Research article Special Issues

A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials

  • Received: 05 September 2024 Revised: 28 December 2024 Accepted: 09 January 2025 Published: 20 January 2025
  • MSC : 365M60, 11B39, 40A05, 34A08

  • This manuscript aims to provide numerical solutions for the FitzHugh–Nagumo (FH–N) problem. The suggested approximate solutions are spectral and may be achieved using the standard collocation technique. We introduce and utilize specific polynomials of the generalized Gegenbauer polynomials. These introduced polynomials have connections with Chebyshev polynomials. The polynomials' series representation, orthogonality property, and derivative expressions are among the new formulas developed for these polynomials. We transform these formulas to obtain their counterparts for the shifted polynomials, which serve as basis functions for the suggested approximate solutions. The convergence of the expansion is thoroughly examined. We provide several numerical tests and comparisons to confirm the applicability and accuracy of our proposed numerical algorithm.

    Citation: Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta. A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials[J]. AIMS Mathematics, 2025, 10(1): 1201-1223. doi: 10.3934/math.2025057

    Related Papers:

  • This manuscript aims to provide numerical solutions for the FitzHugh–Nagumo (FH–N) problem. The suggested approximate solutions are spectral and may be achieved using the standard collocation technique. We introduce and utilize specific polynomials of the generalized Gegenbauer polynomials. These introduced polynomials have connections with Chebyshev polynomials. The polynomials' series representation, orthogonality property, and derivative expressions are among the new formulas developed for these polynomials. We transform these formulas to obtain their counterparts for the shifted polynomials, which serve as basis functions for the suggested approximate solutions. The convergence of the expansion is thoroughly examined. We provide several numerical tests and comparisons to confirm the applicability and accuracy of our proposed numerical algorithm.



    加载中


    [1] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, CRC Press, 2002.
    [2] T. J Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, Courier Dover Publications, 2020.
    [3] E. H. Doha, W. M. Abd-Elhameed, M. A. Bassuony, On the coefficients of differentiated expansions and derivatives of Chebyshev polynomials of the third and fourth kinds, Acta Math. Sci., 35 (2015), 326–338. https://doi.org/10.1016/S0252-9602(15)60004-2 doi: 10.1016/S0252-9602(15)60004-2
    [4] W. M. Abd-Elhameed, H. M. Ahmed, Tau and Galerkin operational matrices of derivatives for treating singular and Emden-Fowler third-order-type equations, Int. J. Modern Phys. C, 33 (2022), 2250061. https://doi.org/10.1142/S0129183122500619 doi: 10.1142/S0129183122500619
    [5] I. Terghini, A. Hasseine, D. Caccavo, H. J. Bart, Solution of the population balance equation for wet granulation using second-kind Chebyshev polynomials, Chem. Eng. Res. Des., 189 (2023), 262–271. https://doi.org/10.1016/j.cherd.2022.11.028 doi: 10.1016/j.cherd.2022.11.028
    [6] H. M. Srivastava, M. Izadi, Generalized shifted airfoil polynomials of the second kind to solve a class of singular electrohydrodynamic fluid model of fractional order, Fractal Fract., 7 (2023), 94. https://doi.org/10.3390/fractalfract7010094 doi: 10.3390/fractalfract7010094
    [7] M. Masjed-Jamei, Some new classes of orthogonal polynomials and special functions: A symmetric generalization of Sturm-Liouville problems and its consequences, PhD thesis, University of Kassel, Kassel, Germany, 2006.
    [8] M. M. Khader, M. M. Babatin, Evaluating the impacts of thermal conductivity on casson fluid flow near a slippery sheet: numerical simulation using sixth-kind Chebyshev polynomials, J. Nonlinear Math. Phys., 30 (2023), 1834–1853. https://doi.org/10.1007/s44198-023-00146-0 doi: 10.1007/s44198-023-00146-0
    [9] A. Babaei, H. Jafari, S. Banihashemi, Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method, J. Comput. Appl. Math., 377 (2020), 112908. https://doi.org/10.1016/j.cam.2020.112908 doi: 10.1016/j.cam.2020.112908
    [10] K. Sadri, H. Aminikhah, A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation, Int. J. Comput. Math., 99 (2022), 966–992. https://doi.org/10.1080/00207160.2021.1940977 doi: 10.1080/00207160.2021.1940977
    [11] W. M. Abd-Elhameed, Y. H. Youssri, A. K. Amin, A. G. Atta, Eighth-kind Chebyshev polynomials collocation algorithm for the nonlinear time-fractional generalized Kawahara equation, Fractal Fract., 7 (2023), 652. https://doi.org/10.3390/fractalfract7090652 doi: 10.3390/fractalfract7090652
    [12] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, Galerkin operational approach for multi-dimensions fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106608. https://doi.org/10.1016/j.cnsns.2022.106608 doi: 10.1016/j.cnsns.2022.106608
    [13] W. Weera, R. S. Varun Kumar, G. Sowmya, U. Khan, B. C. Prasannakumara, E. E. Mahmoud, et al., Convective-radiative thermal investigation of a porous dovetail fin using spectral collocation method, Ain Shams Eng. J., 14 (2023), 101811. https://doi.org/10.1016/j.asej.2022.101811 doi: 10.1016/j.asej.2022.101811
    [14] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, B. I. Bayoumi, D. Baleanu, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Methods Appl. Sci., 42 (2019), 1389–1412. https://doi.org/10.1002/mma.5431 doi: 10.1002/mma.5431
    [15] P. B. Vasconcelos, J. E. Roman, J. M. A. Matos, Solving differential eigenproblems via the spectral Tau method, Numer. Algorithms, 92 (2023), 1789–1811. https://doi.org/10.1007/s11075-022-01366-z doi: 10.1007/s11075-022-01366-z
    [16] M. M. Alsuyuti, E. H. Doha, S. S. Ezz-Eldien, I. K. Youssef, Spectral Galerkin schemes for a class of multi-order fractional pantograph equations, J. Comput. Appl. Math., 384 (2021), 113157. https://doi.org/10.1016/j.cam.2020.113157 doi: 10.1016/j.cam.2020.113157
    [17] J. Wang, R. Wu, The extended Galerkin method for approximate solutions of nonlinear vibration equations, Appl. Sci., 12 (2022), 2979. https://doi.org/10.3390/app12062979 doi: 10.3390/app12062979
    [18] W. M. Abd-Elhameed, A. M. Al-Sady, O. M. Alqubori, A. G. Atta, Numerical treatment of the fractional Rayleigh-Stokes problem using some orthogonal combinations of Chebyshev polynomials, AIMS Math., 9 (2024), 25457–25481. https://doi.org/10.3934/math.20241243 doi: 10.3934/math.20241243
    [19] A. A. Abd Elaziz, S. Boulaaras, N. H. Sweilam, Numerical solution of the fractional-order logistic equation via the first-kind Dickson polynomials and spectral tau method, Math. Meth. Appl. Sci., 46 (2023), 8004–8017. https://doi.org/10.1002/mma.7345 doi: 10.1002/mma.7345
    [20] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Modal shifted fifth-kind Chebyshev tau integral approach for solving heat conduction equation, Fractal Fract., 6 (2022), 619. https://doi.org/10.3390/fractalfract6110619 doi: 10.3390/fractalfract6110619
    [21] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [22] K. Sadri, D. Amilo, K. Hosseini, E. Hinçal, A. R. Seadawy, A tau-Gegenbauer spectral approach for systems of fractional integrodifferential equations with the error analysis, AIMS Math., 9 (2024), 3850–3880. https://doi.org/10.3934/math.2024190 doi: 10.3934/math.2024190
    [23] W. M. Abd-Elhameed, A. F. Abu Sunayh, M. H. Alharbi, A. G. Atta, Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation, AIMS Math., 9 (2024), 34567–34587. https://doi.org/10.3934/math.20241646 doi: 10.3934/math.20241646
    [24] A. Napoli, W. M. Abd-Elhameed, An innovative harmonic numbers operational matrix method for solving initial value problems, Calcolo, 54 (2017), 57–76. https://doi.org/10.1007/s10092-016-0176-1 doi: 10.1007/s10092-016-0176-1
    [25] M. M. Khader, A. Eid, M. Adel, Implementing the Vieta–Lucas collocation optimization method for MHD Casson and Williamson model under the effects of heat generation and viscous dissipation, J. Math., 2022 (2022), 1–13. https://doi.org/10.1155/2022/3257808 doi: 10.1155/2022/3257808
    [26] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Novel spectral schemes to fractional problems with nonsmooth solutions, Math. Meth. Appl. Sci., 46 (2023), 14745–14764. https://doi.org/10.1002/mma.9343 doi: 10.1002/mma.9343
    [27] M. Ahsan, M. Bohner, A. Ullah, A. A. Khan, S. Ahmad, A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions, Math. Comput. Simul., 204 (2023), 166–180. https://doi.org/10.1016/j.matcom.2022.08.004 doi: 10.1016/j.matcom.2022.08.004
    [28] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466.
    [29] J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061–2070. https://doi.org/10.1109/JRPROC.1962.288235 doi: 10.1109/JRPROC.1962.288235
    [30] D. G. Aronson, H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33–76. https://doi.org/10.1016/0001-8708(78)90130-5 doi: 10.1016/0001-8708(78)90130-5
    [31] H. Ramos, A. Kaur, V. Kanwar, Using a cubic B-spline method in conjunction with a one-step optimized hybrid block approach to solve nonlinear partial differential equations, Comput. Appl. Math., 41 (2022), 34. https://doi.org/10.1007/s40314-021-01729-7 doi: 10.1007/s40314-021-01729-7
    [32] A. Mehta, G. Singh, H. Ramos, Numerical solution of time dependent nonlinear partial differential equations using a novel block method coupled with compact finite difference schemes, Comput. Appl. Math., 42 (2023), 201. https://doi.org/10.1007/s40314-023-02345-3 doi: 10.1007/s40314-023-02345-3
    [33] B. Inan, K. K. Ali, A. Saha, T. Ak, Analytical and numerical solutions of the Fitzhugh–Nagumo equation and their multistability behavior, Numer. Methods Partial Differ. Equ., 37 (2021), 7–23. https://doi.org/10.1002/num.22516 doi: 10.1002/num.22516
    [34] T. Kawahara, M. Tanaka, Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation, Phys. Lett. A, 97 (1983), 311–314. https://doi.org/10.1016/0375-9601(83)90648-5 doi: 10.1016/0375-9601(83)90648-5
    [35] A. H. Bhrawy, A Jacobi–Gauss–Lobatto collocation method for solving generalized Fitzhugh–Nagumo equation with time-dependent coefficients, Appl. Math. Comput., 222 (2013), 255–264. https://doi.org/10.1016/j.amc.2013.07.056 doi: 10.1016/j.amc.2013.07.056
    [36] D. Olmos, B. D. Shizgal, Pseudospectral method of solution of the Fitzhugh–Nagumo equation, Math. Comput. Simulat., 79 (2009), 2258–2278. https://doi.org/10.1016/j.matcom.2009.01.001 doi: 10.1016/j.matcom.2009.01.001
    [37] H. S. Shekarabi, M. Aqamohamadi, J. Rashidinia, Tension spline method for the solution of Fitzhugh–Nagumo equation, Trans. A. Razmadze Math. Inst., 172 (2018), 571–581. https://doi.org/10.1016/j.trmi.2018.02.001 doi: 10.1016/j.trmi.2018.02.001
    [38] M. Namjoo, S. Zibaei, Numerical solutions of Fitzhugh–Nagumo equation by exact finite-difference and NSFD schemes, Comput. Appl. Math., 37 (2018), 1395–1411. https://doi.org/10.1007/s40314-016-0406-9 doi: 10.1007/s40314-016-0406-9
    [39] M. A. Rufai, A. A. Kosti, Z. A. Anastassi, B. Carpentieri, A new two-step hybrid block method for the FitzHugh–Nagumo model equation, Mathematics, 12 (2023), 51. https://doi.org/10.3390/math12010051 doi: 10.3390/math12010051
    [40] Y. Xu, An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials, Adv. Appl. Math., 29 (2002), 328–343. https://doi.org/10.1016/S0196-8858(02)00017-9 doi: 10.1016/S0196-8858(02)00017-9
    [41] A. Draux, M. Sadik, B. Moalla, Markov–Bernstein inequalities for generalized Gegenbauer weight, Appl. Numer. Math., 61 (2011), 1301–1321. https://doi.org/10.1016/j.apnum.2011.09.003 doi: 10.1016/j.apnum.2011.09.003
    [42] G. E. Andrews, R. Askey, R. Roy, Special functions, Volume 71, Cambridge University Press, Cambridge, UK, 1999.
    [43] W. M. Abd-Elhameed, S. O. Alkhamisi, New results of the fifthkind orthogonal Chebyshev polynomials, Symmetry, 13 (2021), 2407. https://doi.org/10.3390/sym13122407 doi: 10.3390/sym13122407
    [44] X. Zhao, L. L. Wang, Z. Xie, Sharp error bounds for Jacobi expansions and Gegenbauer–Gauss quadrature of analytic functions, SIAM J. Numer. Anal., 51 (2013), 1443–1469. https://doi.org/10.1137/12089421X doi: 10.1137/12089421X
    [45] A. Yokus, On the exact and numerical solutions to the Fitzhugh–Nagumo equation, Int. J. Mod. Phys. B, 34 (2020), 2050149. https://doi.org/10.1142/S0217979220501490 doi: 10.1142/S0217979220501490
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(213) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog