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1. Introduction

Several branches of mathematics and engineering use Chebyshev polynomials (CPs), a famous
class of orthogonal polynomials. In approximation theory, CPs are often used to represent and
estimate functions precisely. They are ideal for giving highly accurate approximations because of
their remarkable ability to minimize the greatest error. Filters with customized frequency responses
are designed using CPs in signal processing. CPs also arise in other branches, such as mathematical
physics, control theory, and mechanics; see [1, 2]. In numerical analysis, the different kinds of CPs
approximate solutions of different differential equations (DEs). Among the various kinds of CPs, four
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kinds are recognized as special Jacobi polynomials (see, for example, [3–6]). Various applications
have introduced and utilized other types of CPs. Masjed-Jamei, in [7], introduced other CPs that differ
from the first four kinds. This motivated him to call them the fifth and sixth kinds of CPs. In several
applications, they were used; see, for example, [8–10]. Recently, the authors of [11] introduced other
CPs and employed them to solve the nonlinear time-fractional generalized Kawahara equation.

Spectral methods, which are numerical approaches, are frequently employed to address partial
differential equations (PDEs). The core concept of these methods is based on choosing two groups of
trial and test functions; see [12–15]. In the Galerkin method, the two sets coincide; see [16–18]. In tau
and collocation methods, we have more freedom to choose basis functions, for example; see [19–23].
The collocation method is advantageous due to its easy implementation; see, for example, [24–27].

Nonlinear equations are fundamental in many branches of mathematics, physics, and engineering
because of the wide variety of phenomena they explain. The solutions to these equations are more
difficult than the linear ones. Engineering encounters nonlinear equations in many areas, such as
structural analysis, control systems, and electrical circuits. Since most nonlinear equations do not
have known analytical solutions, numerical approaches are necessary. One of the most significant
nonlinear equations is the FitzHugh–Nagumo (FH–N) equation, which predicts the propagation of
nerve impulses. FitzHugh [28] and Nagumo [29] developed this equation. This equation has
long piqued the attention of mathematicians and theoretical biologists; see [30]. Many numerical
approaches have been followed to find analytical and numerical solutions to the FH–N problem.
For instance, the authors of [31] used the cubic B-spline method with a finite one-step hybrid block
approach to treat these equations. In addition, the authors of [32] also used a block method and a finite-
difference scheme to treat them. The authors of [33] proposed analytical and numerical solutions to the
FH–N equation. The authors of [34] found a few analytic solutions to the FH–N equation. The problem
was solved using the Jacobi–Gauss–Lobatto collocation technique in [35]. In [36], a pseudospectral
approach was used. In [37], a spline approach was followed. The finite difference method was used
in [38]. A hybrid block method was used in [39].

This article aims to introduce special polynomials derived from the generalized Gegenbauer
polynomials. We can categorize these polynomials as CPs because they connect to the existing forms of
CPs through simple linear combinations. We present the essential characteristics and some significant
formulas of these polynomials. Moreover, we solve the FH–N problem using the collocation method.
We utilize the introduced CPs as basis functions. These polynomials are used for the first time, to the
best of our knowledge. This motivated us to introduce and utilize them. The significance of the paper
can be listed in the following items:

• Introducing Chebsyhev polynomials that are related to the well-known ones;
• Establishing some fundamental formulas of these polynomials, such as their power form and

inversion formulas;
• Developing the operational matrices for the shifted Chebyshev polynomials;
• Designing a numerical algorithm based on the collocation method to solve the FH–N equation.

This article is structured with the following components: Section 2 discusses the generalized
ultraspherical polynomials. In Section 3, new CPs are introduced alongside novel formulas for these
polynomials. Section 4 analyzes a collocation method used to solve the FH–N problem. Error analysis
is investigated in Section 5. Various examples to demonstrate the proposed scheme can be found in
Section 6. Finally, conclusions are presented in Section 7.
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2. An overview of the generalized Gegenbauer polynomials

In this section, an account of the generalized Gegenbauer polynomials is given. Some useful
formulas for these polynomials will also be presented.

The generalized Gegenbauer polynomials
{
G(ζ,θ)

n (x)
}

n≥0
are orthogonal polynomials on [−1, 1] with

respect to w(x) = (1 − x2)ζ−
1
2 |x|2 θ. These polynomials can be defined as [40, 41]

G(ζ,θ)
n (x) =



(ζ + θ) n
2(

θ + 1
2

)
n
2

P(ζ− 1
2 ,θ−

1
2 )

n
2

(
2x2 − 1

)
, if n is even,

(ζ + θ) n+1
2(

θ + 1
2

)
n+1

2

xP(ζ− 1
2 ,θ+

1
2 )

n−1
2

(
2x2 − 1

)
, if n is odd,

(2.1)

where (x)m =
Γ(x+m)
Γ(x) is the Pochhammer symbol and

{
P(ζ,θ)

n (x)
}

n≥0
are the classical Jacobi polynomials.

On [−1, 1], the polynomials G(ζ,θ)
n (x) are orthogonal according to [41]. We have

1∫
−1

w(x) G(ζ,θ)
n (x) G(ζ,θ)

m (x) dx =

hζ,θn , n , m,

0, n = m,
(2.2)

where hζ,θn is given by

hζ,θn =

(
Γ
(
θ + 1

2

))2

(n + ζ + θ) (Γ(ζ + θ))2



Γ
(
ζ + n+1

2

)
Γ
(

n
2 + ζ + θ

)(
n
2

)
!Γ

(
1+n

2 + θ
) , n even,

Γ
(

n
2 + ζ

)
Γ
(

n
2 + ζ + θ +

1
2

)(
n−1

2

)
!Γ

(
n
2 + θ + 1

) , n odd.

