The current study examined the general fractional derivative of the fractional order in the context of an incomplete treatment of tuberculosis (TB). Utilizing the fixed-point technique and nonlinear analysis, we arrived at certain theoretical conclusions on the existence and stability of the solution. The well-known Laplace transform method was used to calculate the arithmetic output of the model under consideration. This approach depends upon an elementary principle of fractional calculus. For each case of general fractional derivative, numerical simulation was also provided, each one linked with a particular fractional order in (0, 1).
Citation: Manvendra Narayan Mishra, Faten Aldosari. Comparative study of tuberculosis infection by using general fractional derivative[J]. AIMS Mathematics, 2025, 10(1): 1224-1247. doi: 10.3934/math.2025058
The current study examined the general fractional derivative of the fractional order in the context of an incomplete treatment of tuberculosis (TB). Utilizing the fixed-point technique and nonlinear analysis, we arrived at certain theoretical conclusions on the existence and stability of the solution. The well-known Laplace transform method was used to calculate the arithmetic output of the model under consideration. This approach depends upon an elementary principle of fractional calculus. For each case of general fractional derivative, numerical simulation was also provided, each one linked with a particular fractional order in (0, 1).
[1] |
Z. U. A. Zafar, S. Zaib, M. T. Hussain, C. Tunç, S. Javeed, Analysis and numerical simulation of tuberculosis model using different fractional derivatives, Chaos Soliton Fract., 160 (2022), 112202. https://doi.org/10.1016/j.chaos.2022.112202 doi: 10.1016/j.chaos.2022.112202
![]() |
[2] |
W. Shatanawi, M. S. Abdo, M. A. Abdulwasaa, K. Shah, S. K. Panchal, S. V. Kawale, et al., A fractional dynamics of tuberculosis (TB) model in the frame of generalized Atangana-Baleanu derivative, Results Phys., 29 (2021), 104739. https://doi.org/10.1016/j.rinp.2021.104739 doi: 10.1016/j.rinp.2021.104739
![]() |
[3] |
M. A. Khan, F. Gómez‐Aguilar, Tuberculosis model with relapse via fractional conformable derivative with power law, Math. Method Appl. Sci., 42 (2019), 7113–7125. https://doi.org/10.1002/mma.5816 doi: 10.1002/mma.5816
![]() |
[4] |
H. Waaler, A. Geser, S. Andersen, The use of mathematical models in the study of the epidemiology of tuberculosis, Am. J. Public Health Nations Health, 52 (1962), 1002–1013. https://doi.org/10.2105/ajph.52.6.1002 doi: 10.2105/ajph.52.6.1002
![]() |
[5] |
Y. Yang, S. Tang, X. Ren, H. Zhao, C. Guo, Global stability and optimal control for a tuberculosis model with vaccination and treatment, Discrete Continuous Dyn. Syst. Ser. B, 21 (2016), 1009–1022. https://doi.org/10.3934/dcdsb.2016.21.1009 doi: 10.3934/dcdsb.2016.21.1009
![]() |
[6] |
X. H. Zhang, A. Ali, M. A. Khan, M. Y. Alshahrani, T. Muhammad, S. Islam, Mathematical analysis of the TB model with treatment via Caputo‐type fractional derivative, Discrete Dyn. Nat. Soc., 2021 (2021), 9512371. https://doi.org/10.1155/2021/9512371 doi: 10.1155/2021/9512371
![]() |
[7] |
A. O. Egonmwan, D. Okuonghae, Mathematical analysis of a tuberculosis model with imperfect vaccine, Int. J. Biomath., 12 (2019), 1950073. https://doi.org/10.1142/S1793524519500736 doi: 10.1142/S1793524519500736
![]() |
[8] |
Fatmawati, M. A. Khan, E. Bonyah, Z. Hammouch, E. M. Shaiful, A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model, AIMS Mathematics, 5 (2020), 2813–2842. https://doi.org/10.3934/math.2020181 doi: 10.3934/math.2020181
![]() |
[9] |
M. M. El-Dessoky, M. A. Khan, Modeling and analysis of an epidemic model with fractal-fractional Atangana-Baleanu derivative, Alex. Eng. J., 61 (2022), 729–746. https://doi.org/10.1016/j.aej.2021.04.103 doi: 10.1016/j.aej.2021.04.103
![]() |
[10] |
A. M. Alqahtani, M. N. Mishra, Mathematical analysis of Streptococcus suis infection in pig-human population by Riemann-Liouville fractional operator, Prog. Fract. Differ. Appl., 10 (2024), 119–135. https://doi.org/10.18576/pfda/100112 doi: 10.18576/pfda/100112
![]() |
[11] |
A. Ahmad, M. Farman, A. Ghafar, M. Inc, M. O. Ahmad, N. Sene, Analysis and simulation of fractional order smoking epidemic model, Comput. Math. Methods Med., 2022 (2022), 9683187. https://doi.org/10.1155/2022/9683187 doi: 10.1155/2022/9683187
![]() |
[12] |
N. Kumawat, A. Shukla, M. N. Mishra, R. Sharma, R. S. Dubey, Khalouta transform and applications to Caputo-fractional differential equations, Front. Appl. Math. Stat., 10 (2024), 1351526. https://doi.org/10.3389/fams.2024.1351526 doi: 10.3389/fams.2024.1351526
![]() |
[13] | H. Agarwal, M. N. Mishra, R. S. Dubey, On fractional Caputo operator for the generalized glucose supply model via incomplete Aleph function, Int. J. Math. Ind., 2024, 2450003. https://doi.org/10.1142/S2661335224500035 |
[14] |
M. Areshi, P. Goswami, M. N. Mishra, Comparative study of blood sugar-insulin model using fractional derivatives, J. Taibah Univ. Sci., 18 (2024), 2339009. https://doi.org/10.1080/16583655.2024.2339009 doi: 10.1080/16583655.2024.2339009
![]() |
[15] |
J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948), 171–199. https://doi.org/10.1016/S0065-2156(08)70100-5 doi: 10.1016/S0065-2156(08)70100-5
![]() |
[16] |
S. Kumar, M. N. Mishra, R. S. Dubey, Analysis of Burger equation using HPM with general fractional derivative, Prog. Fract. Differ. Appl., 10 (2024), 523–535. https://doi.org/10.18576/pfda/100401 doi: 10.18576/pfda/100401
![]() |
[17] |
A. M. Alqahtani, A. Shukla, Computational analysis of multi-layered Navier-Stokes system by Atangana-Baleanu derivative, Appl. Math. Sci. Eng., 32 (2024), 2290723. https://doi.org/10.1080/27690911.2023.2290723 doi: 10.1080/27690911.2023.2290723
![]() |
[18] |
M. S. Joshi, N. B. Desai, M. N. Mehta, Solution of the burger's equation for longitudinal dispersion phenomena occurring in miscible phase flow through porous media, ITB J. Eng. Sci., 44 (2012), 61–76. https://doi.org/10.5614/itbj.eng.sci.2012.44.1.5 doi: 10.5614/itbj.eng.sci.2012.44.1.5
![]() |
[19] |
A. Kilicman, R. Shokhanda, P. Goswami, On the solution of (n+1)-dimensional fractional M-Burgers equation, Alex. Eng. J., 60 (2021), 1165–1172. https://doi.org/10.1016/j.aej.2020.10.040 doi: 10.1016/j.aej.2020.10.040
![]() |
[20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006. |
[21] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[22] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[23] |
J. G. Liu, X. J. Yang, Y. Y. Feng, P. Cui, New fractional derivative with sigmoid function as the kernel and its models, Chin. J. Phys., 68 (2020), 533–541. https://doi.org/10.1016/j.cjph.2020.10.011 doi: 10.1016/j.cjph.2020.10.011
![]() |
[24] |
X. J. Yang, M. Abdel-Aty, C. Cattani, A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Therm. Sci., 23 (2019), 1677–1681. https://doi.org/10.2298/TSCI180320239Y doi: 10.2298/TSCI180320239Y
![]() |
[25] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, 2016, arXiv: 1602.03408. https://doi.org/10.48550/arXiv.1602.03408 |
[26] |
A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956. https://doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
![]() |
[27] |
A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
![]() |
[28] |
S. Ahmad, S. Pak, M. U. Rahman, A. Al-Bossly, On the analysis of a fractional tuberculosis model with the effect of an imperfect vaccine and exogenous factors under the Mittag-Leffler kernel, Fractal Fract., 7 (2023), 526. https://doi.org/10.3390/fractalfract7070526 doi: 10.3390/fractalfract7070526
![]() |
[29] |
M. Z. Ullah, A. K. Alzahrani, D. Baleanu, An efficient numerical technique for a new fractional tuberculosis model with nonsingular derivative operator, J. Taibah Univ. Sci., 13 (2019), 1147–1157. https://doi.org/10.1080/16583655.2019.1688543 doi: 10.1080/16583655.2019.1688543
![]() |
[30] |
I. Ullah, S. Ahmad, M. U. Rahman, M. Arfan, Investigation of fractional order tuberculosis (TB) model via Caputo derivative, Chaos Soliton Fract., 142 (2021), 110479. https://doi.org/10.1016/j.chaos.2020.110479 doi: 10.1016/j.chaos.2020.110479
![]() |
[31] |
J. Losada, J. J. Nieto, Fractional integral associated to fractional derivatives with nonsingular kernels, Prog. Fract. Differ. Appl., 7 (2021), 137–143. https://doi.org/10.18576/pfda/070301 doi: 10.18576/pfda/070301
![]() |
[32] |
I. Alazman, M. N. Mishra, B. S. Alkahtani, R. S. Dubey, Analysis of infection and diffusion coefficient in an sir model by using generalized fractional derivative, Fractal Fract., 8 (2024), 537. https://doi.org/10.3390/fractalfract8090537 doi: 10.3390/fractalfract8090537
![]() |
[33] |
I. Alazman, M. N. Mishra, B. S. Alkahtani, P. Goswami, Computational analysis of rabies and its solution by applying fractional operator, Appl. Math. Sci. Eng., 32 (2024), 2340607. https://doi.org/10.1080/27690911.2024.2340607 doi: 10.1080/27690911.2024.2340607
![]() |
[34] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |