 7, is convergent and tends to z; € N(U). If {A,} C ¢ and introducing a, =
Wps1 — ¥ (U, )l and if lim,, o a} = O gives the outcome lim,, .., " = z;, then the recursive approach
fipe1 = Y(U, 1R, is said to be U-stable.

Theorem 5.2. ( [46]) Assume that a Banach space (¢, ||.||) and U be a self-map of the Banach space
@ yields the outcome

|24 — Uy < Hix — Usll + Bllx =yl Y x,y € g, (5.8)

where H and  such that h € [0, 1], H>0. Also, surmise that U is Picard U-stable.

We surmise that the following recursive formulae have an association with the fractional CHD
model (3.1)

S11(0) = S(o) + B[ 252E[(1 - Py - S, (0)L(0) - vS,(@)] |
L@ = 10) + B[ 2 B[BS, (o)) - (r + (@)1
Rui(0) = R(©) + B/| 2B [Py + 11,(0) - R, (0)] |

The term “’TB?;)_" considered to be the Lagrange multiplier in the aforesaid system.

In the next result, we present the following theorem.
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Theorem 5.3. Assume that the self-map G is represented as follows:

G(S,(0)) = Sn+ 1(0) = S(0) + B[ 412E[(1 - Py = 5, (0)L(0) - S, @)] |
G(1,(0)) = In+ 1(0) = o) + B[ %52 BIBS, (0)uto) - ¢y + VL (@)1
G(R,(0)) = R+ 1(0) = R(©) + B~/ | “L2B[Py + y1,(0) - YR, (0)]

then the recursive system are G stable in L* € (a;,B) if (1 = P)v — Bps(0) — vg1(0) < 1, Bpa(o) — (y +
V)pa(0) < 1 and Pv + ypy(0) — vps(0) < 1.

Proof. Initially, we prove that G has a fixed point. To prove the above consequence, we obtain the
outcome presented below for (n,m) € B X B.

6800 — GSu@))|| < ||Su(0) — Sulo))

(04 1 _
4—‘{ﬁézyfﬂﬂ—Pw—ﬁ@mmxm—samuw»—ﬂ&@wsamﬂw
|6@.0) - 6M.0))|| < |[Tuto) - L.(o)|
L[+ 1 -«
+E[—g——ﬂwa@mw—m@M@%hwwm@—M@ﬂH6%
(@)
and

|GR.(0) - GR.(0)| < [Rule) — Ru0)||

Hﬂfﬁgﬁﬂﬁ+MMPh@%Wm@—M@ﬂ”
(5.10)
Also, we have that
$4(0) = Sn(@)|| = |[Tu(@) = Lu(0)]| 2 [|Ru(0) = Ru(@)]| = [[Su(@Ta(0) = Sw(@Ln(@)]. (5.1
By plugging (5.11) in (5.9) and (5.10), we have
16Sx(@) = GSu@) < ((1 =PI = Bipato) = v1(0))[[Sn(@) — Sul@)]|;
16@(0) - GU.(@)]| < (Beao) — (¥ + V)p2(0))|[Tu(0) - Lu(o) (5.12)
and
IGR,(@) — GR(©@))]| < (Pv + yp2(0) — v93(0))|[Ru(0) = Ron(), (5.13)

where ¢;, i = 1, ..., 4, are mappings arising from E~! [%E()] along with ((1—P)v—ﬂ¢4(g)—vg01 (Q)) <

1, (Bea(@) — (¥ +v)¢2(0)) < 1 and (P + yp2(0) — v3(0)) < 1.
As a result, the self-map G has a fixed point. Moreover, the assumptions connected with the

Theorem 5.2 are satisfied by G. Now, suppose that (5.12) and (5.13) hold, thus we have

N (1 =P)v = Bes(o) — v1(0)),
H = {(Bes(0) — (y + v)g2(0)), (5.14)
(Pv + y@2(0) — v3(0)).
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It is noteworthy that in map G the supposition concerned with Theorem 5.2 satisfied. Thus, for the
supposed map, G and the hypothesis relating to Theorem 5.2 are satisfied, hence G is Picard-stable.
This completes the proof. O

6. Conclusions

In this study, the generalized fractional derivative is implemented to examine the mathematical
model of CHDs. Also, with the assistance of the contraction mapping theorem, we demonstrated that
the response of the proposed model (3.1) exists and has at least one solution. The Picard-Lindelof
approach with the self-map U used to validate the solution’s stability. Furthermore, using the EADM
algorithm, we comprehended the approximate results for various fractional-orders using the
Matlab/Maple application, and we concluded that the results of the projected model (3.1) approach
the classical solution when @ — 1. As a result, it can be concluded that EADM is a controllable,
simplistic, and more powerful analytical process for analyzing linear/non-linear phenomena. The
findings of this research are extremely beneficial to healthcare professionals who interact with peditric
and associated concerns. Consequently , we deduce that the ABC derivative can be used to investigate
the physical, pharmacological, physiological, medicinal, sociological, and economic systems.
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