(2.3)

Remark 2.1. The standard Gegenbauer (ultraspherical) polynomials can be deduced from the
generalized Gegenbauer polynomials. More definitely, we have

C(ζ)
n (x) = G(ζ,0)

n (x),

where
{
C(ζ)

n (x)
}

n≥0
are the Gegenbauer polynomials.

Remark 2.2. It is worth noting that many important classes of G(ζ,θ)
n (x), were previously investigated.

More definitely, the fifth, sixth, seventh, and eighth kinds of CPs, denoted, respectively, by
Xn(x),Yn(x),Cn(x) and Zn(x), are given as

Xn(x) = G(0,1)
n (x), Yn(x) = G(1,1)

n (x),
Cn(x) = G(0,2)

n (x), Zn(x) = G(1,2)
n (x).
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3. Introducing a kind of CPs

Now we will introduce a certain kind of CPs, Nk(x), k ≥ 0, which is considered a special case of
G(ζ,θ)

n (x) after putting ζ = 2, θ = 1. Therefore, from (2.1), these polynomials can be defined as:

Nk(x) =


(3) k

2

( 3
2 ) k

2

P( 3
2 ,

1
2 )

k
2

(
2x2 − 1

)
, if k is even;

x(3) k+1
2

( 3
2 ) k+1

2

P( 3
2 ,

3
2 )

k−1
2

(
2x2 − 1

)
, if k is odd.

(3.1)

Remark 3.1. We comment on our choices for the parameters ζ = 2, θ = 1 for the following reasons:

• The generalized polynomials G(ζ,θ)
n (x) depend on two parameters, requiring extensive research to

derive theoretical formulas for their application in solving different differential equations. The
specific choice of parameters helps simplify the computations for some formulas.
• Previous studies have considered specific values of the two parameters of G(ζ,θ)

n (x). For instance,
in [7], the author introduced the fifth and sixth kinds of CPs by selecting specific parameters. In
this paper, we investigate the practical and theoretical implications of choosing ζ = 2 and θ = 1.
• To our knowledge, this specific choice has not been investigated, making it a new contribution to

the literature.
• The choice of ζ = 2 and θ = 1, also enables us to investigate the analysis of the errors resulting

from the approximation.
• We anticipate that additional theoretical formulas for these polynomials, such as their

linearization formulas, will be helpful in other applications.

The first few instances of Nk(x) are as follows:

N0(x) = 1, N1(x) = 2 x,

N2(x) = 8x2 − 3, N3(x) = 16x3 − 8x.

3.1. Some important relations of Nk(x)

From (2.2), it is easy to see that the orthogonality relation of Nk(x) takes the following form:∫ 1

−1
x2

(
1 − x2

)3/2
Nn(x) Nm(x) dx = hn, (3.2)

where

hn =
π

128


(n + 2) (n + 4), if n = m, n even,

(n + 1) (n + 5), if n = m, n odd,

0, if n , m.

(3.3)

Lemma 3.1. Let j be a positive integer. The polynomials N j(x) can be expressed as

N j(x) =

⌊ j
2

⌋∑
r=0

(−1)r (3) j−r

r!
(⌊

j
2

⌋
− r

)
!
(

3
2

)
−r+

⌊ 1+ j
2

⌋ x j−2r. (3.4)

AIMS Mathematics Volume 10, Issue 1, 1201–1223.



1205

Proof. Formula (3.4) can be split into the following two formulas:

N2ℓ(x) =
ℓ∑

m=0

(−1)m (3)2ℓ−m

(ℓ − m)! m!
(

3
2

)
ℓ−m

x2ℓ−2m, (3.5)

N2ℓ+1(x) =
ℓ∑

m=0

(−1)m (3)2ℓ−m+1

(ℓ − m)! m!
(

3
2

)
ℓ−m+1

x2ℓ−2m+1. (3.6)

Thus, we show (3.5) and (3.6). If we note the following expression for the Jacobi polynomials [42]:

P(µ,ν)
m (y) =

(−1)m (ν + 1)m

m! 2F1

(
−m,m + µ + ν + 1

ν + 1

∣∣∣∣∣∣ 1 + y
2

)
, (3.7)

then, the form in (3.1) implies that N2ℓ(x) and N2ℓ+1(x) can be, respectively, expressed as

N2ℓ(x) =
(3)ℓ(

3
2

)
ℓ

P( 3
2 ,

1
2 )

ℓ

(
2x2 − 1

)
, (3.8)

N2ℓ+1(x) =
(3)ℓ+1(

3
2

)
ℓ+1

xP( 3
2 ,

3
2 )

ℓ

(
2x2 − 1

)
, (3.9)

which yield the following two hypergeometric expressions:

N2ℓ(x) =
1
2

(−1)ℓ (ℓ + 1)(ℓ + 2) 2F1

(
−ℓ, ℓ + 3

3
2

∣∣∣∣∣∣ x2
)
, (3.10)

N2ℓ+1(x) =
1
3

(−1)ℓ (ℓ + 1)3 x 2F1

(
−ℓ, ℓ + 4

5
2

∣∣∣∣∣∣ x2
)
. (3.11)

By expanding the two hypergeometric functions 2F1(z) in (3.10) and (3.11) as two finite series and
performing some computations, formulas (3.5), and (3.6) can be obtained. □

Lemma 3.2. Let j be a positive integer. The inversion formula of N j(x) is given as follows:

x j =

⌊ j
2

⌋∑
r=0

( j − 2 r + 3)
⌊

j
2

⌋
!
(

3
2

)⌊ j+1
2

⌋
r! (3) j−r+1

N j−2 r(x). (3.12)

Proof. The inversion formula (3.12) can be split into

x2 j = j!
(
3
2

)
j

j∑
r=0

3 + 2 j − 2r
r! (3)2 j−r+1

N2 j−2r(x), (3.13)

x2 j+1 =2 j!
(
3
2

)
j+1

j∑
r=0

2 + j − r
r! (3)2 j−r+2

N2 j−2r+1(x), (3.14)

which can be proved following similar procedures to those given for the fifth kind of CPs in [43]. □
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Theorem 3.1. The k-th derivative:
dkNs(x)

d xk may be expanded as

dkNs(x)
d xk =

⌊ s−k
2 ⌋∑

L=0

Gk
L,sNs−k−2L(x), s ≥ k, (3.15)

where

Gk
L,s = 2k

×



(1 + s − k)(3 + s − 2L − k)(s + 2)!
(s + 1)!L!(s − L − k + 3)! 4F3

 −L,− 1
2 −

s
2 ,

1
2 −

s
2 +

k
2 ,−3 − s + L + k

−2 − s, 1
2 −

s
2 ,−

1
2 −

s
2 +

k
2

∣∣∣∣∣∣∣∣ 1
 , s even, k even,

(−1 − s + k)(−3 − s + 2L + k)(s + 1)!
L! (s − L − k + 3)! 4F3

 −L,−1 − s
2 ,

1
2 −

s
2 +

k
2 ,−3 − s + L + k

−2 − s,− s
2 ,−

1
2 −

s
2 +

k
2

∣∣∣∣∣∣∣∣ 1
 , s odd, k odd,

(−2 − s + k)(−3 − s + 2L + k)(s + 1)!
L! (s − L − k + 3)! 4F3

 −L,−1 − s
2 ,−

s
2 +

k
2 ,−3 − s + L + k

−2 − s,− s
2 ,−1 − s

2 +
k
2

∣∣∣∣∣∣∣∣ 1
 , s odd, k even,

(2 + s − k)(3 + s − 2L − k)(s + 2)!
(1 + s) L! (s − L − k + 3)! 4F3

 −L,− 1
2 −

s
2 ,−

s
2 +

k
2 ,−3 − s + L + k

−2 − s, 1
2 −

s
2 ,−1 − s

2 +
k
2

∣∣∣∣∣∣∣∣ 1
 , s even, k odd.

(3.16)

Proof. Formula (3.15) may be divided into the following four equations:

D2kN2s(x) =
4k(1 + 2s − 2k)(2s + 2)!

2s + 1

s−k∑
L=0

3 + 2s − 2L − 2k
L! (2s − L − 2k + 3)!

× 4F3

(
−L,−1

2 − s, 1
2 − s + k,−3 − 2s + L + 2k

−2 − 2s, 1
2 − s,−1

2 − s + k

∣∣∣∣∣∣ 1
)
N2s−2L−2k(x),

(3.17)

D2k+1N2s+1(x) =21+2k(2s + 2)!
s−k∑
L=0

(−1 − 2s + 2k)(−3 − 2s + 2L + 2k)
L! (2s − L − 2k + 3)!

× 4F3

(
−L,−3

2 − s, 1
2 − s + k,−3 − 2s + L + 2k

−3 − 2s,−1
2 − s,−1

2 − s + k

∣∣∣∣∣∣ 1
)
N2s−2L−2k(x),

(3.18)

D2kN2s+1(x) =21+2k(−3 − 2s + 2k)(2s + 2)!
s−k∑
L=0

−2 − s + L + k
L! (2s − L − 2k + 4)!

× 4F3

(
−L,−3

2 − s,−1
2 − s + k,−4 − 2s + L + 2k

−3 − 2s,−1
2 − s,−3

2 − s + k

∣∣∣∣∣∣ 1
)
N2s−2L−2k+1(x),

(3.19)

D2k+1N2s(x) =
41+k(−1 − 2s + 2k)(2s + 2)!

1 + 2s

s−k∑
L=0

−1 − s + L + k
L! (2s − L − 2k + 2)!

× 4F3

(
−L,−1

2 − s, 1
2 − s + k,−2 − 2s + L + 2k

−2 − 2s, 1
2 − s,−1

2 − s + k

∣∣∣∣∣∣ 1
)
N2s−2L−2k−1(x).

(3.20)

The above four formulae have analogous proofs. We prove (3.18). Using formula (3.6), we can write

D2k+1N2s+1(x) =
s∑

r=0

(−1)r 22(s−r) (2s − r + 3)!
(3 + 2s − 2r) r! (2s − 2k − 2r)!

x2s−2r−2k.
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The utilization of (3.13) converts the last formula into

D2k+1N2s+1(x) =
s∑

r=0

(−1)1+r4k(3 + 2s − r)!
(−3 − 2s + 2r)(2s − 2k − 2r)!r!

×

s−r−k∑
L=0

(3 + 2s − 2L − 2k − 2r) (2s − 2k − 2r + 1)!
L! (3)1+2s−L−2k−2r

N2s−2L−2k−2r(x),

(3.21)

which can be rewritten as

D2k+1N2s+1(x) =4k
s−k∑
L=0

(3 + 2s − 2L − 2k)

×

L∑
p=0

(−1)p+1 (−1 − 2s + 2p + 2k) (2s − p + 3)!(
3
2 + s − p

)
p! (L − p)! (2s − L − p − 2k + 3)!

N2s−2L−2k(x).

(3.22)

That last formula can be written as in (3.18). □

Remark 3.2. It is now more beneficial for us to reformulate Theorem 3.1 as follows:

Theorem 3.2. The k-th derivative:
dkNs(x)

d xk may be expanded as

dkNs(x)
d xk =

⌊ s−k
2 ⌋∑

L=0

ϑL,s,k B
k
L,sNL(x), s ≥ k, (3.23)

where

ϑL,s,k =

1, (s − k − L), even,

0, otherwise,

and
Bk

L,s = G
k
s−k−L

2 ,s
, (3.24)

and Gk
L,s is as given in (3.16).

3.2. The shifted polynomials on [0, 1]

Now we define the shifted CPs N∗k (x) on [0, 1], which are given by

N∗k (x) = Nk(2 x − 1). (3.25)

From (3.2), and (3.3), it can be shown that
{
N∗k (x)

}
n≥0

are orthogonal on [0, 1] such that

∫ 1

0
N∗n (x)N∗m(x) w∗(x) dx =

1
16
hn, (3.26)

where w∗(x) = (1 − 2x)2(x(1 − x))3/2 and hn is given in (3.3).
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Theorem 3.3. The kth-derivative of N∗j (x) may be written as

dkN∗j (x)

d xk =

⌊ j−k
2

⌋∑
L=0

B̃k
L, jN

∗
L(x), j ≥ k, (3.27)

with
B̃k

L, j = 2k Bk
L, j,

where Bk
L, j is given in (3.24).

Proof. Substituting (2 x − 1) for x in Theorem 3.2 results in (3.27). □

4. Numerical procedure for treating the FH–N equation

Within this section, we will examine the following FH–N equation [37]:

zt = zxx − z (a − z) (1 − z), 0 < a ≤ 1, (4.1)

which is constrained by the following initial and boundary conditions:

z(x, 0) = a0(x), 0 < x ≤ 1,
z(0, t) = a1(t), z(1, t) = a2(t), 0 < t ≤ 1,

(4.2)

where a0(x), a1(t) and a2(t) are given functions. Define∨
(Ω) = span{N∗i (x)N∗j (t) : i, j = 0, 1, . . . ,M}, (4.3)

where Ω = (0, 1]2. Then, any function zM(x, t) ∈
∨

(Ω) may be written as

zM(x, t) =
M∑
i=0

M∑
j=0

ci jN
∗
i (x)N∗j (t) = N

∗(x)CN∗T(t), (4.4)

where N∗(x) = [N∗0 (x),N∗1 (x), . . . ,N∗
M

(x)] and C = (ci j)0≤i, j≤M is the matrix of unknowns with the
order (M + 1)2.

Now we analyze a collocation algorithm for solving (4.1) governed by (4.2). This algorithm
utilizes the operational matrices of the derivatives of N∗k (x). These two formulas follow directly from
Theorem 3.3.

Corollary 4.1. Consider the vector N∗(x) = [N∗0 (x),N∗1 (x), . . . ,N∗
M

(x)]. Theorem 3.3 enables us to
write the first and second derivatives of N∗s (x) in matrix form as

dN∗(x)
d x

= QN∗(x)T,

d2N∗(x)
d x2 =MN∗(x)T,

(4.5)
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where Q = (B̃1
L,s) and M = (B̃2

L,s) are the operational matrices of derivatives given by

Q =



0 0 0 · · · 0
B̃1

1,0 0 0 · · · 0
B̃1

2,0 B̃1
2,1 0 · · · 0

...
...

...
. . .

...

B̃1
M,0 B̃

1
M,1 · · · B̃

1
M,M−1 0


,

M =



0 0 0 0 · · · 0
0 0 0 0 · · · 0
B2

2,0 0 0 0 · · · 0
B̃2

3,0 B̃2
3,1 0 0 · · · 0

...
...

...
. . .

. . .
...

B̃2
M,0 B̃

2
M,1 · · · B̃

2
M,M−2 0 0


.

Now, by using Eq (4.4), we can represent the residual R(x, t) of Eq (4.1) as

R(x, t) = zMt (x, t) − zMxx (x, t) + a zM(x, t) + (zM(x, t))3 − (a + 1) (zM(x, t))2. (4.6)

Applying Corollary 4.1 enables us to represent the residual R(x, t) in (4.6) in the following matrix
form:

R(x, t) = N∗(x)C
(
QN∗T (t)

)T
−MN∗T(x)CN∗T (t) + aN∗(x)CN∗T (t)

+
(
N
∗(x)CN∗T (t)

)3
− (a + 1)

(
N
∗(x)CN∗T (t)

)2
.

(4.7)

Remark 4.1. N∗r (0) and N∗r (1) can be deduced to give the following relations:

N∗r (0) =

 1
8 (−1)r/2(r + 2)(r + 4), if r is even,

0, if r is odd,

N∗r (1) =
1

24

(r + 2)(r + 3)(r + 4), if r is even,

(r + 1)(r + 3)(r + 5), if r is odd.

(4.8)

By using the spectral collocation approach and causing the residual R(x, t) to be zero at certain
collocation points (xi, t j), we may get the expansion coefficients ci j.

R(xr, ts) = 0, r = 1, 2, 3, . . . ,M− 1, s = 1, 2, 3, . . . ,M. (4.9)

Moreover, the conditions in (4.2) lead to

N
∗(xr)CN∗

T (0) = a0(xr), r = 1, 2, 3, . . . ,M + 1,

N
∗(0)CN∗T (ts) = a1(ts), s = 1, 2, 3, . . . ,M,

N
∗(1)CN∗T (ts) = a2(ts), s = 1, 2, 3, . . . ,M,

(4.10)

where {(xr, ts) : r, s = 1, 2, 3, . . . ,M + 1} are the first distinct roots of N∗r (x), and N∗s (t), respectively.
Hence, Newton’s iterative approach may be used to solve the (M+1)2 nonlinear system in (4.9)-(4.10).
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5. Error bounds

Here, we comprehensively examine the suggested polynomial expansion’s error analysis
corresponding to the one-dimensional (1-D), and two-dimensional (2-D) CP-weighted Sobolev spaces.
Four theorems will be formulated and shown.

• For the truncation error variable t, the first theorem provides error estimation for the kth-derivative
in 1-D CP-weighted Sobolev space.
• For the truncation error variable x, the second theorem provides error estimation for the pth-

derivative in two-dimensional (2-D) CP-weighted Sobolev space.
• For the truncation error variable t, the third theorem provides error estimation for the qth-

derivative in 2-D CP-weighted Sobolev space.
• The last theorem shows that ∥RM(x, t)∥L2

ω(x,t)
, for a sufficiently largeM, will be small enough.

Assume that the following CPs-weighted Sobolev space:

Hm
w∗(t)(I) = {u : Dk

t u ∈ L2
w∗(t)(I), 0 ≤ k ≤ m}, (5.1)

where I = (0, 1] with the inner product, norm, and semi-norm, which are, respectively,

(u, v)Hm
w∗(t)
=

m∑
k=0

(Dk
t u,Dk

t v)L2
w∗(t)
, ||u||2Hm

w∗(t)
= (u, u)Hm

w∗(t)
, |u|Hm

w∗(t)
= ||Dm

t u||L2
w∗(t)
, (5.2)

where m ∈ N.

Lemma 5.1. As in [44], for n ≥ 1, n + r > 1, and n + s > 1, where r, s, are any constants, we have

Γ(n + r)
Γ(n + s)

≤ or,s
n nr−s, (5.3)

where

or,s
n = exp

(
r − s

2 (n + s − 1)
+

1
12 (n + r − 1)

+
(r − s)2

n

)
. (5.4)

Theorem 5.1. Let χ̄(t) =
∑M

j=0 χ̂ jN
∗
j (t) be the approximate solution of χ(t) ∈ Hα,mw∗(t)(I). Then for 0 ≤

k ≤ m ≤ M + 1, we get
||Dk

t (χ(t) − χ̂(t))||L2
w∗(t)
≲M

−1
4 (m−k) |χ(t)|2Hm

w∗(t)
, (5.5)

whereA ≲ B indicates the existence of a constant ν such thatA ≤ νB.

Proof. The definitions of χ(t) and χ̂(t) allow us to have

||Dk
t (χ(t) − χ̂(t))||2L2

w∗(t)
=

∞∑
n=M+1

|χ̂n|
2 ||Dk

t N
∗
n (t)||2L2

w∗(t)

=

∞∑
n=M+1

|χ̂n|
2
||Dk

t N
∗
n (t)||2

L2
w∗(t)

||Dm
t N

∗
n (t)||2

L2
w∗(t)

||Dm
t N

∗
n (t)||2L2

w∗(t)

≤

||Dk
t N

∗
M+1(t)||2

L2
w∗(t)

||Dm
t N

∗
M+1(t)||2

L2
w∗(t)

|χ(t)|2Hm
w∗(t)
.

(5.6)
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To estimate the factor
||Dk

t N
∗
M+1(t)||2

L2
w∗(t)

||Dm
t N

∗
M+1(t)||2

L2
w∗(t)

, we first find ||Dk
t N

∗
M+1(t)||2

L2
w∗(t)

as follows:

||Dk
t N

∗
M+1(t)||2L2

w∗(t)
=

∫ 1

0
Dk

t N
∗
M+1(t) Dk

t N
∗
M+1(t) w∗(t) d t. (5.7)

If we make use of Eq (3.4), and the relation: (2 t − 1) j =
∑ j

k=0 (−1) j−k
(

j
k

)
(2 t)k, followed by expanding,

rearranging, and collecting the similar terms, then the following formula can be obtained:

N∗j (t) =
j∑

r=0

λr, j tr, (5.8)

where

λr, j =

j∑
m=0

2r(−1)
2 r−3 m+ j

2 a j+m

(
m
r

)
(3) j+m

2

j−m
2 !

(
3
2

)
m− j

2 +
⌊ j+1

2

⌋ Γ ( 1
2 (− j + m + 2) +

⌊
j
2

⌋) , (5.9)

and

a j =

1, if j is even,
0, otherwise.

(5.10)

By applying Dk
t to Eq (5.8), one gets

Dk
t N

∗
M+1(t) =

M+1∑
r=k

λr,M+1
r!

(r − k)!
tr−k. (5.11)

Accordingly, we have

||Dk
t N

∗
M+1(t)||2L2

w∗(t)
=

M+1∑
r=k

λ2
r,M+1

(r!)2

((r − k)!)2

∫ 1

0
(2 t − 1)2 t

3
2+2 r−2 k(1 − t)

3
2 dt

=

M+1∑
r=k

λ2
r,M+1

(r!)2

((r − k)!)2

∫ 1

0

(
t−2 k+2 r+ 3

2 − 4t−2 k+2 r+ 5
2 + 4t−2 k+2 r+ 7

2
)

(1 − t)
3
2 dt

=

M+1∑
r=k

3
√
π λ2

r,M+1

4

(
Γ(r + 1)
Γ(r − k + 1)

)2 Γ(−2 k + 2 r + 5
2 )

Γ(−2 k + 2 r + 5)

−
4Γ(−2 k + 2 r + 7

2 )
Γ(−2 k + 2 r + 6)

+
4Γ(−2 k + 2 r + 9

2 )
Γ(−2 k + 2 r + 7)

 .

(5.12)
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The application of the Stirling formula enables one to obtain the following inequalities:

Γ(r + 1)
Γ(r − k + 1)

≲ rk,

Γ(−2 k + 2 r + 5
2 )

Γ(−2 k + 2 r + 5)
≲ (r − k)−

5
2 ,

4Γ(−2 k + 2 r + 7
2 )

Γ(−2 k + 2 r + 6)
≲ (r − k)−

5
2 ,

4Γ(−2 k + 2 r + 9
2 )

Γ(−2 k + 2 r + 7)
≲ (r − k)−

5
2 .

(5.13)

By virtue of the Stirling formula and Lemma 5.1, ||Dk
t N

∗
M+1(t)||2

L2
w∗(t)

can be written as

||Dk
t N

∗
M+1(t)||2L2

w∗(t)
≲ λ∗ (M + 1)2 k (M− k + 1)−

5
2

M+1∑
r=k

1

= λ∗
(
Γ(M + 2)
Γ(M + 1)

)2 k

(M− k + 1)−
5
2 (M− k + 2)

≲ λ∗M2 k

(
Γ(M− k + 2)
Γ(M− k + 1)

)− 5
2
(
Γ(M− k + 3)
Γ(M− k + 2)

)
≲M2 k (M− k)

−3
2 ,

(5.14)

where λ∗ = max
0≤r≤M+1

3
√
π λ2

r,M+1

4

.

Similarly, we can get
||Dm

t N
∗
M+1(t)||2L2

w∗(t)
≲M2 m (M− m)

−3
2 . (5.15)

Accordingly, we have

||Dk
t N

∗
M+1(t)||2

L2
w∗(t)

||Dm
t N

∗
M+1(t)||2

L2
w∗(t)

≲M2 (k−m)
(
M− k
M− m

) −3
2

<M2 (k−m)
(
Γ(M− m + 1)
Γ(M− k + 1)

) −3
2

≲M
−1
2 (m−k).

(5.16)

By inserting Eq (5.16) into Eq (5.6), one has

||Dk
t (χ(t) − χ̂(t))||2L2

w∫ (t)

≲M
−1
2 (m−k) |χ(t)|2Hm

w∗(t)
. (5.17)

Therefore, we get the desired result. □
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Now, assume the following 2-D CP-weighted Sobolev space:

Hr,s
ω(x,t)(I × I) = {u :

∂p+q u
∂ xp ∂ tq ∈ L2

ω(x,t)(I × I), r ≥ p ≥ 0, s ≥ q ≥ 0}, (5.18)

equipped with the following norm and semi-norm:

||u||Hr,s
ω(x,t)
=

 r∑
p=0

s∑
q=0

∣∣∣∣∣∣∣∣∣∣ ∂p+q u
∂ xp ∂ tq

∣∣∣∣∣∣∣∣∣∣2
L2
ω(x,t)


1
2

, |u|Hr,s
ω(x,t)
=

∣∣∣∣∣∣∣∣∣∣ ∂r+s u
∂ xr ∂ ts

∣∣∣∣∣∣∣∣∣∣
L2
ω(x,t)

, (5.19)

where ω(x, t) = w∗(x) w∗(t) and r, s ∈ N.

Theorem 5.2. Given the assumptions 0 ≤ p ≤ r ≤ M + 1, the approximation to z(x, t) ∈ Hr,s
ω(x,t)(I × I)

is zM(x, t). As a result, the estimation that follows is applicable:∣∣∣∣∣∣∣∣∣∣ ∂p

∂ xp (z(x, t) − zM(x, t))
∣∣∣∣∣∣∣∣∣∣

L2
ω(x,t)

≲M
−1
4 (r−p) |z(x, t)|Hr,0

ω(x,t)
. (5.20)

Proof. According to the definitions of z(x, t) and zM(x, t), one has

z(x, t) − zM(x, t) =
M∑
i=0

∞∑
j=M+1

ci jN
∗
i (x)N∗j (t) +

∞∑
i=M+1

∞∑
j=0

ci jN
∗
i (x)N∗j (t)

≤

M∑
i=0

∞∑
j=0

ci jN
∗
i (x)N∗j (t) +

∞∑
i=M+1

∞∑
j=0

ci jN
∗
i (x)N∗j (t).

(5.21)

Now, by applying the same procedures as in Theorem 5.1, we obtain∣∣∣∣∣∣∣∣∣∣ ∂p

∂ xp (z(x, t) − zM(x, t))
∣∣∣∣∣∣∣∣∣∣

L2
ω(x,t)

≲M
−1
4 (r−p) |z(x, t)|Hr,0

ω(x,t)
. (5.22)

□

Theorem 5.3. Given the assumptions 0 ≤ q ≤ s ≤ M + 1, the approximation to z(x, t) ∈ Hr,s
ω(x,t)(I × I)

is zM(x, t). As a result, the estimation that follows is applicable:∣∣∣∣∣∣∣∣∣∣ ∂q

∂ tq (z(x, t) − zM(x, t))
∣∣∣∣∣∣∣∣∣∣

L2
ω(x,t)

≲M
−1
4 (s−q) |z(x, t)|H0,s

ω(x,t)
. (5.23)

Proof. The proof of this theorem is similar to the proof of Theorems 5.1 and 5.2. □

Theorem 5.4. Let RM(x, t) be the residual of Eq (4.1). In that case, ∥RM(x, t)∥L2
ω(x,t)

will be sufficiently
small for sufficiently large values ofM.

Proof. RM(x, t) of Eq (4.1) can be written as

RM(x, t) =
∂ zM
∂ t
−
∂2 zM
∂ x2 + zM (a − zM) (1 − zM). (5.24)
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Subtracting Eq (5.24) from Eq (4.1) leads to the following equation:

RM(x, t) =
∂

∂ t
(z(x, t) − zM(x, t)) −

∂2

∂ x2 (z(x, t) − zM(x, t)) + a (z(x, t) − zM(x, t))

+ (z(x, t) − zM(x, t))3 − (a + 1) (z(x, t) − zM(x, t))2.

(5.25)

If we consider L2-norm, then, with the aid of Theorems 5.2 and 5.3, we get

∥RM(x, t)∥L2
ω(x,t)
≲M

− s
4 |z(x, t)|H0,s

ω(x,t)
+M

−1
4 (r−2) |z(x, t)|Hr,0

ω(x,t)
+ aM

− r
4 |z(x, t)|Hr,0

ω(x,t)

+

(
M

− r
4 |z(x, t)|Hr,0

ω(x,t)

)3
+ (a + 1)

(
M

− r
4 |z(x, t)|Hr,0

ω(x,t)

)2
.

(5.26)

It is clear from Eq (5.26) that for sufficiently high values ofM, ∥RM(x, t)∥L2
ω(x,t)

will be small enough.
Thus, the proof of this theorem is finished. □

6. Some numerical tests

In this section, we present test examples to show the applicability of our proposed method and
compare it with other methods.

Example 6.1. The authors of [37] considered the FH–N equation of the form

zt = zxx − z (a − z) (1 − z), 0 < a ≤ 1, (6.1)

governed by the following initial and boundary conditions:

z(x, 0) =
ae

ax√
2 + e

x√
2

e
ax√

2 + e
x√
2 + 1

, 0 < x ≤ 1,

z(0, t) =
ae

a2t
2 + et/2

e
a2t
2 + eat + et/2

, 0 < t ≤ 1,

z(1, t) =
ae

1
2 a(at+

√
2) + e

1
2 (t+

√
2)

eat + e
1
2 a(at+

√
2) + e

1
2 (t+

√
2)
, 0 < t ≤ 1,

(6.2)

where the exact solution to this problem is given by

z(x, t) =
a e( a

2−1)at+ ax√
2 + e( 1

2−a)t+ x√
2

e( 1
2−a)t+ x√

2 + e( a
2−1)at+ ax√

2 + 1
.

Table 1 gives a comparison of the maximum absolute error (MAE) between our method and the method
in [37] at t = 1. Figure 1 shows the exact and the approximate solutions at a = 0.5 and M = 12.
Figure 2 shows the MAE at a = 1 andM = 12. Table 2 presents the absolute error (AE) at a = 0.9 and
M = 12. Figure 3 shows the AE (left) and the approximate solution (right) at a = 0.1 andM = 12.
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Table 1. Comparison of the MAE of Example 6.1 at t = 1.

Our method atM = 12

x a = 0.2 a = 0.5 a = 0.7 Method in [37]

0.1 4.38538 × 10−15 5.10703 × 10−15 3.66374 × 10−15 1.41366 × 10−6

0.2 1.66533 × 10−15 1.88738 × 10−15 2.9976 × 10−15 1.39287 × 10−6

0.3 4.77396 × 10−15 1.22125 × 10−15 1.88738 × 10−15 1.18067 × 10−6

0.4 4.996 × 10−15 2.9976 × 10−15 1.11022 × 10−15 1.16488 × 10−6

0.5 6.99441 × 10−15 5.88418 × 10−15 5.77316 × 10−15 8.85464 × 10−7

0.6 1.49887 × 10−14 7.77156 × 10−16 7.54952 × 10−15 9.60502 × 10−7

0.7 1.82077 × 10−14 6.77236 × 10−15 1.39888 × 10−14 5.91894 × 10−7

0.8 4.4964 × 10−14 4.36318 × 10−14 4.77396 × 10−15 7.75841 × 10−7

0.9 8.03801 × 10−14 1.42886 × 10−13 8.55982 × 10−14 3.12309 × 10−7

Figure 1. The exact and the approximate solutions for Example 6.1 at a = 0.5, andM = 12.

0 2 4 6 8 10 12

10
-13
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-11
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-9

10
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ℳ

M
A
E

aa

Figure 2. The MAE of Example 6.1 at a = 1.
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Table 2. The AE of Example 6.1 at a = 0.9.

x t = 0.3 t = 0.5 t = 0.7 t = 0.9

0.1 1.22125 × 10−15 2.10942 × 10−15 2.10942 × 10−15 1.88738 × 10−15

0.2 2.77556 × 10−15 4.21885 × 10−15 4.21885 × 10−15 3.66374 × 10−15

0.3 3.88578 × 10−15 6.10623 × 10−15 6.21725 × 10−15 5.55112 × 10−15

0.4 5.55112 × 10−15 8.21565 × 10−15 8.88178 × 10−15 6.99441 × 10−15

0.5 7.21645 × 10−15 1.04361 × 10−14 1.09912 × 10−14 7.54952 × 10−15

0.6 9.21485 × 10−15 1.26565 × 10−14 1.28786 × 10−14 6.55032 × 10−15

0.7 1.08802 × 10−14 1.54321 × 10−14 1.5099 × 10−14 5.77316 × 10−15

0.8 1.34337 × 10−14 1.77636 × 10−14 1.82077 × 10−14 8.21565 × 10−15

0.9 1.59872 × 10−14 2.13163 × 10−14 2.17604 × 10−14 1.67644 × 10−14

Figure 3. The AE (left) and the approximate solution (right) for Example 6.1 at a = 0.1, and
M = 12.

Example 6.2. The authors of [45] considered the FH–N equation of the form

zt = zxx − z (a − z) (1 − z), 0 < a ≤ 1, (6.3)

governed by the following initial and boundary conditions:

z(x, 0) =
2

e−
x√
2 + 2

, 0 < x ≤ 1,

z(0, t) =
2

e
t
2 + 2

, 0 < t ≤ 1,

z(1, t) =
2

e
t
2−

1√
2 + 2

, 0 < t ≤ 1,

(6.4)

where the exact solution of this problem when a = 1, is

z(x, t) =
2

2 + e
t
2−

x√
2

.

Table 3 gives a comparison of AE at t = 0.001 between our method and the method in [45]. Figure 4
shows the absolute error (AE) (left) and the approximate solution (right) atM = 12. Table 4 presents
the MAE and the CPU time (in seconds) used at different values ofM.
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Table 3. Comparison of the AE of Example 6.2 at t = 0.001.

x Method in [45] Our method atM = 12

0.00 9.260091360374645 × 10−9 4.44089 × 10−16

0.001 9.266945988350983 × 10−9 1.11022 × 10−16

0.002 9.273449896873842 × 10−9 1.11022 × 10−16

0.003 9.279814694451716 × 10−9 0
0.004 9.286474367264930 × 10−9 2.22045 × 10−16

0.005 9.292864144860857 × 10−9 2.22045 × 10−16

0.006 9.299528924699985 × 10−9 1.11022 × 10−16

Figure 4. The AE (left) and the approximate solution (right) for Example 6.2 atM = 12.

Table 4. the MAE for Example 6.2.

M 2 4 6 8 10 12

Error 1.73803 × 10−3 4.14311 × 10−5 9.11356 × 10−7 9.69633 × 10−9 4.76566 × 10−11 6.78901 × 10−14

CPU time 1.157 1.813 3.344 6.11 11.374 23.248

Example 6.3. The authors of [35] considered the FH–N equation of the form

zt = zxx − z (a − z) (1 − z), 0 < a ≤ 1, (6.5)

subject to the following initial and boundary conditions:

z(x, 0) =
1
2

tanh
(

x

2
√

2

)
+

1
2
, 0 < x ≤ 1,

z(0, t) =
1
2
−

1
2

tanh
(
1
4

(2a − 1)t
)
, 0 < t ≤ 1,

z(1, t) =
1
2

tanh

1 − (2a−1)t
√

2

2
√

2

 + 1
2
, 0 < t ≤ 1,

(6.6)

where z(x, t) = 1
2 tanh

(
x− (2a−1)t

√
2

2
√

2

)
+ 1

2 is the exact solution of this problem.
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Table 5 presents the MAE and the CPU time used (in seconds) when a = 0.1 and a = 0.5 at different
values ofM. Figure 5 shows the AE (left) and the approximate solution (right) at a = 1 andM = 12.
Table 6 shows the AE at different values of a whenM = 12.

Table 5. the MAE for Example 6.3.

M 2 4 6 8 10 12

a=0.1 6.13615 × 10−3 9.12786 × 10−5 1.14583 × 10−6 9.32286 × 10−9 4.61591 × 10−11 1.27232 × 10−13

CPU time 1.376 2.264 3.594 7.204 14.812 32.282

a=0.5 5.21245 × 10−3 7.19718 × 10−5 9.21914 × 10−7 7.23042 × 10−9 3.28784 × 10−11 5.61773 × 10−14

CPU time 1.173 1.797 3.406 7.156 14.721 32.236

Figure 5. The AE (left) and the approximate solution (right) for Example 6.3 at a = 1, and
M = 12.

Table 6. AE of Example 6.3 atM = 12.

(x, t) a = 0.3 a = 0.6 a = 0.8

(0.1,0.1) 3.33067 × 10−16 3.33067 × 10−16 0
(0.2,0.2) 5.55112 × 10−16 1.88738 × 10−15 2.44249 × 10−15

(0.3,0.3) 4.44089 × 10−16 3.9968 × 10−15 6.88338 × 10−15

(0.4,0.4) 2.66454 × 10−15 6.66134 × 10−15 1.34337 × 10−14

(0.5,0.5) 6.55032 × 10−15 1.04361 × 10−14 2.16493 × 10−14

(0.6,0.6) 1.17684 × 10−14 1.48771 × 10−14 3.14193 × 10−14

(0.7,0.7) 1.77636 × 10−14 2.00951 × 10−14 4.22995 × 10−14

(0.8,0.8) 2.53131 × 10−14 2.50912 × 10−14 5.34017 × 10−14

(0.9,0.9) 3.27516 × 10−14 3.24185 × 10−14 6.45041 × 10−14

Example 6.4. Consider the FH–N equation of the form

zt = zxx − z (a − z) (1 − z), 0 < a ≤ 1, (6.7)
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subject to the following initial and boundary conditions:

z(x, 0) = 0, 0 < x ≤ 1,
z(0, t) = z(1, t) = 0, 0 < t ≤ 1.

(6.8)

Since the exact solution is not available, we define the following absolute residual error norm:

RE = max
(x,t)∈(0,1]2

∣∣∣zMt (x, t) − zMxx (x, t) + a zM(x, t) + (zM(x, t))3 − (a + 1) (zM(x, t))2
∣∣∣ , (6.9)

and apply the presented method atM = 10 to get Figure 6, which illustrates the RE at different values
of a.

Figure 6. The RE of Example 6.4.

7. Conclusions

This article has provided numerical solutions for the FH–N equation. The celebrated collocation
method was applied to obtain the proposed approximate solutions. New basis functions were
considered. These basis functions are special cases of the generalized Gegenbauer orthogonal
polynomials. They are related to CPs. New derivative expressions for these polynomials were
developed. Hence, new operational matrices of the derivatives were introduced. These matrices and the
application of the collocation algorithm helped transform the FH–N equation into nonlinear systems
of equations that can be treated using a suitable solver. To our knowledge, these polynomials have
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not been used before in approximating solutions to differential equations. We hope to use them to
approximate other differential equations. All codes were written and debugged by Mathematica 11 on
an HP Z420 workstation, (processor: Intel(R) Xeon(R) CPU E5-1620 v2 at 3.70 GHz, 16 GB RAM
DDR3, and 512 GB storage).
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