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1. Introduction

This research examines the general fractional derivative mathematical model of TB [1]. Since
TB is one of the leading causes of death in the modern world, research on the subject is critically
needed [2, 3]. Numerous scientists and researchers have utilized experimental evidence to show that
TB is a communicable epidemic often brought on by bacteria in human lungs. According to a WHO
report, nearly 10 million individuals worldwide contracted the disease in 2017 and 1.5 million died
from it. Researchers worry that a global epidemic of diabetes illnesses could put a greater number of
people at risk. Several mathematical models have been developed to study the dynamics of infectious
illness transmission and the development of practical mitigation techniques. Waaler et al. introduced
the TB disease infection model for the first time in disease epidemiology [4]. Yang et al. developed a
model to investigate the various scenarios of TB transmission with insufficient therapy [5]. To study
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the outcomes of TB’s worldwide stability and the impact of heterogeneity on TB dispersion, several
scholars proposed mathematical models for the disease. Zhang et al. looked into a dynamic problem
of infectious classes with hospitalized and non-hospitalized TB sickness [6]. A mathematical model
of TB was taken into consideration by Robert in order to examine the effects of deterioration and
reinfection. In addition, Egonmwan et al. proposed a model for TB illness to assess the impact of
analysis and therapy for contagious individuals [7].

In this study, a mathematical model of TB [8, 9] is analyzed using a unique approach of fractional
calculus. One should know the importance of fractional calculus and mathematical modeling in
real life [10]. Mathematical modeling is proving to be a very useful tool in modern mathematical
studies [11]. Primary approaches to transform real-world problems into mathematical terms, allowing
us to apply the findings back to the real world to achieve predictive goals. Every company aims to meet
its objectives or forecast the future. However, there are instances when the fractional calculus describes
models more accurately than traditional methods [12,13]. Nowadays, many technical, engineering and
physical phenomena are modeled using fractional calculus [14]. Fractional calculus has a rich history
spanning around 300 years.

Fractional calculus is an obvious next step after classical calculus [15]. Applications of
fractional calculus are increasing, as it provides better mathematical representations of everyday
occurrences [16]. Any natural or physical phenomena whose outline is useful in the understanding
of the issue can be modeled using a simulation model [17]. Fractional calculus has influenced a wide
range of fields, including biology, engineering, fluid, control theory, image processing, visco-elasticity,
astronomy, and electricity [18,19]. Fractional calculus is a fascinating branch of mathematics, handling
integrals and derivatives of arbitrary order [20, 21]. Fractional integrals and derivatives of order ξ > 0
have a range of interpretations, in contrast to conventional definitions of derivatives and integrals [22].
The theory of singular kernels in fractional calculus was greatly influenced by several researchers,
including Samko, Riemann, Caputo, Kilbas, and others [23, 24]. Researchers such as Miller-Ross,
Atangana-Baleanu, Wiman, Yang and others investigated integrals and derivatives with kernels without
singularity [25, 26].

The general fractional derivative is believed to be the most effective way to explain the models of
complex processes [27]. In fractional calculus, the behavior of non-smooth functions is described by
the Caputo derivative and general fractional derivative, two distinct forms of fractional derivative. The
Caputo derivative considers a function’s initial conditions and is used to represent processes where
initial conditions are unknown. On the other hand, a more modern operator, the general derivative,
offers more freedom in modeling non-smooth systems. Since the function is supposed to be of order
ξ, which can be broken further into different operators, the conditions of a function are not taken into
consideration.

Some derivatives better fit specific real phenomena. The main objective of this study is to provide
a systematic application of the general fractional derivative to analyze the same system using different
kernels (singular and non-singular) at the same time.

The novelty of this work lies in the application of new approach to the existing problem of TB
infection with and without treatment [28, 29]. We have also validate the results of the system using
fixed-point theorem and show the uniqueness of the solution. This approach will certainly model
different applications of the general fractional derivative. The remaining sections of the paper are
structured as follows: The pre-requisites are defined in Section 2. The TB model is briefly discussed in
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Section 3, while Section 4 ensures the existence of the results. Section 5 deals with uniqueness of the
solution. In Section 6, a solution of the TB model is found using the general fractional derivative with
the help of Laplace transform. Graphical results are shown in Section 7, while the paper is concluded
in Section 8.

2. Pre-requisites

This section provides some background on recently established general fractional operators. The
Caputo and Riemann-Liouville derivatives of fractional exponent are provided by

C
0 Dγt f (t) =

∫ t

0
ḟ (s)∇ι(t − s)ds, (2.1)

0Dγt f (t) =
d
dt

∫ t

0
f (s)∇ι(t − s)ds, (2.2)

where γ ∈ (0, 1) is the exponent of derivative, f : [0,+∞) → R is a continuous function with ḟ ∈
L1

loc (0,+∞), 0 ⩽ t ⩽ T < +∞, ∇ι is known as kernel. The operator is made to adhere to the linear
condition,

C
0 Dγt ( j f (t) + kg(t)) = jC0 Dγt f (t) + kC

0 Dγt g(t), (2.3)

0Dγt ( j f (t) + kg(t)) = j0Dγt f (t) + k0Dγt g(t). (2.4)

It is evident that for any t > 0, as long as certain requirements of ∇ι(t) are met, a completely function
of monotone type ℑι(t) occurs,

