Research article

Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel

  • Correction on: AIMS Mathematics 7: 20543-20544
  • Received: 08 September 2021 Accepted: 19 October 2021 Published: 05 November 2021
  • MSC : 34A08, 34A12, 34B15, 47H10

  • We devote our interest in this work to investigate the sufficient conditions for the existence, uniqueness, and Ulam-Hyers stability of solutions for a new fractional system in the frame of Atangana-Baleanu-Caputo fractional operator with multi-parameters Mittag-Leffler kernels investigated lately by Abdeljawad (Chaos: An Interdisciplinary J. Nonlinear Sci. Vol. 29, no. 2, (2019): 023102). Moreover, the continuous dependence of solution and $ \delta $-approximate solutions are analyzed to such a system. Our approach is based on Banach's and Schaefer's fixed point theorems and some mathematical techniques. In order to illustrate the validity of our results, an example is given.

    Citation: Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, M. A. Abdelkawy. Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel[J]. AIMS Mathematics, 2022, 7(2): 2001-2018. doi: 10.3934/math.2022115

    Related Papers:

  • We devote our interest in this work to investigate the sufficient conditions for the existence, uniqueness, and Ulam-Hyers stability of solutions for a new fractional system in the frame of Atangana-Baleanu-Caputo fractional operator with multi-parameters Mittag-Leffler kernels investigated lately by Abdeljawad (Chaos: An Interdisciplinary J. Nonlinear Sci. Vol. 29, no. 2, (2019): 023102). Moreover, the continuous dependence of solution and $ \delta $-approximate solutions are analyzed to such a system. Our approach is based on Banach's and Schaefer's fixed point theorems and some mathematical techniques. In order to illustrate the validity of our results, an example is given.



    加载中


    [1] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Yverdon: Gordon & Breach, 1993.
    [3] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [4] K. Kavitha, V. Vijayakumar, A. Shukla, K. S. Nisar, R. Udhayakumar, Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type, Chaos Soliton. Fract., 151 (2021), 111264. doi: 10.1016/j.chaos.2021.111264. doi: 10.1016/j.chaos.2021.111264
    [5] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order $1 < r < 2$, Math. Comput. Simulat., 190 (2021), 1003–1026. doi: 10.1016/j.matcom.2021.06.026. doi: 10.1016/j.matcom.2021.06.026
    [6] C. Dineshkumar, R. Udhayakumar, New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential systems, Numer. Meth. Part. Diff. Equ., 37 (2021), 1072–1090. doi: 10.1002/num.22567. doi: 10.1002/num.22567
    [7] K. Kavitha, V. Vijayakumar, R. Udhayakumar, N. Sakthivel, K. S. Nisar, A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay, Math. Method. Appl. Sci., 44 (2021), 4428–4447. doi: 10.1002/mma.7040. doi: 10.1002/mma.7040
    [8] A. Shukla, N. Sukavanam, D. N. Pandey, Complete controllability of semi-linear stochastic system with delay, Rend. Circ. Mat. Palermo, 64 (2015), 209–220. doi: 10.1007/s12215-015-0191-0. doi: 10.1007/s12215-015-0191-0
    [9] A. Shukla, N. Sukavanam, D. N. Pandey, Approximate controllability of semilinear fractional control systems of order $\alpha \in(1, 2]$ with infinite delay, Mediterr. J. Math., 13 (2016), 2539–2550. doi: 10.1007/s00009-015-0638-8. doi: 10.1007/s00009-015-0638-8
    [10] A. Shukla, U. Arora, N. Sukavanam, Approximate controllability of retarded semilinear stochastic system with non local conditions, J. Appl. Math. Comput., 49 (2015), 513–527. doi: 10.1007/s12190-014-0851-9. doi: 10.1007/s12190-014-0851-9
    [11] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. doi: 10.12785/pfda/010201. doi: 10.12785/pfda/010201
    [12] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A
    [13] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. doi: 10.1186/s13660-017-1400-5. doi: 10.1186/s13660-017-1400-5
    [14] T. Abdeljawad, D. Baleanu, On fractional derivatives with generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2018 (2018), 468. doi: 10.1186/s13662-018-1914-2. doi: 10.1186/s13662-018-1914-2
    [15] T. Abdeljawad, Fractional operators with generalized Mittag-Leffler kernels and their differintegrals, Chaos, 29 (2019), 023102. doi: 10.1063/1.5085726. doi: 10.1063/1.5085726
    [16] T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Soliton. Fract., 126 (2019), 315–324. doi: 10.1016/j.chaos.2019.06.012. doi: 10.1016/j.chaos.2019.06.012
    [17] A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. doi: 10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027
    [18] M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 2021 (2021), 1–21. doi: 10.1186/s13662-020-03196-6. doi: 10.1186/s13662-020-03196-6
    [19] M. S. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. doi: 10.1016/j.heliyon.2020.e05109. doi: 10.1016/j.heliyon.2020.e05109
    [20] M. A. Almalahi, S. K. Panchal, W. Shatanawi, M. S. Abdo, K. Shah, K. Abodayeh, Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator, Results Phys., 19 (2021), 104045. doi: 10.1016/j.rinp.2021.104045. doi: 10.1016/j.rinp.2021.104045
    [21] A. Khan, J. F. Gómez-Aguilar, T. S. Khan, H. Khan, Stability analysis and numerical solutions of fractional order HIV/AIDS model, Chaos Soliton. Fract., 122 (2019), 119–128. doi: 10.1016/j.chaos.2019.03.022. doi: 10.1016/j.chaos.2019.03.022
    [22] M. A. Almalahi, S. K. Panchal, F. Jarad, Stability results of positive solutions for a system of $\psi $-Hilfer fractional differential equations, Chaos Soliton. Fract., 147 (2021), 110931. doi: 10.1016/j.chaos.2021.110931. doi: 10.1016/j.chaos.2021.110931
    [23] M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam–Hyers stability results of a coupled system of $\psi $-Hilfer sequential fractional differential equations, Results in Applied Mathematics, 10 (2021), 100142.doi: 10.1016/j.rinam.2021.100142. doi: 10.1016/j.rinam.2021.100142
    [24] A. Khan, K. Shah, Y. Li, T. S. Khan, Ulam type stability for a coupled system of boundary value problems of nonlinear fractional differential equations, J. Funct. Space., 2017 (2017), 3046013. doi: 10.1155/2017/3046013. doi: 10.1155/2017/3046013
    [25] H. Khan, W. Chen, A. Khan, T. S. Khan, Q. M. Al-Madlal, Hyers–Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Adv. Differ. Equ., 2018 (2018), 455. doi: 10.1186/s13662-018-1899-x. doi: 10.1186/s13662-018-1899-x
    [26] A. Khan, T. S. Khan, M. I. Syam, Hasib Khan analytical solutions of time-fractional wave equation by double Laplace transform method, Eur. Phys. J. Plus, 134 (2019), 163. doi: 10.1140/epjp/i2019-12499-y. doi: 10.1140/epjp/i2019-12499-y
    [27] A. Khan, Y. Li, K. Shah, T. S. Khan, On coupled P-Laplacian fractional differential equations with nonlinear boundary conditions, Complexity, 2017 (2017), 8197610. doi: 10.1155/2017/8197610. doi: 10.1155/2017/8197610
    [28] T. Abdeljawad, M. A. Hajji, Q. M. Al-Mdallal, F. Jarad, Analysis of some generalized ABC-fractional logistic models, Alex. Eng. J., 59 (2020), 2141–2148. doi: 10.1016/j.aej.2020.01.030. doi: 10.1016/j.aej.2020.01.030
    [29] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014.
    [30] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2272) PDF downloads(144) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog