Processing math: 100%
Research article

Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives

  • Received: 16 June 2023 Revised: 13 July 2023 Accepted: 24 July 2023 Published: 07 September 2023
  • MSC : 92D30, 92D25, 92C42, 34C60

  • Nonlinear fractional differential equations and chaotic systems can be modeled with variable-order differential operators. We propose a generalized numerical scheme to simulate variable-order fractional differential operators. Fractional calculus' fundamental theorem and Lagrange polynomial interpolation are used. Two methods, Atangana-Baleanu-Caputo and Atangana-Seda derivatives, were used to solve a chaotic Newton-Leipnik system problem with fractional operators. Our scheme examined the existence and uniqueness of the solution. We analyze the model qualitatively using its equivalent integral through an iterative convergence sequence. This novel method is illustrated with numerical examples. Simulated and analytical results agree. We contribute to real-world mathematical applications. Finally, we applied a numerical successive approximation method to solve the fractional model.

    Citation: Najat Almutairi, Sayed Saber. Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives[J]. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319

    Related Papers:

    [1] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
    [2] Bahar Acay, Ramazan Ozarslan, Erdal Bas . Fractional physical models based on falling body problem. AIMS Mathematics, 2020, 5(3): 2608-2628. doi: 10.3934/math.2020170
    [3] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [4] Asharani J. Rangappa, Chandrali Baishya, Reny George, Sina Etemad, Zaher Mundher Yaseen . On the existence, stability and chaos analysis of a novel 4D atmospheric dynamical system in the context of the Caputo fractional derivatives. AIMS Mathematics, 2024, 9(10): 28560-28588. doi: 10.3934/math.20241386
    [5] Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
    [6] Nadiyah Hussain Alharthi, Mdi Begum Jeelani . Analyzing a SEIR-Type mathematical model of SARS-COVID-19 using piecewise fractional order operators. AIMS Mathematics, 2023, 8(11): 27009-27032. doi: 10.3934/math.20231382
    [7] Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi . Piecewise implicit coupled system under ABC fractional differential equations with variable order. AIMS Mathematics, 2024, 9(6): 15303-15324. doi: 10.3934/math.2024743
    [8] Sabri T. M. Thabet, Reem M. Alraimy, Imed Kedim, Aiman Mukheimer, Thabet Abdeljawad . Exploring the solutions of a financial bubble model via a new fractional derivative. AIMS Mathematics, 2025, 10(4): 8587-8614. doi: 10.3934/math.2025394
    [9] Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, M. A. Abdelkawy . Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(2): 2001-2018. doi: 10.3934/math.2022115
    [10] Rashid Jan, Sultan Alyobi, Mustafa Inc, Ali Saleh Alshomrani, Muhammad Farooq . A robust study of the transmission dynamics of malaria through non-local and non-singular kernel. AIMS Mathematics, 2023, 8(4): 7618-7640. doi: 10.3934/math.2023382
  • Nonlinear fractional differential equations and chaotic systems can be modeled with variable-order differential operators. We propose a generalized numerical scheme to simulate variable-order fractional differential operators. Fractional calculus' fundamental theorem and Lagrange polynomial interpolation are used. Two methods, Atangana-Baleanu-Caputo and Atangana-Seda derivatives, were used to solve a chaotic Newton-Leipnik system problem with fractional operators. Our scheme examined the existence and uniqueness of the solution. We analyze the model qualitatively using its equivalent integral through an iterative convergence sequence. This novel method is illustrated with numerical examples. Simulated and analytical results agree. We contribute to real-world mathematical applications. Finally, we applied a numerical successive approximation method to solve the fractional model.



    Chemistry, astronomy, population growth, turbulence, weather, linguistics and stock markets are some of the scientific fields that exhibit chaotic phenomena. Chaos is understood through linguistics. In [1], Eleonora and Pietro investigated a linguistic approach to chaos understanding. We translate the complexity of chaotic systems into sounds and music, as with Chua's attractors. They found that there is an interaction between the different levels of chaotic language. Furthermore, some traits of the dynamics of language evolution in human infants are found in the major routes to chaos.

    In 1981, Leipnik and Newton [2] studied their concept of the gyroscope for chaotic motion, discovering two strange attractors for rigid bodies' motion. In [3], Wang and Tian named this system the Newton-Leipnik system and studied a chaotic Newton-Leipnik system with two strange attractors. Since Leipnik and Newton's work, many scientists have intensively examined the chaotic dynamics of rigid body motion [4,5,6,7,8,9]. Chaos control is performed by a simple linear controller, and a numerical simulation of the control is provided. In addition, Chen and Lee [4] introduced a novel chaotic system capable of generating dual-role chaos attractors when investigating rigid body motion anti-chaos control. Richter [5] studied the stability and chaos control of Newton-Leipnik systems using static nonlinear feedback laws based on Lyapunov functions. In [6], Long-Jye Sheu et al., investigated the dynamics of the Newton-Leipnik system with fractional order and was studied numerically. The Newton-Leipnik system [3] is described as:

    ˙f=af+g+10gh,˙g=f0.4g+5fh,˙h=bh5fg. (1.1)

    Fractional calculus (FC) allows integration and differentiation of operators in fractional order. FC is considered a popular research topic and has been extensively studied in recent decades [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]. Samko proposed a fascinating extension of constant-order FC in [35]. Solís-Pérez et al. [36] introduced fractional operators that consider order as a function of time, space or other variables see also [37,38]. In addition, applications of these fractional variable-order operators can be found in [39,40,41,42,43,44,45,46,47,48].

    Variable-order fractional differential equations cannot be solved exactly, so developing numerical schemes for solving these equations is crucial. In [36], Solís-Pérez et al. developed a constant-order numerical scheme that combines fractional calculus and Lagrange polynomials. Using this method, they generalized the numerical schemes for simulating variable-order fractional differential operators with power-law, exponential-law and Mittag-Leffler kernels. See also [49,50,51,52,53,54,55,56,57,58,59,60].

    The memory and genetic properties of Eq (1.1) can be improved by extending the integer-order Newton-Leipnik model to a variable-order Newton-Leipnik model. In this paper, we apply the novel generalized numerical scheme of Mittag-Leffler kernels to simulate a variable-order fractional Newton-Leipnik system. Numerical methods developed by Atangana-Baleanu and Atangana-Seda for solving fractional Newton-Leipnik systems are presented. Moreover, we use numerical successive approximation methods to solve the proposed model. In order to stabilize the proposed system, fractional Routh-Hurwitz conditions must be applied. When nonlinear control functions are chosen carefully, chaos synchronization of Newton-Leipnik systems has also been demonstrated when fractional-order systems are considered. Furthermore, some examples are given, and our numerical simulations reveal novel attractors. Through simulations, the method's accuracy and efficiency have been demonstrated.

    A very significant role in fractional calculus was introduced by Humbert and Agarwal in 1953. It is a two-parameter Mittag-Leffler function defined as (Gorenflo et al., 1998):

    Eα,β(z)=k=0zkΓ(αk+β),α>0,β>0.

    For β=1 we obtain the Mittag-Leffler function in one parameter (Mittag-Leffler, 1903):

    Eα,1(z)=k=0zkΓ(αk+1)Eα(z).

    According to [45], ABC (Atangana-Baleanu-Caputo) may be derived in fractional derivatives with variable orders gC1(0,T),0<T,

    ABC0Dκtg(t)=ABC(κ)1κt0Eκ[κ1κ(tη)κ]dg(η)dηdη.

    In this formula, ABC(κ)=1κ+η/Γ(κ) is the normalization function, Γ() is the Euler Gamma function, and Eκ() is the Mittag-Leffler function.

    Theorem 1. [39,40] The time-fractional ABC differential equation:

    ABCDκtg(t)=ζ(t),

    provides a unique solution

    g(t)=1κABC(κ)ζ(t)+κABC(κ)Γ(κ)t0ζ(κ)(tκ)κ1dκ.

    In [39,40], ABC fractional derivative has the fractional-integral associate:

    ABCIκt{χ(t)}=1κABC(κ)χ(t)+κABC(κ)Γ(κ)t0χ(κ)(tκ)κ1dκ.

    ABC fractional derivatives of the Newton-Leipnik system are presented here.

    ABC0Dκtf=af+g+10gh,ABC0Dκtg=f0.4g+5fh,ABC0Dκth=bh5fg. (3.1)

    Taking the fractional integral operator of ABC and applying it to Eq (3.1), we get

    ff(0)=ABCIκt[af+g+10gh],gg(0)=ABCIκt[f0.4g+5fh],hh(0)=ABCIκt[bh5fg]. (3.2)

    We will assume that f, g and h are nonnegative bounded functions, i.e., fκ1, gκ2, hκ3, where κ1,κ2 and κ3 are some positive constants. Denote

    1=a,2=0.4,3=b. (3.3)

    When we apply the ABC fractional integral to system (3.1), we obtain

    ff(0)=1κABC(κ)L1(t,f,g,h)+κABC(κ)Γ(κ)t0L1(z,f,g,h)dz,gg(0)=1κABC(κ)L2(t,f,g,h)+κABC(κ)Γ(κ)t0L2(z,f,g,h)dz,hh(0)=1κABC(κ)L3(t,f,g,h)+κABC(κ)Γ(κ)t0L3(z,f,g,h)dz, (3.4)

    where the kernels L1(t,f,g,h), L2(t,f,g,h), L3(t,f,g,h) are defined as:

    L1(t,f,g,h)=af+g+10gh,L2(t,f,g,h)=f0.4g+5fh,L3(t,f,g,h)=bh5fg.

    Proposition 1. If

    0M=max{1,2,3}<1.

    Thus, the kernels L1(t,f,g,h), L2(t,f,g,h), L3(t,f,g,h) satisfy Lipschitz conditions.

    Proof. If f2 and f1 are any two functions, then

    L1(t,f2,g,h)L1(t,f1,g,h)=af1+g+10gh+af2g10gh1f2f1,

    where 1 is the Lipschitz constant and is defined in Eq (3.3). Similarly, the kernels L2,L3 can be calculated using {g2,g1},{h2,h1}, respectively:

    L2(t,f,g2,h)L2(t,f,g1,h)2g2g1,L3(t,f,g,h2)L3(t,f,g,h1)3h2h1.

    Thus, the Lipschitz conditions are satisfied forL1(t,f,g,h), L2(t,f,g,h), L3(t,f,g,h). Additionally, since 0M=max{1,2,3}<1, the kernels are contractions. Equation (3.4) can be used to display state variables as kernels:

    f=f(0)+1κABC(κ)L1(t,f,g,h)+κABC(κ)Γ(κ)t0L1(z,f,g,h)dz,g=g(0)+1κABC(κ)L2(t,f,g,h)+κABC(κ)Γ(κ)t0L2(z,f,g,h)dz,h=h(0)+1κABC(κ)L3(t,f,g,h)+κABC(κ)Γ(κ)t0L3(z,f,g,h)dz. (3.5)

    We now introduce the following recursive formulas using Eq (3.5):

    fn(t)=1κABC(κ)L1(t,fn1,gn1,hn1)+κABC(κ)Γ(κ)t0L1(z,fn1,gn1,hn1)dz,gn(t)=1κABC(κ)L2(t,fn1,gn1,hn1)+κABC(κ)Γ(κ)t0L2(z,fn1,gn1,hn1)dz,hn(t)=1κABC(κ)L3(t,fn1,gn1,hn1)+κABC(κ)Γ(κ)t0L3(z,fn1,gn1,hn1)dz,

    with

    f0(t)=f(0),g0(t)=g(0),h0(t)=h(0).

    For the recursive formulas, the difference between consecutive terms is

    ®n(t)=fn(t)fn1(t)=1κABC(κ)(L1(t,fn1,gn1,hn1)L1(t,fn2,gn2,hn2))+κABC(κ)Γ(κ)t0(L1(z,fn1,gn1,hn1)L1(z,fn2,gn2,hn2))dz,n(t)=gn(t)gn1(t)=1κABC(κ)(L2(t,fn1,gn1,hn1)L2(t,fn2,gn2,hn2))+κABC(κ)Γ(κ)t0(L2(z,fn1,gn1,hn1)L2(z,fn2,gn2,hn2))dz,n(t)=hn(t)hn1(t)=1κABC(κ)(L3(t,fn1,gn1,hn1)L3(t,fn2,gn2,hn2))+κABC(κ)Γ(κ)t0(L3(z,fn1,gn1,hn1)L3(z,fn2,gn2,hn2))dz.

    Note that:

    fn(t)=ni=1®i(t),gn(t)=ni=1i(t),hn(t)=ni=1i(t).

    As a result, the recursive inequalities:

    ®n(t)=∥fn(t)fn1(t)1κABC(κ)L1(t,fn1,gn1,hn1)L1(t,fn2,gn2,hn2)+κABC(κ)Γ(κ)t0L1(t,fn1,gn1,hn1)L1(t,fn2,gn2,hn2)dz1κABC(κ)1|fn1fn2|+κABC(κ)Γ(κ)1t0|fn1fn2|dz.

    Therefore

    ®n(t)1κABC(κ)1®n1(t)+κABC(κ)Γ(κ)1t0®n1(z)dz.

    Similarly

    n(t)1κABC(κ)2ψn1(t)+κABC(κ)Γ(κ)2t0ψn1(z)dz,n(t)1κABC(κ)3ξn1(t)+(κ)3t0ξn1(z)dz.

    As a result, a solution of a system (3.1) exists if the following condition is satisfied, if t0>0:

    1κABC(κ)i+κABC(κ)Γ(κ)it0<1,fori=1,2,3.

    Proposition 2. System (3.1) provides a unique solution if the following conditions are met:

    (11κABC(κ)iκABC(κ)Γ(κ)it)>0<italic>for</italic>i=1,2,3.

    Consider the ABC fractional-order Newton-Leipnik system:

    ABC0Dκtf=af+g+10gh,ABC0Dκtg=f0.4g+5fh,ABC0Dκth=bh5fg. (4.1)

    Its Jacobian matrix J(E) is

    J(E)=(a1+10h10g1+5h0.45f5g5fb),

    where E=(f,g,h) is the equilibrium point of the system (4.1). The Jacobian eigenvalues at all equilibrium points indicate that they are all saddle points. All of these eigenvalues have a chaos condition.

    Newton-Leipnik controlled fractional-order system is given by:

    ABC0Dκtf=af+g+10ghc1(ff),ABC0Dκtg=f0.4g+5fhc2(gg),ABC0Dκth=bh5fgc3(hh). (4.2)

    In addition, K=diag(c1,c2,c3),c1,c2,c30. By selecting the appropriate feedback control gains c1,c2,c3, the controlled system (4.2) approaches the unstable equilibrium point asymptotically. Specifically, we are trying to reduce the trajectory of system (4.1) to one of E0,E1,E2,E3 and E4 which defined in Table 1. A simple feedback gain is K=diag(c1,0.0). At E0=(0,0,0), the characteristic equation of (4.2) is:

    λ3+(c1+a+0.4b)λ2+((c1+a)(0.4b)0.4b+1)λ0.4b(c1+a)b=0.
    Table 1.  Eigenvalues and equilibrium points.
    Equilibrium points Eigenvalues
    E0=(0,0,0) 0.175, 0.4±i
    E1=(0.2390,0.0308,0.2103) - 0.8, 0.0875±1.2113i
    E2=(0.0315,0.1224,0.1103) - 0.8, 0.0875±0.8752i
    E3=(0.0315,0.1224,0.1103) - 0.8, 0.0875±0.8752i
    E4=(0.2390,0.0308,0.2103) - 0.8, 0.0875±1.2113i

     | Show Table
    DownLoad: CSV

    By choosing satisfactory feedback control gains c1, c2, c3

    c1>max{ba0.4,0.4+b1(0.4b)a},(c1+a+0.4b)((c1+a)(0.4b)0.4b+1)=0.4b(c1+a)b.

    It is necessary to apply the fractional Routh-Hurwitz conditions to control chaos in the (4.1) to its equilibrium. The equilibrium point of (4.1) can be achieved by using specific linear controllers, based on Routh-Hurwitz. When the nonlinear control functions are chosen carefully, chaos synchronization of (4.1) has been demonstrated.

    The following example illustrates synchronizing chaos between two Newton-Leipnik systems with unidirectional linear error feedback. This is the drive system:

    ABC0Dκtf1=af1+g1+10g1h1,ABC0Dκtg1=f10.4g1+5f1h1,ABC0Dκth1=bh15f1g1. (4.3)

    The response system is provided by:

    ABC0Dκtf2=af2+g2+10g2h2ω1,ABC0Dκtg2=f20.4g2+5f2h2ω2,0ABC0Dκth2=bh25f2g2ω3, (4.4)

    where the controller u=[ω1ω2ω3]T, with

    ω1=c1(f2f1),ω2=c2(g2g1),ω3=c3(h2h1).

    By subtracting (4.3) from (4.4) in case κ=1, we obtain:

    ˙ef=aef+eg+10g2h210g1h1c1ef,˙eg=ef0.4eg+5f1h15f2h2c2eg,˙eh=beh5f1g15f2g2c3eh, (4.5)

    where ef=f1f2,eg=g1g2,eh=h1h2. The matrix form of system (3.1) is as follows:

    ˙e=Ae+Mf1,f2eKe,

    where

    e=[efegeh]T,A=(a1010.4000b),
    Mf1,f2=(010h210g15h105f25g15f20),K=(c1000c2000c3).

    As a result, if the feedback control c1,c2 and c3 gains satisfy the following inequalities:

    c1>12(2a+5h1+10h2+15g1κ),c2>12(5h1+10h20.8+10f2κ),c3>12(15g1+10f2+2bκ), (4.6)

    the synchronization of (4.3) is achieved. Combined Newton-Leipnik systems (4.1) and (4.2) are numerically integrated with parameters c1=280, c2=250,c3=100.

    The controllers for the drive and response systems (4.1) and (4.2) are as follows:

    ω1=(c1+vkf1,f2)ef,ω2=0,ω3=0.

    As a result, fractional-order error dynamics are characterized by

    ABC0Dκtef=aef+eg+10g2h210g1h1c1ef,ABC0Dκteg=ef0.4eg+5f1h15f2h2c2eg,ABC0Dκteh=beh5f1g15f2g2c3eh. (4.7)

    By using the feedback control gain c1=69.2111 as well as the parameters κ=1.0,κ=0.98, the error system (4.7) is numerically integrated.

    The following schemes is taken from [50,51].

    The fundamental theorem of fractional calculus of (2.1), gives

    ϕ(t)ϕ(0)=1κABC(κ)ζ(t,ϕ(t))+κΓ(κ)ABC(κ)t0ζ(κ,ϕ(κ))(tκ)κ1dκ.

    At tn+1, we have

    ϕ(tn+1)ϕ(0)=Γ(κ)(1κ)Γ(κ)(1κ)+κζ(tn,ϕ(tn))+κΓ(κ)+κ(1Γ(κ))×nν=0tν+1tνζ(κ,ϕ(κ))(tn+1κ)κ1dκ. (5.1)

    Two-step Lagrange polynomial interpolation can be used to approximate ζ(η,ϕ(η)):

    Pk(κ)ζ(tν,gν)h(κtν1)ζ(tν1,gν1)h(κtν). (5.2)

    Equation (5.2) is replaced by Eq (5.1) in order to obtain

    ϕn+1(t)=ϕ0+Γ(κ)(1κ)Γ(κ)(1κ)+κζ(tn,ϕ(tn))+κΓ(κ)+κ(1Γ(κ))×nν=0(ζ(tν,gν)htν+1tν(κtν1)(tn+1κ)κ1dκζ(tν1,gν1)htν+1tν(κtν)(tn+1κ)κ1dκ), (5.3)

    which implies that

    Aκ,ν,1=hκ+1(n+1ν)κ(nν+2+κ)(nν)κ(nν+2+2κ)κ(κ+1),Aκ,ν,2=hκ+1(n+1ν)κ+1(nν)κ(nν+1+κ)κ(κ+1). (5.4)

    The following approximation can be obtained by integrating (5.4) and replacing it with (5.3):

    ϕn+1(t)=ϕ0+Γ(κ)(1κ)Γ(κ)(1κ)+κζ(tn,ϕ(tn))+1(κ+1)((1κ)Γ(κ)+κ×nν=0(hκζ(tν,gν)((n+1ν)κ(nν+2+κ)(nν)κ(nν+2+2κ))hκζ(tν1,gν1)((n+1ν)κ+1(nν)κ×(nν+1+κ)).

    The following is the numerical representation of the system (2.1):

    fn+1(t)=f0+Γ(κ)(1κ)Γ(κ)(1κ)+κL1(tn,fn(t),gn(t),hn(t))+1(κ+1)((1κ)Γ(κ)+κ×nν=0(hκL1(tν,fν(t),gν(t),hν(t))×((n+1ν)κ(nν+2+κ)(nν)κ)×(nν+2+2κ))hκL1(tν1,fν1(t),gν1(t),hν1(t))×((n+1ν)κ+1(nν)κ(nν+1+κ))),
    gn+1(t)=g0+Γ(κ)(1κ)Γ(κ)(1κ)+κL2(tn,fn(t),gn(t),hn(t))+1(κ+1)((1κ)Γ(κ)+κ×nν=0(hκL2(tν,fν(t),gν(t),hν(t))×((n+1ν)κ(nν+2+κ)(nν)κ×(nν+2+2κ))hκL2(tν1,fν1(t),gν1(t),hν1(t))×((n+1ν)κ+1(nν)κ(nν+1+κ))),
    hn+1(t)=h0+Γ(κ)(1κ)Γ(κ)(1κ)+κL3(tn,fn(t),gn(t),hn(t))+1(κ+1)((1κ)Γ(κ)+κ×nν=0(hκL3(tν,fν(t),gν(t),hν(t)).×((n+1ν)κ(nν+2+κ)(nν)κ×(nν+2+2κ)).

    Based on the integration of the equations above, we are able to arrive at the result:

    k(t)=k(0)+1κABC(κ)L1(t,f,g,h,t)+κABC(κ)Γ(κ)×t0L1(t,f,g,h,η)(tn+1η)κ1dη,g(t)=g(0)+1κABC(κ)L2(t,f,g,h,t)+κABC(κ)Γ(κ)×t0L2(t,f,g,h,η)(tn+1η)κ1dη,h(t)=h(0)+1κABC(κ)L3(t,f,g,h,t)+κABC(κ)Γ(κ)×t0L3(t,f,g,h,η)(tn+1η)κ1dη.

    At t=tn+1,

    f(tn+1)=f(0)+1κABC(κ)L1(tn,fn,gn,hn)+κABC(κ)Γ(κ)tn+10L1(t,f,g,h,η)×(tn+1η)κ1dη,g(tn+1)=g(0)+1κABC(κ)L2(tn,fn,gn,hn)+κABC(κ)Γ(κ)tn+10L2(t,f,g,h,η)×(tn+1η)κ1dη,h(tn+1)=h(0)+1κABC(κ)L3(tn,fn,gn,hn)+κABC(κ)Γ(κ)tn+10L3(t,f,g,h,η)×(tn+1η)κ1dη.

    As a result, we have the following:

    f(tn+1)=f(0)+1κABC(κ)L1(tn,fn,gn,hn)+κABC(κ)Γ(κ)nν=2tν+1tνL1(t,f,g,h,η)×(tn+1η)κ1dη.g(tn+1)=g(0)+1κABC(κ)L2(tn,fn,gn,hn)+κABC(κ)Γ(κ)nν=2tν+1tνL2(t,f,g,h,η)×(tn+1η)κ1dη,h(tn+1)=h(0)+1κABC(κ)L3(tn,fn,gn,hn)+κABC(κ)Γ(κ)nν=2tν+1tνL3(t,f,g,h,η)×(tn+1η)κ1dη.

    A Newton polynomial is added to the integrals above to yield the following result:

    f(tn+1)=f(0)+1κABC(κ)L1(tn,fn,gn,hn)+κABC(κ)Γ(κ)nν=2tν+1tν{L1(tν2,fν2,gν2,hν2)+L1(kν1,gν1,hν1,tν1)L1(fν2,gν2,hν2,tν2)Δt×(ηtν2)+L1(fν,gν,hν,tν)2L1(kν1,gν1,hν1,tν1)+L1(fν2,gν2,hν2,tν2)2(Δt)2×(ηtν2)(ηtν1)}×(tn+1η)κ1dη,
    g(tn+1)=g(0)+1κABC(κ)L2(tn,fn,gn,hn)+κABC(κ)Γ(κ)nν=2tν+1tν{L2(tν2,fν2,gν2,hν2)+L2(kν1,gν1,hν1,tν1)L2(fν2,gν2,hν2,tν2)Δt×(ηtν2)+L2(fν,gν,hν,tν)2L2(kν1,gν1,hν1,tν1)+L2(fν2,gν2,hν2,tν2)2(Δt)2×(ηtν2)(ηtν1)}×(tn+1η)κ1dη,
    h(tn+1)=h(0)+1κABC(κ)L3(tn,fn,gn,hn)+κABC(κ)Γ(κ)nν=2tν+1tν{L3(tν2,fν2,gν2,hν2)+L3(kν1,gν1,hν1,tν1)L3(tν2,fν2,gν2,hν2)Δt×(ηtν2)+L3(fν,gν,hν,tν)2L3(kν1,gν1,hν1,tν1)+L3(fν2,gν2,hν2,tν2)2(Δt)2×(ηtν2)(ηtν1)}×(tn+1η)κ1dη.

    Therefore, we can express the Newton-Leipnik system numerically as follows:

    fn+1=k0+1κABC(κ)L1(tn,fn,gn,hn)+κ(Δt)κF(κ)Γ(κ+1)nν=2L1(fν2,gν2,hν2,tν2)[(nν+1)κ(nν)κ]+κ(Δt)κF(κ)Γ(κ+2)nν=2[L1(kν1,gν1,hν1,tν1)L1(fν2,gν2,hν2,tν2)]×[(nν+1)κ(nr+3+2κ)(nν)κ(nr+3+3κ)]+κ(Δt)κ2F(κ)Γ(κ+3)nν=2[L1(fν,gν,hν,tν)2L1(kν1,gν1,hν1,tν1)+L1(fν2,gν2,hν2,tν2)]×[(nν+1)κ[2(nν)2+(3κ+10)(nν)+2κ2+9κ+12](nν)κ[2(nν)2+(5κ+10)(nν)+6κ2+18κ+12]],
    gn+1=l0+1κABC(κ)L2(tn,fn,gn,hn)+κ(Δt)κF(κ)Γ(κ+1)nν=2L2(fν2,gν2,hν2,tν2)[(nν+1)κ(nν)κ]+κ(Δt)κF(κ)Γ(κ+2)nν=2[L2(kν1,gν1,hν1,tν1)L2(fν2,gν2,hν2,tν2)]×[(nν+1)κ(nr+3+2κ)(nν)κ(nr+3+3κ)]+κ(Δt)κ2F(κ)Γ(κ+3)nν=2[L2(fν,gν,hν,tν)2L2(kν1,gν1,hν1,tν1)+L2(fν2,gν2,hν2,tν2)]×[(nν+1)κ[2(nν)2+(3κ+10)(nν)+2κ2+9κ+12](nν)κ[2(nν)2+(5κ+10)(nν)+6κ2+18κ+12]],
    hn+1=h0+1κABC(κ)L3(tn,fn,gn,hn)+κ(Δt)κF(κ)Γ(κ+1)nν=2L3(fν2,gν2,hν2,tν2)[(nν+1)κ(nν)κ]+κ(Δt)κF(κ)Γ(κ+2)nν=2[L3(kν1,gν1,hν1,tν1)L3(fν2,gν2,hν2,tν2)]×[(nν+1)κ(nr+3+2κ)(nν)κ(nr+3+3κ)]+κ(Δt)κ2F(κ)Γ(κ+3)nν=2[L3(fν,gν,hν,tν)2L3(kν1,gν1,hν1,tν1)+L3(fν2,gν2,hν2,tν2)]×[(nν+1)κ[2(nν)2+(3κ+10)(nν)+2κ2+9κ+12](nν)κ[2(nν)2+(5κ+10)(nν)+6κ2+18κ+12]].