∇ι(t) ∗ ℑι(t) =
∫ ∞

0
∇ι(s)ℑι(t − s)ds = 1, (2.5)

further, for f ∈ L1
loc (0,+∞), we can rewrite the above

0D−γt

[
C
0 Dγt f (t)

]
= f (t) − f (0), (2.6)

where 0D−γt denotes the general Riemann-Liouville integral of fractional order, given as

0D−γt f (t) =
∫ t

0
f (s)ℑι(t − s)ds. (2.7)

The right-side of Caputo and Riemann-Liouville fractional derivatives are

C
t DγT f (t) =

∫ T

t
ḟ (s)∇r(s − t)ds, (2.8)

tD
γ
T f (t) =

d
dt

∫ T

t
f (s)∇r(s − t)ds, (2.9)

and

tD
−γ
T f (t) =

∫ T

t
f (s)ℑr(s − t)ds. (2.10)
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Based on the findings above, the integration by component formula is therefore satisfied by the above-
mentioned fractional-order operators such as∫ T

0
f (s)0Dγsg(s)ds =

∫ T

0
g(s)s

CDγs f (s)ds, (2.11)

∫ T

0
f (s)0

CDγsg(s)ds =
∫ T

0
g(s)sDγs f (s)ds. (2.12)

By incorporating the various kernels into the various general operator definitions, we may derive 3
specific cases of general operator. In the first case, the kernel is ∇ι(t) = t−γ

Γ(1−γ) ; so, we have power

function ℑι(t) = tγ−1

Γ(γ) reforming the integral operator’s associated kernel (2.7).

Further, take kernel ∇ι(t) =
B(γ)
1−γEγ

(
−γ

1−γ t
γ
)

where Eγ and B(γ) are Mittag-Leffler and normalization
functions. We also have

ℑι(t) =
1 − γ
B(γ)

δ(t) +
γ

B(γ)Γ(γ)
tγ−1. (2.13)

So, Eqs (2.1) and (2.2) may be used to get the derivatives of AB-Caputo and AB-Riemann-Liouville.
The AB type integral is,

0D−γt f (t) =
1 − γ
B(γ)

f (t) +
γ

B(γ)Γ(γ)

∫ t

0
(t − s)γ−1 f (s)ds. (2.14)

Now, at last, the CF derivative is found by taking kernel ∇ι(t) =
B(γ)
1−γ exp

(
−γ

1−γ t
)
.

2.1. Laplace transform

Laplace transformation is a key transformation in mathematics. It converts the system into a
algebraic system, which is easily solvable. The symbol L{ f (t)} represents the Laplace transform of
f (t) and is explained below:

L{ f (t)} =

∞∫
0

e−st f (t)dt , s > 0. (2.15)

2.1.1. Laplace transform of Riemann-Liouville fractional differential operator

Laplace transform of Riemann-Liouville’s fractional derivative [10] is explained as follows:

L
{
CDγg(t)

}
= [sL(g(t)) − g(0)]s(γ−1). (2.16)

2.1.2. Laplace transform of Caputo-Fabrizio (CF) fractional differential operator

The Laplace transformation of CF [12] operator is:

L
{
CF Dγg(t)

}
=

1
2
.
B(γ)(2 − γ)

1 − γ
.
sL{g(t)} − g(0)

s + γ

1−γ

. (2.17)
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2.1.3. Laplace transform of Atangana-Baleanu fractional derivative

If f (t) is any function and ABCDγ f (t) is the Atangana-Baleanu fractional differential operator [25]
of f (t), then the Laplace transform of this operator is given as follows:

L{ABCDγ f (t)} =
B(γ)
1 − γ

pγL{ f (t)} − pγ−1 f (0)
pγ + γ

1−γ

. (2.18)

3. TB mathematical model

By mathematical modelling, it is possible to identify the endemics’ unique transmission patterns
and get insight into how infection impacts a new population. The incomplete-treatment TB model was
developed by Ihsan et al [30]. Here, the total population is split in five subclasses: susceptible class S,
exposed class E, infectious class without treatment I, infectious class with treatment T, and recovered
class R. The proposed model is given below:

dS
dt = ∆ − ξS (I + ηT ) − ϕS ,
dE
dt = ξS (I + ηT ) − (ϕ + λ)E + (1 − ρ)δT,
dI
dt = λE − (ϕ + σ1 + α)I,
dT
dt = αI − (ϕ + σ2 + δ)T,
dR
dt = ρδT − ϕR,


(3.1)

where ∆ denote the rate of conscription, ξ represents the rate of effective contact, η represents the
decrease in infection and ϕ is the rate of natural death. λ denotes the rate of transfer from E to I, ρ
represents the capable treatment, σ1 shows the rate of infection without treatment, and σ2 shows the
rate of infection with treatment. α shows the rate of the infected population and δ is rate of leaving
population T.

4. Existence of the result

Here, we establish the existence of the result for the defined model.

4.1. For the Caputo-Fabrizio derivative

We use the fixed-point theorem to define the existence of the result. Converting the model into
integral equations

S (t) − S (0) = CF
0 Iγt [∆ − ξS (I + ηT ) − ϕS ], (4.1)

E(t) − E(0) = CF
0 Iγt [ξS (I + ηT ) − (ϕ + λ)E + (1 − ρ)δT ], (4.2)

I(t) − I(0) = CF
0 Iγt [λE − (ϕ + σ1 + α)I], (4.3)

T (t) − T (0) = CF
0 Iγt [αI − (ϕ + σ2 + δ)T ], (4.4)

R(t) − R(0) = CF
0 Iγt [ρδT − ϕR]. (4.5)

Then by Nieto’s definition [31], we get

S (t) = S (0) + 2(1−γ)
(2−γ)B(γ) [∆ − ξS (I + ηT ) − ϕS ]

+
2γ

(2−γ)B(γ)

t∫
0

[
∆ − ξS (I + ηT ) − ϕS

]
ds,
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E(t) = E(0) + 2(1−γ)
(2−γ)B(γ) [ξS (I + ηT ) − (ϕ + λ)E + (1 − ρ)δT ]

+
2γ

(2−γ)B(γ)

t∫
0

[
ξS (I + ηT ) − (ϕ + λ)E + (1 − ρ)δT

]
ds,

I(t) = I(0) +
2(1 − γ)

(2 − γ)B(γ)
[
λE − (ϕ + σ1 + α)I

]
+

2γ
(2 − γ)B(γ)

t∫
0

[
λE − (ϕ + σ1 + α)I

]
ds,

T (t) = T (0) +
2(1 − γ)

(2 − γ)B(γ)
[αI − (ϕ + σ2 + δ)T ] +

2γ
(2 − γ)B(γ)

t∫
0

[
αI − (ϕ + σ2 + δ)T

]
ds,

R(t) = R(0) +
2(1 − γ)

(2 − γ)B(γ)
[ρδT − ϕR] +

2γ
(2 − γ)B(γ)

t∫
0

[
ρδT − ϕR

]
ds.

Further, consider the kernels to be

N1(t, S ) = ∆ − ξS (I + ηT ) − ϕS ,

N2(t, E) = ξS (I + ηT ) − (ϕ + λ)E + (1 − ρ)δT,

N3(t, I) = λE − (ϕ + σ1 + α)I,

N4(t,T ) = αI − (ϕ + σ2 + δ)T,

N5(t,R) = ρδT − ϕR.

4.1.1. Theorem

If the kernels N1,N2,N3,N4, and N5 satisfy the following constraints:

∥N1(t, S ) − N1(t, S 1)∥ ≤ H ∥S 1(t) − S (t)∥ , where ∥ξ(I + ηT ) + ϕ∥ ≤ H < 1,

∥N2(t, E) − N2(t, E1)∥ ≤ H1 ∥E1(t) − E(t)∥ , where ∥(ϕ + λ)∥ ≤ H1 < 1,

∥N3(t, I) − N3(t, I1)∥ ≤ H2 ∥I1(t) − I(t)∥ , where ∥(ϕ + σ1 + α)∥ ≤ H2 < 1,

∥N4(t,T ) − N4(t,T1)∥ ≤ H3 ∥T1(t) − T (t)∥ , where ∥(ϕ + σ2 + δ)∥ ≤ H3 < 1,

∥N5(t,R) − N5(t,R1)∥ ≤ H4 ∥R1(t) − R(t)∥ , where ∥ϕ∥ ≤ H4 < 1,

then system has a solution.

Proof. We shall prove for N1 at first. Assume S and S 1 are two functions, hence

∥N1(t, S ) − N1(t, S 1)∥ ≤ ∥∆ − ξS (I + ηT ) − ϕS − {∆ − ξS 1(I + ηT ) − ϕS 1}∥

= ∥ξ(I + ηT ) (S 1 − S ) + ϕ (S 1 − S )∥
= ∥ξ(I + ηT ) + ϕ∥ ∥S 1 − S ∥ ,
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∥N1(t, S ) − N1(t, S 1)∥ ≤ H ∥S 1(t) − S (t)∥ ,

where ∥ξ(I + ηT ) + ϕ∥ ≤ H < 1.
Similarly

∥N2(t, E) − N2(t, E1)∥ ≤ ∥(ϕ + λ) E1 − (ϕ + λ) E∥
≤ ∥(ϕ + λ)∥ ∥E1(t) − E(t)∥ ,

∥N2(t, E) − N2(t, E1)∥ ≤ H1 ∥E1(t) − E(t)∥ ,

where ∥(ϕ + λ)∥ ≤ H1 < 1.

∥N3(t, I) − N3(t, I1)∥ ≤ ∥λE − (ϕ + σ1 + α)I − {λE − (ϕ + σ1 + α)I}∥
≤ ∥(ϕ + σ1 + α)∥ ∥I1(t) − I(t)∥ ,

∥N3(t, I) − N3(t, I1)∥ ≤ H2 ∥I1(t) − I(t)∥ ,

where ∥(ϕ + σ1 + α)∥ ≤ H2 < 1.

∥N4(t,T ) − N4(t,T1)∥ ≤ ∥αI − (ϕ + σ2 + δ)T − {αI − (ϕ + σ2 + δ)T1}∥

≤ ∥(ϕ + σ2 + δ)∥ ∥T1(t) − T (t)∥ ,

∥N4(t,T ) − N4(t,T1)∥ ≤ H3 ∥T1(t) − T (t)∥ ,

where ∥(ϕ + σ2 + δ)∥ ≤ H3 < 1, and

∥N5(t,R) − N5(t,R1)∥ ≤ ∥ρδT − ϕR − {ρδT − ϕR1}∥

≤ ∥ϕ∥ ∥R1(t) − R(t)∥ ,

∥N5(t,R) − N5(t,R1)∥ ≤ H4 ∥R1(t) − R(t)∥ ,

where ∥ϕ∥ ≤ H4 < 1.
Now, by recursive relation

S n(t) =
2(1 − γ)

(2 − γ)B(γ)
N1(t, S n−1) +

2γ
(2 − γ)B(γ)

t∫
0

N1(s, S n−1)ds, (4.6)

En(t) =
2(1 − γ)

(2 − γ)B(γ)
N2(t, En−1) +

2γ
(2 − γ)B(γ)

t∫
0

N2(s, En−1)ds, (4.7)

In(t) =
2(1 − γ)

(2 − γ)B(γ)
N3(t, In−1) +

2γ
(2 − γ)B(γ)

t∫
0

N3(s, In−1)ds, (4.8)

Tn(t) =
2(1 − γ)

(2 − γ)B(γ)
N4(t,Tn−1) +

2γ
(2 − γ)B(γ)

t∫
0

N4(s,Tn−1)ds, (4.9)
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Rn(t) =
2(1 − γ)

(2 − γ)B(γ)
N5(t,Rn−1) +

2γ
(2 − γ)B(γ)

t∫
0

N5(s,Rn−1)ds. (4.10)

Consider the difference of two successive terms is

Un(t) = S n(t) − S n−1(t)

=
2(1−γ)

(2−γ)B(γ) N1(t, S n−1) + 2γ
(2−γ)B(γ)

t∫
0

N1(s, S n−1)ds

−
2(1−γ)

(2−γ)B(γ) N1(t, S n−2) − 2γ
(2−γ)B(γ)

t∫
0

N1(s, S n−2)ds,

Un(t) = 2(1−γ)
(2−γ)B(γ) N1(t, S n−1) − 2(1−γ)

(2−γ)B(γ) N1(t, S n−2)

+
2γ

(2−γ)B(γ)

t∫
0
{N1(s, S n−1) − N1(s, S n−2)}ds.

Now

∥Un(t)∥ = ∥S n(t) − S n−1(t)∥

=

∥∥∥∥∥∥ 2(1−γ)
(2−γ)B(γ) N1(t, S n−1) − 2(1−γ)

(2−γ)B(γ) N1(t, S n−2) + 2γ
(2−γ)B(γ)

t∫
0
{N1(s, S n−1) − N1(s, S n−2)}ds

∥∥∥∥∥∥ ,
∥Un(t)∥ ≤ 2(1−γ)

(2−γ)B(γ) ∥N1(t, S n−1) − N1(t, S n−2)∥

+
2γ

(2−γ)B(γ)

∥∥∥∥∥∥ t∫
0
{N1(s, S n−1) − N1(s, S n−2)}ds

∥∥∥∥∥∥ . (4.11)

Since N1 satisfies the Lipschitz condition, then

∥Un(t)∥ ≤
2(1 − γ)

(2 − γ)B(γ)
H ∥S n−1 − S n−2∥ +

2γ
(2 − γ)B(γ)

J

t∫
0

∥S n−1 − S n−2∥ ds.

Similarly
∥Vn(t)∥ = ∥En(t) − En−1(t)∥ ,

or

∥Vn(t)∥ =

∥∥∥∥∥∥ 2(1−γ)
(2−γ)B(γ) N2(t, En−1) + 2γ

(2−γ)B(γ)

t∫
0

N2(s, En−1)ds

−
2(1−γ)

(2−γ)B(γ) N2(t, En−2) − 2γ
(2−γ)B(γ)

t∫
0

N2(s, En−2)ds

∥∥∥∥∥∥ ,
or

∥Vn(t)∥ ≤ 2(1−γ)
(2−γ)B(γ) ∥N2(t, En−1) − N2(t, En−2)∥

+
2γ

(2−γ)B(γ)

∥∥∥∥∥∥ t∫
0
{N2(s, En−1) − N2(s, En−2)} ds

∥∥∥∥∥∥ . (4.12)

Since N2 satisfies Lipschitz condition, then

∥Vn(t)∥ ≤
2(1 − γ)

(2 − γ)B(γ)
H1 ∥En−1 − En−2∥ +

2γ
(2 − γ)B(γ)

J1

t∫
0

∥En−1 − En−2∥ ds.
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Similarly, we can get

∥Wn(t)∥ ≤
2(1 − γ)

(2 − γ)B(γ)
H2 ∥In−1 − In−2∥ +

2γ
(2 − γ)B(γ)

J2

t∫
0

∥In−1 − In−2∥ ds,

∥Pn(t)∥ ≤
2(1 − γ)

(2 − γ)B(γ)
H3 ∥Tn−1 − Tn−2∥ +

2γ
(2 − γ)B(γ)

J3

t∫
0

∥Tn−1 − Tn−2∥ ds,

∥Qn(t)∥ ≤
2(1 − γ)

(2 − γ)B(γ)
H4 ∥Rn−1 − Rn−2∥ +

2γ
(2 − γ)B(γ)

J4

t∫
0

∥Rn−1 − Rn−2∥ ds.

Since we have demonstrated that the kernels meet the Lipschitz condition and that the aforementioned
Eqs (4.11), (4.12), and others are bounded, the following relations may be established by applying the
recursive approach to the findings obtained in Eqs (4.11), (4.12), and others:

∥Un(t)∥ ≤ ∥S (0)∥ +
{

2(1 − γ)H
(2 − γ)B(γ)

}n

+

{
2γJt

(2 − γ)B(γ)

}n

,

∥Vn(t)∥ ≤ ∥E(0)∥ +
{

2(1 − γ)H1

(2 − γ)B(γ)

}n

+

{
2γJ1t

(2 − γ)B(γ)

}n

,

∥Wn(t)∥ ≤ ∥I(0)∥ +
{

2(1 − γ)H2

(2 − γ)B(γ)

}n

+

{
2γJ2t

(2 − γ)B(γ)

}n

,

∥Pn(t)∥ ≤ ∥T (0)∥ +
{

2(1 − γ)H3

(2 − γ)B(γ)

}n

+

{
2γJ3t

(2 − γ)B(γ)

}n

,

∥Qn(t)∥ ≤ ∥R(0)∥ +
{

2(1 − γ)H4

(2 − γ)B(γ)

}n

+

{
2γJ4t

(2 − γ)B(γ)

}n

.

Hence, the existence of results is validated, which are continuous too. So we obtain

S (t) = S n(t) + An(t),
E(t) = En(t) + Bn(t),
I(t) = In(t) +Cn(t),
T (t) = Tn(t) + Dn(t),
R(t) = Rn(t) + Ln(t),

where An, Bn,Cn,Dn , and Ln are remainders of series solution. Hence,

S (t) − S n(t) = 2(1−γ)
(2−γ)B(γ) N1(t, S n) + 2γ

(2−γ)B(γ)

t∫
0

N1(s, S n)ds,

S (t) − S n(t) = 2(1−γ)
(2−γ)B(γ) N1(t, S − An(t)) + 2γ

(2−γ)B(γ)

t∫
0

N1(s, S − An(s))ds.
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Similarly, we have

E(t) − En(t) = 2(1−γ)
(2−γ)B(γ) N2(t, E − Bn(t)) + 2γ

(2−γ)B(γ)

t∫
0

N2(s, E − Bn(s))ds,

I(t) − In(t) = 2(1−γ)
(2−γ)B(γ) N3(t, I −Cn(t)) + 2γ

(2−γ)B(γ)

t∫
0

N3(s, I −Cn(s))ds,

T (t) − Tn(t) = 2(1−γ)
(2−γ)B(γ) N4(t,T − Dn(t)) + 2γ

(2−γ)B(γ)

t∫
0

N4(s,T − Dn(s))ds,

R(t) − Rn(t) = 2(1−γ)
(2−γ)B(γ) N5(t,R − Ln(t)) + 2γ

(2−γ)B(γ)

t∫
0

N5(s,R − Ln(s))ds.

Now, it is clear that

S (t) − S n(t) =
2(1 − γ)

(2 − γ)B(γ)
N1(t, S − An(t)) +

2γ
(2 − γ)B(γ)

t∫
0

N1(s, S − An(s))ds,

S (t) − S (0) − 2(1−γ)N1(t,S )
(2−γ)B(γ) −

2γ
(2−γ)B(γ)

t∫
0

N1(s, S )ds

= An(t) + 2(1−γ)N1(t,S−An(t))
(2−γ)B(γ) +

2γ
(2−γ)B(γ)

t∫
0

N1(s, S − An(s))ds.

Now ∥∥∥∥∥∥S (t) − 2(1−γ)N1(t,S )
(2−γ)B(γ) − S (0) − 2γ

(2−γ)B(γ)

t∫
0

N1(s, S )ds

∥∥∥∥∥∥
≤ ∥An(t)∥ +

{
2(1−γ)H

(2−γ)B(γ) +
2γ

(2−γ)B(γ) Kt
}
∥An(t)∥ ,∥∥∥∥∥∥E(t) − 2(1−γ)N2(t,E)

(2−γ)B(γ) − E(0) − 2γ
(2−γ)B(γ)

t∫
0

N2(s, E)ds

∥∥∥∥∥∥
≤ ∥Bn(t)∥ +

{
2(1−γ)H1
(2−γ)B(γ) +

2γ
(2−γ)B(γ) J1t

}
∥Bn(t)∥ ,∥∥∥∥∥∥I(t) − 2(1−γ)N3(t,I)

(2−γ)B(γ) − I(0) − 2γ
(2−γ)B(γ)

t∫
0

N3(s, I)ds

∥∥∥∥∥∥
≤ ∥Cn(t)∥ +

{
2(1−γ)H2
(2−γ)B(γ) +

2γ
(2−γ)B(γ) J2t

}
∥Cn(t)∥ ,∥∥∥∥∥∥T (t) − 2(1−γ)N4(t,T )

(2−γ)B(γ) − T (0) − 2γ
(2−γ)B(γ)

t∫
0

N4(s,T )ds

∥∥∥∥∥∥
≤ ∥Dn(t)∥ +

{
2(1−γ)H3
(2−γ)B(γ) +

2γ
(2−γ)B(γ) J3t

}
∥Dn(t)∥ ,∥∥∥∥∥∥R(t) − 2(1−γ)N5(t,R)

(2−γ)B(γ) − R(0) − 2γ
(2−γ)B(γ)

t∫
0

N5(s,R)ds

∥∥∥∥∥∥
≤ ∥Ln(t)∥ +

{
2(1−γ)H4
(2−γ)B(γ) +

2γ
(2−γ)B(γ) J4t

}
∥Ln(t)∥ .

Taking n→ ∞ we have

S (t) = S (0) +
2(1 − γ)N1(t, S )

(2 − γ)B(γ)
+

2γ
(2 − γ)B(γ)

t∫
0

N1(s, S )ds,
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E(t) = E(0) +
2(1 − γ)N2(t, E)

(2 − γ)B(γ)
+

2γ
(2 − γ)B(γ)

t∫
0

N2(s, E)ds,

I(t) = I(0) +
2(1 − γ)N3(t, I)

(2 − γ)B(γ)
+

2γ
(2 − γ)B(γ)

t∫
0

N3(s, I)ds,

T (t) = T (0) +
2(1 − γ)N4(t,T )

(2 − γ)B(γ)
+

2γ
(2 − γ)B(γ)

t∫
0

N4(s,T )ds,

and

R(t) = R(0) +
2(1 − γ)N5(t,R)

(2 − γ)B(γ)
+

2γ
(2 − γ)B(γ)

t∫
0

N5(s,R)ds.

We can assert that the system’s solution exists on the basis of the aforementioned equations. In the
same way, we can also show the existence of the solution for the remaining two cases when kernel
changes.

5. Uniqueness of result

In this section, we prove that the results mentioned in the above section are entirely unique. For
this, we suppose that there exists another set of results for the setup given by Eqs (4.1)–(4.5), say
S 1 (t) , E1 (t), I1 (t), T1 (t), and R1 (t). Then we have

S (t) − S 1 (t) = 2(1−γ)
B(γ)(2−γ) [N1(t, S ) − N1(t, S 1)]
+

2(γ)
B(γ)(2−γ)

∫ t

0
[N1(s, S ) − N1(s, S 1)] ds,

(5.1)

on both sides taking the norm, we get

∥S − S 1∥ =
2(1−γ)

B(γ)(2−γ) [∥N1(t, S ) − N1(t, S 1)∥]
+

2(γ)
B(γ)(2−γ)

∫ t

0
[∥K1(s, S ) − K1(s, S 1)∥] ds,

(5.2)

using Lipchitz condition, we obtain

∥S − S 1∥ <
2 (1 − γ)

B (γ) (2 − γ)
HZ +

(
2 (γ)

B (γ) (2 − γ)
J1Zt

)n

, (5.3)

which is true for all n, so
S = S 1, (5.4)

similarly
E = E1, I = I1,T = T1 and R = R1. (5.5)

Thus, it proves the uniqueness of the solution.
In the same way, we can also show the uniqueness of the solution for the remaining of two cases.
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6. Solution of the TB model by general fractional derivative by Laplace transform

The TB model given by Ihsan et al. is:

dS
dt = ∆ − ξS (I + ηT ) − ϕS ,
dE
dt = ξS (I + ηT ) − (ϕ + λ)E + (1 − ρ)δT,
dI
dt = λE − (ϕ + σ1 + α)I,
dT
dt = αI − (ϕ + σ2 + δ)T,
dR
dt = ρδT − ϕR.


(6.1)

However, we are interested in the solution by using the general operator of fractional order. So, we
replace integer ordered derivatives by the general operator of order γ. Hence

cDγS (t) = ∆ − ξS (I + ηT ) − ϕS ,
cDγE(t) = ξS (I + ηT ) − (ϕ + λ)E + (1 − ρ)δT,
cDγI(t) = λE − (ϕ + σ1 + α)I,
cDγT (t) = αI − (ϕ + σ2 + δ)T,
cDγR(t) = ρδT − ϕR,


(6.2)

where cDγ represents the general operator of fractional order γ and the remaining notations are already
explained in Section 3. Now applying Laplace transform to both sides of the equation of system (6.2),
we obtain

L {cDγS (t)} = L {∆ − ξS (I + ηT ) − ϕS } . (6.3)

By incorporating the various kernels into the various general operator definitions, we may derive three
specific cases of the general operator. In the first case, when kernel is ∇ι(t) = t−ξ

Γ(1−ξ) , we have power

function ℑι(t) = tξ−1

Γ(ξ) transforming the integral operator’s associated kernel.

In the next condition, take kernel ∇ι(t) =
B(ξ)
1−ξEξ

(
−ξ

1−ξ t
ξ
)

where Eξ and M(ξ) are Mittag-Leffler and
normalization functions. We also have

ℑι(t) =
1 − ξ
B(ξ)
δ(t) +

ξ

B(ξ)Γ(ξ)
tξ−1. (6.4)

This may be used to get the derivatives of AB-Caputo and AB-Riemann-Liouville. The AB type
integral is

0D−ξt f (t) =
1 − ξ
B(ξ)

f (t) +
ξ

B(ξ)Γ(ξ)

∫ t

0
(t − s)ξ−1 f (s)ds. (6.5)

Now, at last, the CF derivative is found by taking kernel ∇ι(t) =
B(ξ)
1−ξ exp

(
−ξ

1−ξ t
)
. It is clear that the

general fractional derivative can be further converted into three different operators, namely Riemann-
Liouvilles, Atangana-Baleanu, and Caputo-Fabrizio [32–34]; also, we have already discussed their
Laplace transform in section 2. Now, we derive the numerical solution of the model in each case:

6.1. Case I Caputo-Fabrizio operator

From Eq (6.3), we have

L
{
CF DγS (t)

}
= L {∆ − ξS (I + ηT ) − ϕS } . (6.6)
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By using Eq (2.17), we obtain

pL {S (t)} − S (0)
p + γ(1 − p)

= L {∆ − ξS (I + ηT ) − ϕS } , (6.7)

or
pL {S (t)} − S (0) = {p + γ(1 − p)} L {∆ − ξS (I + ηT ) − ϕS } , (6.8)

or
pL {S (t)} = S (0) + {p + γ(1 − p)} L {∆ − ξS (I + ηT ) − ϕS } , (6.9)

or

L {S (t)} =
S (0)

p
+

{
1 + γ

(
1
p
− 1

)}
L {∆ − ξS (I + ηT ) − ϕS } . (6.10)

By inverse Laplace operator, we get

S (t) = S (0) + L−1
[{

1 + γ
(

1
p
− 1

)}
L {∆ − ξS (I + ηT ) − ϕS }

]
. (6.11)

Using iterative technique, we obtain

S n+1(t) = S (0) + L−1
[{

1 + γ
(

1
p − 1

)}
L {∆ − ξS n(In + ηTn) − ϕS n}

]
. (6.12)

In the same way, we get the remaining expressions as

En+1(t) = E(0) + L−1
[

p+γ(1−p)
p L {ξS n(In + ηTn) − (ϕ + λ)En + (1 − ρ)δTn}

]
, (6.13)

In+1(t) = I(0) + L−1
[

p + γ(1 − p)
p

L {λEn − (ϕ + σ1 + α)In}

]
, (6.14)

Tn+1(t) = T (0) + L−1
[

p + γ(1 − p)
p

L {αIn − (ϕ + σ2 + δ)Tn}

]
, (6.15)

and

Rn+1(t) = R(0) + L−1
[

p + γ(1 − p)
p

L {ρδTn − ϕRn}

]
. (6.16)

6.2. Case II Riemann Liouville’s operator

From Eq (6.3), we have

L
{

RLDγS (t)
}
= L {∆ − ξS (I + ηT ) − ϕS } . (6.17)

Using Eq (2.16), we have

pγL {S (t)} − pγ−1S (0) = L {∆ − ξS (I + ηT ) − ϕS } , (6.18)

or
pγL {S (t)} = pγ−1S (0) + L {∆ − ξS (I + ηT ) − ϕS } , (6.19)
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or
L {S (t)} =

S (0)
p
+

1
pγ

L {∆ − ξS (I + ηT ) − ϕS } . (6.20)

Applying inverse Laplace transform both sides of the above equation, we get

S (t) = S (0) + L−1
[

1
pγ

L {∆ − ξS (I + ηT ) − ϕS }
]
. (6.21)

By the iterative method, we obtain

S n+1(t) = S (0) + L−1
[

1
pγ

L {∆ − ξS n(In + ηTn) − ϕS n}

]
. (6.22)

Similarly, we can find other results

En+1(t) = E(0) + L−1
[

1
pγ L {ξS n(In + ηTn) − (ϕ + λ)En + (1 − ρ)δTn}

]
, (6.23)

In+1(t) = I(0) + L−1
[

1
pγ

L {λEn − (ϕ + σ1 + α)In}

]
, (6.24)

Tn+1(t) = T (0) + L−1
[

1
pγ

L {αIn − (ϕ + σ2 + δ)Tn}

]
, (6.25)

and

Rn+1(t) = R(0) + L−1
[

1
pγ

L {ρδTn − ϕRn}

]
. (6.26)

6.3. Case III Atangana-Baleanu operator

From Eq (6.3), we have

L
{

ABCDγS (t)
}
= L {∆ − ξS (I + ηT ) − ϕS } . (6.27)

Applying Eq (2.18), we find

B(γ)
(1 − γ)

.
pγL {S (t)} − pγ−1S (0)

pγ + γ

1−γ

= L {∆ − ξS (I + ηT ) − ϕS } , (6.28)

or
B(γ)

(1 − γ)
.pγL {S (t)} − pγ−1S (0) =

(
pγ +

γ

1 − γ

)
× L {∆ − ξS (I + ηT ) − ϕS } , (6.29)

or
pγL {S (t)} − pγ−1S (0) = (1−γ)

B(γ)

(
pγ + γ

1−γ

)
× L {∆ − ξS (I + ηT ) − ϕS } , (6.30)

or
pγL {S (t)} = pγ−1S (0) + (1−γ)

B(γ)

(
pγ + γ

1−γ

)
L {∆ − ξS (I + ηT ) − ϕS } , (6.31)

or

L {S (t)} =
S (0)

p
+

(1 − γ)
B(γ)

(
1 +
γp−γ

1 − γ

)
L {∆ − ξS (I + ηT ) − ϕS } . (6.32)
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By inverse Laplace transform, we get

S (t) = S (0) + L−1
[

(1−γ)
B(γ)

(
1 + γp−γ

1−γ

)
L {∆ − ξS (I + ηT ) − ϕS }

]
. (6.33)

This implies

S (t) = S (0) + L−1
[
(1 − γ + γp−γ)

B(γ)
L {∆ − ξS (I + ηT ) − ϕS }

]
. (6.34)

By the iterative technique, we get

S n+1(t) = S (0) + L−1
[

(1−γ+γp−γ)
B(γ) L {∆ − ξS n(In + ηTn) − ϕS n}

]
. (6.35)

We can find other expressions in the same way

En+1(t) = E(0) + L−1
[

(1−γ+γp−γ)
B(γ) L {ξS n(In + ηTn) − (ϕ + λ)En + (1 − ρ)δTn}

]
, (6.36)

In+1(t) = I(0) + L−1
[
(1 − γ + γp−γ)

B(γ)
L {λEn − (ϕ + σ1 + α)In}

]
, (6.37)

Tn+1(t) = T (0) + L−1
[
(1 − γ + γp−γ)

B(γ)
L {αIn − (ϕ + σ2 + δ)Tn}

]
, (6.38)

and

Rn+1(t) = R(0) + L−1
[
(1 − γ + γp−γ)

B(γ)
L {ρδTn − ϕRn}

]
. (6.39)

7. Numerical and graphical results

The TB infection model is numerically analyzed for the better understanding of the treatment.
During the investigation, we used some primary conditions and parameter values. The details of the
numeric values are explained in Table 1.

Table 1. Initial values and parameters.

S.N. Variable Symbol Value
1 Primary no. of vulnerable people S 0 7
2 Starting exposed persons E0 2
3 Initial no. of infections without treatment I0 1
4 Initial no. of infections with treatment T0 0
5 Initially recovered persons R0 0
6 Rate of conscription ∆ 0.2
7 Rate of effective contact ξ 0.7
8 Decrease in infections η 0.1
9 Rate of natural death ϕ 0.1
10 Rate of transfer from E to I λ 0.25
11 Capable treatment ρ 0.9
12 Infected person without treatment σ1 0.15
13 Infected person with treatment σ2 0.05
14 Rate for infected population α 0.2
15 Rate of leaving population T δ 0.1
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We can plot the graphs using the values of the parameters listed in Table 1 and the mathematical
results found in the previous section. Figures 1–15 have been plotted for γ= 0.5, 0.7, 0.9, and 1.
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Figure 1. Graph of Susceptible with respect to t, for γ= 0.5, 0.7, 0.9, and 1 in the Caputo-
Fabrizio case.
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Figure 2. Exposed w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Caputo-Fabrizio case.
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Figure 3. Infected without treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Caputo-
Fabrizio case.
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Figure 4. Infected with treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Caputo-Fabrizio
case.
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Figure 5. Recovered with treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Caputo-Fabrizio
case.
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Figure 6. Susceptible w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Riemann-Liouville’s case.
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Figure 7. Exposed w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Riemann-Liouville’s case.
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Figure 8. Infected without treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Riemann-
Liouville’s case.
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Figure 9. Infected with treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Riemann-
Liouville’s case.
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Figure 10. Recovered with treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the Riemann-
Liouville’s case.
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Figure 11. Susceptible w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the ABC case.
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Figure 12. Exposed w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the ABC case.
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Figure 13. Infected without treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the ABC case.
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Figure 14. Infected with treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the ABC case.
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Figure 15. Recovered with treatment w.r.to t, for γ= 0.5, 0.7, 0.9, and 1 in the ABC case.

Figures 1, 6, and 11 show a rapid increase in number of susceptible people with time when the
order of derivative is increases. Figures 2, 7, and 12 show a downward trend in the number of exposed
people with time, particularly when approaching integer order. Figures 3, 8, and 13 show that infection
will increase with time if treatment is not done properly, while Figures 4, 9, and 14 show a positive
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response of treatment with time, as the infection rate decreases when treatment is appropriate. From
Figures 5, 10, and 15, we can see that recovery is in process; however, the recovery rate is slower than
the rate of infection without treatment.

From all figures, it is clear that Caputo-Fabrizio and Atangana-Baleanu derivatives show similar
tendencies with nearly equal changing rates, as opposed to Riemann-Liouville’s derivatives.

From this study, we can also conclude that the fractional-order system performs better than the
integer-order model in terms of understanding and predicting the phenomenon. In the fractional-order
model, there was a larger number of outcomes as compared to the integer-order model, which provided
only single outcome.

8. Conclusions

In this study, a fractional-order model of TB was analyzed under the general fractional derivative
using Laplace transform technique with effective contact rate, treatment rate, and incomplete treatment
versus efficient treatment. The existence and uniqueness of some results were investigated using the
fixed-point technique. The general derivative approach was used to create some numerical findings for
the suggested model. For each instance of a general derivative and for various fractional orders, the
numerical findings were visually explained (see Figures 1–15). By giving the information between two
numbers, the graphical depiction demonstrates that fractional-order analysis of mathematical models
is substantially more accurate than integer-order analysis.
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