    For a system (3.1) with initial conditions, we use the successive approximation method:

    ABC0Dκtf=af+g+10gh,f(0)=0.19,ABC0Dκtg=f0.4g+5fh,g(0)=0,ABC0Dκth=bh5fg,h(0)=0.18.

    We have

    fn(t)=0.19+1Γ(κ)t0(afn1+gn1+10gn1hn1)(tu)κ1du,gn(t)=0+1Γ(κ)t0(fn10.4gn1+5fn1hn1)(tu)κ1du,hn(t)=0.18+1Γ(κ)t0(bhn15fn1gn1)(tu)κ1du.

    Then

    f1=0.19+1Γ(κ)t0(af0+g0+10g0h0)(tu)κ1du,g1=0+1Γ(κ)t0(f00.4g0+5f0h0)(tu)κ1du,h1=0.18+1Γ(κ)t0(bh05f0g0)(tu)κ1du.
    f1=0.19+0.19aΓ(κ)t0(tu)κ1du,g1=0+(0.1917.1)Γ(κ)t0(tu)κ1du,h1=0.18+0.0315Γ(κ)t0(tu)κ1du.

    Based on the theorem regarding the product of convolution, we obtain the following three iterations:

    f1=0.19+0.19atκΓ(κ+1),g1=0+(0.1917.1)tκΓ(κ+1),h1=0.18+0.0315tκΓ(κ+1).
    f2=0.19+1Γ(κ)t0(af1+g1+10g1h1)(tu)κ1du,g2=0+1Γ(κ)t0(f10.4g1+5f1h1)(tu)κ1du,h2=0.18+1Γ(κ)t0(bh15f1g1)(tu)κ1du.

    Then

    f=0.190.0766354t0.98+0.165549t1.960.0200889t2.940.16188t3.92+0.141366t4.90.104083t5.88+0.0145646t6.86+0.00748789t7.840.00948982t8.82+0.00375966t9.8+0.0000968983t10.78,y=0.364018t0.98+0.134262t1.960.0657408t2.940.027892t3.92+0.133288t4.90.0482851t5.880.0112423t6.86+0.0185251t7.840.0152564t8.82+0.00529679t9.80.000271352t10.78,z=0.180.0317634t0.98+0.175007t1.960.0818753t2.94+0.104826t3.920.0217401t4.90.0561595t5.88+0.0502709t6.860.0223372t7.840.00164042t8.82+0.0056128t9.80.00176122t10.78.

    Example 1. [6] We deal with the following chaotic problem:

    ABC0Dκtf=0.4f+g+10gh,ABC0Dκtg=f0.4g+5fh,ABC0Dκth=0.175h5fg, (5.5)

    with the initial conditions.

    The numerical simulations of the ABC fractional Newton-Leipnik system (5.5) are presented in Figures 1, 3, 5 and 7 for κ(t)=1, κ(t)=0.98, κ(t)=0.97+0.03×tanh(t/10), κ(t)=0.970.03×sin(t/10), respectively. The numerical simulations of the AS fractional Newton-Leipnik system (5.5) are presented in Figures 9, 11, 13 and 15 for κ(t)=1, κ(t)=0.98, κ(t)=0.97+0.03×tanh(t/10), κ(t)=0.970.03×sin(t/10), respectively.

    Figure 1.  ABC for (5.5) with κ(t)=1.
    Figure 2.  ABC for (5.6) with κ(t)=1.
    Figure 3.  ABC for (5.5) with κ(t)=0.98.
    Figure 4.  ABC for (5.6) with κ(t)=0.98.
    Figure 5.  ABC for (5.5) with κ(t)=0.97+0.03×tanh(t/10).
    Figure 6.  ABC for (5.6) with κ(t)=0.97+0.03×tanh(t/10).
    Figure 7.  ABC for (5.5) with κ(t)=0.970.03×sin(t/10).
    Figure 8.  ABC for (5.6) with κ(t)=0.970.03×sin(t/10).
    Figure 9.  AS for (5.5) with κ(t)=1.
    Figure 10.  AS for (5.6) with κ(t)=1.
    Figure 11.  AS for (5.5) with κ(t)=0.98.
    Figure 12.  AS for (5.6) with κ(t)=0.98.
    Figure 13.  AS for (5.5) with κ(t)=0.97+0.03×tanh(t/10).
    Figure 14.  AS for (5.6) with κ(t)=0.97+0.03×tanh(t/10).
    Figure 15.  AS for (5.5) with κ(t)=0.970.03×sin(t/10).

    Example 2. We deal with the following chaotic problem:

    ABC0Dκtf=0.4f+g+10gh7f,ABC0Dκtg=f0.4g+5fh,ABC0Dκth=0.175h5fg, (5.6)

    with the initial conditions

    The numerical simulations of the ABC of the controlled fractional order Newton-Leipnik system (5.6) are presented in Figures 2, 4, 6 and 8 for κ(t)=1, κ(t)=0.98, κ(t)=0.97+0.03×tanh(t/10), κ(t)=0.970.03×sin(t/10), respectively. The numerical simulations of the AS of the controlled fractional order Newton-Leipnik system (5.6) are presented in Figures 10, 12, 14 and 16 for κ(t)=1, κ(t)=0.98, κ(t)=0.97+0.03×tanh(t/10), κ(t)=0.970.03×sin(t/10), respectively.

    Figure 16.  AS for (5.6) with κ(t)=0.970.03×sin(t/10).

    Fractional differential operators have the ability to accurately replicate and reveal some chaos. However, because of their non-linearity, their analytical solutions are difficult to obtain and, in some circumstances, impossible to achieve due to their non-linearity. Researchers rely on numerical methods to understand physical behavior. We present a numerical method for chaotic problems. Using differential and integral operators in the sense of Atangana-Baleanu-Caputo, we investigated the Newton-Leipnik system of mathematical equations able to capture chaotic behavior. Solutions are obtained for the fractional-order Newton-Leipnik model using a fractional operator with a non-singular kernel. Uniqueness and boundedness for solutions are proved through the fixed point theory. Due to the high non-linearity of our problem, we used a suitable numerical scheme to solve this system of equations numerically. The presented scheme is applicable to many other systems, such as those in [36,37,38,39,40,41,42,43,44,45,46,47,48]. In future work, the existence and uniqueness of solutions reported for general component differential equations will be extended to multidimensional problems.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The first author would like to thank the Deanship of Scientific Research, Qassim University, Saudi Arabia for funding the publication of this project.

    The authors declare that they have no conflict of interest.



    [1] B. Eleonora, P. Pietro, The language of chaos, Int. J. Bifurcat. Chaos, 16 (2006), 523–557. https://doi.org/10.1142/S0218127406014988 doi: 10.1142/S0218127406014988
    [2] R. B. Leipnik, T. A. Newton, Double strange attractors in rigid body motion, Phys. Lett. A, 86 (1981), 63–67. https://doi.org/10.1016/0375-9601(81)90165-1 doi: 10.1016/0375-9601(81)90165-1
    [3] X. Wang, L. Tian, Bifurcation analysis and linear control of the Newton-Leipnik system, Chaos Soliton. Fract., 27 (2006), 31–38. https://doi.org/10.1016/j.chaos.2005.04.009 doi: 10.1016/j.chaos.2005.04.009
    [4] H. K. Chen, C. I. Lee, Anti-control of chaos in rigid body motion, Chaos Soliton. Fract., 21 (2004), 957–965. https://doi.org/10.1016/j.chaos.2003.12.034 doi: 10.1016/j.chaos.2003.12.034
    [5] H. Richter, Controlling chaotic system with multiple strange attractors, Phys. Lett. A, 300 (2002), 182–188. https://doi.org/10.1016/S0375-9601(02)00183-4 doi: 10.1016/S0375-9601(02)00183-4
    [6] L. J. Sheu, H. K. Chen, J. H. Chen, L. M. Tam, W. C. Chen, K. T. Lin, et al., Chaos in the Newton-Leipnik system with fractional order, Chaos Soliton. Fract., 36 (2008), 98–103. https://doi.org/10.1016/j.chaos.2006.06.013 doi: 10.1016/j.chaos.2006.06.013
    [7] K. M. S. Tavazoei, M. Haeri, A necessary condition for double scroll attractor existence in fractional order systems, Phys. Lett. A, 367 (2007), 102–113. https://doi.org/10.1016/j.physleta.2007.05.081 doi: 10.1016/j.physleta.2007.05.081
    [8] H. K. Chen, Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, J. Sound. Vib., 255 (2002), 719–740. https://doi.org/10.1006/jsvi.2001.4186 doi: 10.1006/jsvi.2001.4186
    [9] A. Khalid, Splines solutions of boundary value problems that arises in sculpturing electrical process of motors with two rotating mechanism circuit, Phys. Scripta, 96 (2021), 104001. https://doi.org/10.1088/1402-4896/ac0bd0 doi: 10.1088/1402-4896/ac0bd0
    [10] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Dier. Appl., 2 (2015), 1–13. Available from: https://digitalcommons.aaru.edu.jo/pfda/vol1/iss2/1
    [11] W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 48 (2007), 409–416. https://doi.org/10.1007/s11071-006-9094-0 doi: 10.1007/s11071-006-9094-0
    [12] S. Rashid, K. T. Kubra, S. Sultana, P. Agarwal, M. S. Osman, An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method, J. Comput. Appl. Math., 413 (2022), 114378. https://doi.org/10.1016/j.cam.2022.114378 doi: 10.1016/j.cam.2022.114378
    [13] V. D. Gejji, Y. Sukale, S. Bhalekar, A new predictor-corrector method for fractional differential equations, Appl. Math. Comput., 244 (2014), 158–182. https://doi.org/10.1016/j.amc.2014.06.097 doi: 10.1016/j.amc.2014.06.097
    [14] K. M. Owolabi, Mathematical modelling and analysis of two-component system with Caputo fractional derivative order, Chaos Soliton. Fract., 103 (2017), 544–554. https://doi.org/10.1016/j.chaos.2017.07.013 doi: 10.1016/j.chaos.2017.07.013
    [15] C. Li, C. Tao, On the fractional adams method, Comput. Math. Appl., 58 (2009), 1573–1588. https://doi.org/10.1016/j.camwa.2009.07.050 doi: 10.1016/j.camwa.2009.07.050
    [16] V. D. Gejji, H. Jafari, Analysis of a system of non autonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl., 328 (2007), 1026–1033. https://doi.org/10.1016/j.jmaa.2006.06.007 doi: 10.1016/j.jmaa.2006.06.007
    [17] A. Atangana, J. F. G. Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 1–23. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3
    [18] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A, 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
    [19] M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Physica D, 237 (2008), 2628–2637. https://doi.org/10.1016/j.physd.2008.03.037 doi: 10.1016/j.physd.2008.03.037
    [20] H. M. Baskonus, T. Mekkaoui, Z. Hammouch, H. Bulut, Active control of a chaotic fractional order economic system, Entropy, 17 (2015), 5771–5783. https://doi.org/10.3390/e17085771 doi: 10.3390/e17085771
    [21] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 1–16. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
    [22] L. Galeone, R. Garrappa, Fractional adams-moulton methods, Math. Comput. Simulat., 79 (2008), 1358–1367. https://doi.org/10.1016/j.matcom.2008.03.008 doi: 10.1016/j.matcom.2008.03.008
    [23] K. Hattaf, Stability of fractional differential equations with new generalized hattaf fractional derivative, Math. Probl. Eng., 2021 (2021), 8608447. https://doi.org/10.1155/2021/8608447 doi: 10.1155/2021/8608447
    [24] K. Hattaf, Z. Hajhouji, M. A. Ichou, N. Yousfi, A Numerical method for fractional differential equations with new generalized hattaf fractional derivative, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/3358071 doi: 10.1155/2022/3358071
    [25] K. Hattaf, On the stability and numerical scheme of fractional differential equations with application to biology, Computation, 10 (2022), 97. https://doi.org/10.3390/computation10060097 doi: 10.3390/computation10060097
    [26] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. https://doi.org/10.3390/computation8020049 doi: 10.3390/computation8020049
    [27] K. Hattaf, A new class of generalized fractal and fractal-fractional derivatives with non-singular kernels, Fractal Fract., 7 (2023), 395. https://doi.org/10.3390/fractalfract7050395 doi: 10.3390/fractalfract7050395
    [28] M. H. Alshehri, S. Saber, F. Z. Duraihem, Dynamical analysis of fractional-order of IVGTT glucose-insulin interaction, Int. J. Nonlin. Sci. Num., 24 (2023), 1123–1140. https://doi.org/10.1515/ijnsns-2020-0201 doi: 10.1515/ijnsns-2020-0201
    [29] M. H. Alshehri, F. Z. Duraihem, A. Alalyani, S. Saber, A Caputo (discretization) fractional-order model of glucose-insulin interaction: Numerical solution and comparisons with experimental data, J. Taibah Univ. Sci., 15 (2021), 26–36. https://doi.org/10.1080/16583655.2021.1872197 doi: 10.1080/16583655.2021.1872197
    [30] S. Saber, A. M. Alghamdi, G. A. Ahmed, K. M. Alshehri, Mathematical modelling and optimal control of pneumonia disease in sheep and goats in Al-Baha region with cost-effective strategies, AIMS Math., 7 (2022), 12011–12049. https://doi.org/10.3934/math.2022669 doi: 10.3934/math.2022669
    [31] S. Saber, A. Alalyani, Stability analysis and numerical simulations of IVGTT glucose-insulin interaction models with two time delays, Math. Model. Anal., 27 (2022), 383–407. https://doi.org/10.3846/mma.2022.14007 doi: 10.3846/mma.2022.14007
    [32] A. Alalyani, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J. Nonlin. Sci. Num., 24 (2023), 989–1002. https://doi.org/10.1515/ijnsns-2021-0042 doi: 10.1515/ijnsns-2021-0042
    [33] T. W. Zhang, L. L. Xiong, Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative, Appl. Math. Lett., 101 (2020), 106072. https://doi.org/10.1016/j.aml.2019.106072 doi: 10.1016/j.aml.2019.106072
    [34] K. I. A. Ahmed, H. D. S. Adam, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: Modified Minimal Model, Alex. Eng. J., 80 (2023), 74–87. https://doi.org/10.1016/j.aej.2023.07.050 doi: 10.1016/j.aej.2023.07.050
    [35] K. I. A. Ahmed, H. D. S. Adam, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: Applications of fractal-fractional derivatives in the sense of Atangana-Baleanu, Results Phys., 2023, 106892. https://doi.org/10.1016/j.rinp.2023.106892 doi: 10.1016/j.rinp.2023.106892
    [36] S. G. Samko, Fractional integration and differentiation of variable order, Anal, Math., 21 (1995), 213–236. https://doi.org/10.1007/s11071-012-0485-0 doi: 10.1007/s11071-012-0485-0
    [37] J. E. S. Pérez, J. F. G. Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos Soliton. Fract., 114 (2018), 175–185. https://doi.org/10.1016/j.chaos.2018.06.032 doi: 10.1016/j.chaos.2018.06.032
    [38] B. S. T. Alkahtani, I. Koca, A. Atangana, A novel approach of variable order derivative: Theory and methods, J. Nonlinear Sci. Appl., 9 (2016), 4867–4876. http://dx.doi.org/10.22436/jnsa.009.06.122 doi: 10.22436/jnsa.009.06.122
    [39] A. Atangana, On the stability and convergence of the time-fractional variable-order telegraph equation, J. Comput. Phys., 293 (2015), 104–114. https://doi.org/10.1016/j.jcp.2014.12.043 doi: 10.1016/j.jcp.2014.12.043
    [40] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
    [41] S. Kumar, A. Kumar, D. Baleanu, Two analytical methods for time-fractional nonlinear coupled Boussinesq-Burger's equations arise in propagation of shallow water waves, Nonlinear Dyn., 1 (2016), 1–17. https://doi.org/10.1007/s11071-016-2716-2 doi: 10.1007/s11071-016-2716-2
    [42] P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47 (2009), 1760–1781. https://doi.org/10.1137/080730597 doi: 10.1137/080730597
    [43] A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80 (2015), 101–116. https://doi.org/10.1007/s11071-014-1854-7 doi: 10.1007/s11071-014-1854-7
    [44] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scr., 96 (2021), 094006. https://doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
    [45] B. P. Moghaddam, S. Yaghoobi, J. T. Machado, An extended predictor-corrector algorithm for variable-order fractional delay differential equations, J. Comput. Nonlinear Dyn., 1 (2016), 1–11. https://doi.org/10.1115/1.4032574 doi: 10.1115/1.4032574
    [46] M. F. Danca, Lyapunov exponents of a discontinuous 4D hyperchaotic system of integer or fractional order, Entropy, 20 (2018), 337. https://doi.org/10.3390/e20050337 doi: 10.3390/e20050337
    [47] M. F. Danca, N. Kuznetsov, Matlab code for Lyapunov exponents of fractional-order systems, Int. J. Bif. Chaos, 28 (2018), 1850067. https://doi.org/10.1142/S0218127418500670 doi: 10.1142/S0218127418500670
    [48] L. Shi, S. Tayebi, O. A. Arqub, M. S. Osman, P. Agarwal, W. Mahamoud, et al., The novel cubic B-spline method for fractional Painleve and Bagley-Trovik equations in the Caputo, Caputo-Fabrizio, and conformable fractional sense, Alex. Eng. J., 65 (2023), 413–426. https://doi.org/10.1016/j.aej.2022.09.039 doi: 10.1016/j.aej.2022.09.039
    [49] A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 1–17. https://doi.org/10.48550/arXiv.1707.08177 doi: 10.48550/arXiv.1707.08177
    [50] A. Atangana, I. S. Araz, New numerical method for ordinary differential equations: Newton polynomial, J. Comput. Appl. Math., 372 (2019). https://doi.org/10.1016/j.cam.2019.112622 doi: 10.1016/j.cam.2019.112622
    [51] A. Atangana, I. S. Araz, New numerical scheme with newton polynomial, theory, methods, and applications, 1 Eds., Academic Press, 2021.
    [52] B. S. T. Alkahtani, A new numerical scheme based on Newton polynomial with application to fractional nonlinear differential equations, Alex. Eng. J., 59 (2019), 1893–1907. https://doi.org/10.1016/j.aej.2019.11.008 doi: 10.1016/j.aej.2019.11.008
    [53] T. W. Zhang, Y. K. Li, Exponential Euler scheme of multi-delay Caputo-Fabrizio fractional-order differential equations, Appl. Math. Lett., 124 (2022), 107709. https://doi.org/10.1016/j.aml.2021.107709 doi: 10.1016/j.aml.2021.107709
    [54] K. K. Ali, M. A. A. Salam, E. M. H. Mohamed, B. Samet, S. Kumar, Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series, Adv. Differ. Equ., 494 (2020). https://doi.org/10.1186/s13662-020-02951-z doi: 10.1186/s13662-020-02951-z
    [55] S. Rashid, K. T. Kubra, S. Sultana, P. Agarwal, M. S. Osman, An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method, J. Comput. Appl. Math., 413 (2022), 114378
    [56] S. Qureshi, A. Soomro, E. Hincal, J. R. Lee, C. Park, M. S. Osman, An efficient variable stepsize rational method for stiff, singular and singularly perturbed problems, Alex. Eng. J., 61 (2022), 10953–10963. https://doi.org/10.1016/j.aej.2022.03.014 doi: 10.1016/j.aej.2022.03.014
    [57] O. A. Arqub, M. S. Osman, C. Park, J. R. Lee, H. Alsulam, M. Alhodaly, Development of the reproducing kernel Hilbert space algorithm for numerical pointwise solution of the time-fractional nonlocal reaction-diffusion equation, Alex. Eng. J., 61 (2022), 10539–10550. https://doi.org/10.1016/j.aej.2022.04.008 doi: 10.1016/j.aej.2022.04.008
    [58] O. A. Arqub, S. Tayebi, D. Baleanu, M. S. Osman, W. Mahmoud, H. Alsulami, A numerical combined algorithm in cubic B-spline method and finite difference technique for the time-fractional nonlinear diffusion wave equation with reaction and damping terms, Results Phys., 41 (2022), 105912. https://doi.org/10.1016/j.rinp.2022.105912 doi: 10.1016/j.rinp.2022.105912
    [59] N. Djeddi, S. Hasan, M. A. Smadi, S. Momani, Modified analytical approach for generalized quadratic and cubic logistic models with Caputo-Fabrizio fractional derivative, Alex. Eng. J., 59 (2020), 5111–5122. https://doi.org/10.1016/j.aej.2020.09.041 doi: 10.1016/j.aej.2020.09.041
    [60] A. Khalid, A. S. A. Alsubaie, M. Inc, A. Rehan, W. Mahmoud, M. S. Osman, Cubic spline solutions of the higher-order boundary value problems arise in sandwich panel theory, Results Phys., 39 (2022), 105726. https://doi.org/10.1016/j.rinp.2022.105726 doi: 10.1016/j.rinp.2022.105726
  • This article has been cited by:

    1. Najat Almutairi, Sayed Saber, Application of a time-fractal fractional derivative with a power-law kernel to the Burke-Shaw system based on Newton's interpolation polynomials, 2024, 12, 22150161, 102510, 10.1016/j.mex.2023.102510
    2. Khalid I.A. Ahmed, Haroon D.S. Adam, Najat Almutairi, Sayed Saber, Analytical solutions for a class of variable-order fractional Liu system under time-dependent variable coefficients, 2024, 56, 22113797, 107311, 10.1016/j.rinp.2023.107311
    3. Liping Chen, Chuang Liu, António M. Lopes, Yong Lin, Yingxiao Liu, YangQuan Chen, LMI synchronization conditions for variable fractional-order one-sided Lipschitz chaotic systems with gain fluctuations, 2024, 189, 09600779, 115695, 10.1016/j.chaos.2024.115695
    4. Najat Almutairi, Sayed Saber, Hijaz Ahmad, The fractal-fractional Atangana-Baleanu operator for pneumonia disease: stability, statistical and numerical analyses, 2023, 8, 2473-6988, 29382, 10.3934/math.20231504
    5. Najat Almutairi, Sayed Saber, Existence of chaos and the approximate solution of the Lorenz–Lü–Chen system with the Caputo fractional operator, 2024, 14, 2158-3226, 10.1063/5.0185906
    6. Amer Alsulami, Rasmiyah Alharb, Tahani Albogami, Nidal Eljaneid, Haroon Adam, Sayed Saber, Controlled chaos of a fractal-fractional Newton-Leipnik system, 2024, 28, 0354-9836, 5153, 10.2298/TSCI2406153A
    7. Najat Almutairi, An application of fractal fractional operators to non-linear Chen systems, 2024, 28, 0354-9836, 5169, 10.2298/TSCI2406169A
    8. Muflih Alhazmi, Fathi Dawalbait, Abdulrahman Aljohani, Khdija Taha, Haroon Adam, Sayed Saber, Numerical approximation method and chaos for a chaotic system in sense of Caputo-Fabrizio operator, 2024, 28, 0354-9836, 5161, 10.2298/TSCI2406161A
    9. Tao Yan, Muflih Alhazmi, Mukhtar Youssif, Amna Elhag, Abdulrahman Aljohani, Sayed Saber, Analysis of a Lorenz model using adomian decomposition and fractal-fractional operators, 2024, 28, 0354-9836, 5001, 10.2298/TSCI2406001Y
    10. Mohamed A. Abdoon, Rania Saadeh, Mohammed Berir, Dalal Khalid Almutairi, 2025, 9780443300127, 157, 10.1016/B978-0-44-330012-7.00019-9
    11. Khalid I. A. Ahmed, Safa M. Mirgani, Aly Seadawy, Sayed Saber, A comprehensive investigation of fractional glucose-insulin dynamics: existence, stability, and numerical comparisons using residual power series and generalized Runge-Kutta methods, 2025, 19, 1658-3655, 10.1080/16583655.2025.2460280
    12. Sayed Saber, Emad Solouma, Rasmiyah A. Alharb, Ahmad Alalyani, Chaos in Fractional-Order Glucose–Insulin Models with Variable Derivatives: Insights from the Laplace–Adomian Decomposition Method and Generalized Euler Techniques, 2025, 9, 2504-3110, 149, 10.3390/fractalfract9030149
    13. Mohammed Althubyani, Sayed Saber, Hyers–Ulam Stability of Fractal–Fractional Computer Virus Models with the Atangana–Baleanu Operator, 2025, 9, 2504-3110, 158, 10.3390/fractalfract9030158
    14. Eman Hakeem, Shireen Jawad, Ali Hasan Ali, Mohamed Kallel, Husam A. Neamah, How mathematical models might predict desertification from global warming and dust pollutants, 2025, 14, 22150161, 103259, 10.1016/j.mex.2025.103259
    15. Muflih Alhazmi, Sayed Saber, Glucose-insulin regulatory system: Chaos control and stability analysis via Atangana–Baleanu fractal-fractional derivatives, 2025, 122, 11100168, 77, 10.1016/j.aej.2025.02.066
    16. Sayed Saber, Safa M. Mirgani, Analyzing fractional glucose-insulin dynamics using Laplace residual power series methods via the Caputo operator: stability and chaotic behavior, 2025, 14, 2314-8543, 10.1186/s43088-025-00608-y
    17. Haroon D. S. Adam, Mohammed Althubyani, Safa M. Mirgani, Sayed Saber, An application of Newton’s interpolation polynomials to the zoonotic disease transmission between humans and baboons system based on a time-fractal fractional derivative with a power-law kernel, 2025, 15, 2158-3226, 10.1063/5.0253869
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1522) PDF downloads(92) Cited by(17)

Figures and Tables

Figures(16)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog