Research article

Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems

  • Received: 30 May 2024 Revised: 01 July 2024 Accepted: 09 July 2024 Published: 16 July 2024
  • MSC : 35B40, 35B41, 37L30

  • The present study focuses on the asymptotic behavior of fractional stochastic FitzHugh-Nagumo lattice systems with multiplicative noise. First, we investigate the well-posedness of solutions for these stochastic systems and subsequently establish the existence and uniqueness of tempered random uniform attractors.

    Citation: Xintao Li, Yunlong Gao. Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems[J]. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083

    Related Papers:

  • The present study focuses on the asymptotic behavior of fractional stochastic FitzHugh-Nagumo lattice systems with multiplicative noise. First, we investigate the well-posedness of solutions for these stochastic systems and subsequently establish the existence and uniqueness of tempered random uniform attractors.



    加载中


    [1] S. N. Chow, J. Mallet-Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Differ. Equations, 149 (1998), 248–291. https://doi.org/10.1006/jdeq.1998.3478 doi: 10.1006/jdeq.1998.3478
    [2] C. E. Elmer, E. S. Van Vleck, Traveling waves solutions for bistable differential-difference equations with periodic diffusion, SIAM J. Appl. Math., 61 (2001), 1648–1679. https://doi.org/10.1137/S0036139999357113 doi: 10.1137/S0036139999357113
    [3] S. N. Chow, J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems Ⅰ, IEEE Trans. Circuits Systems, 42 (1995), 746–751. https://doi.org/10.1109/81.473583 doi: 10.1109/81.473583
    [4] S. N. Chow, W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764–1781. https://doi.org/10.1137/S0036139994261757 doi: 10.1137/S0036139994261757
    [5] A. Y. Abdallah, Attractors for first order lattice systems with almost periodic nonlinear part, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1241–1255. https://doi.org/10.3934/dcdsb.2019218 doi: 10.3934/dcdsb.2019218
    [6] Y. Chen, X. Wang, Random attractors for stochastic discrete complex Ginzburg-Landau equations with long-range interactions, J. Math. Phys., 63 (2022), 032701. https://doi.org/10.1063/5.0077971 doi: 10.1063/5.0077971
    [7] Z. Chen, L. Li, D. Yang, Asymptotic behavior of random coupled Ginzburg-Landau equation driven by colored noise on unbounded domains, Adv. Differ. Equat., 2021 (2021), 291. https://doi.org/10.1186/s13662-020-03127-5 doi: 10.1186/s13662-020-03127-5
    [8] Z. Chen, X. Li, B. Wang, Invariant measures of stochastic delay lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 3235–3269. https://doi.org/10.3934/dcdsb.2020226 doi: 10.3934/dcdsb.2020226
    [9] D. Li, L. Shi, Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with time-varying delays in the delay, J. Differ. Equ. Appl., 4 (2018), 872–897. https://doi.org/10.1080/10236198.2018.1437913 doi: 10.1080/10236198.2018.1437913
    [10] D. Li, B. Wang, X. Wang, Limiting behavior of invariant measures of stochastic delay lattice systems, J. Dyn. Differ. Equ., 34 (2022), 1453–1487. https://doi.org/10.1007/s10884-021-10011-7 doi: 10.1007/s10884-021-10011-7
    [11] R. Wang, Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping, J. Dynam. Differ. Equ., 33 (2021), 767–803. https://doi.org/ 10.1007/s10884-020-09830-x doi: 10.1007/s10884-020-09830-x
    [12] R. Wang, B. Wang, Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stoch. Proc. Appl., 130 (2020), 7431–7462. https://doi.org/10.1016/j.spa.2020.08.002 doi: 10.1016/j.spa.2020.08.002
    [13] R. Wang, B. Wang, Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise, Discrete Contin. Dynam. Syst. Ser. B, 25 (2020), 2461–2493. https://doi.org/10.3934/dcdsb.2020019 doi: 10.3934/dcdsb.2020019
    [14] R. Wang, B. Wang, Global well-posedness and long-term behavior of discrete reaction-diffusion equations driven by superlinear noise, Stoch. Anal. Appl., 39 (2021), 667–696. https://doi.org/10.1080/07362994.2020.1828917 doi: 10.1080/07362994.2020.1828917
    [15] X. Wang, P. E. Kloeden, X. Han, Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise, Nodea Nonlinear Differ., 28 (2021), 43. https://doi.org/10.1007/s00030-021-00705-8 doi: 10.1007/s00030-021-00705-8
    [16] X. Wang, K. Lu, B. Wang, Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dyn. Differ. Equ., 28 (2016), 1309–1335. https://doi.org/10.1007/s10884-015-9448-8 doi: 10.1007/s10884-015-9448-8
    [17] S. Yang, Y. Li, Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise, J. Math. Phys., 62 (2021), 051510. https://doi.org/10.1063/5.0037929 doi: 10.1063/5.0037929
    [18] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for noncompact random dynamical systems, J. Differ. Equations, 253 (2012), 1544–1583. https://doi.org/10.1016/j.jde.2012.05.015 doi: 10.1016/j.jde.2012.05.015
    [19] H. Cui, J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differ. Equations, 263 (2017), 1225–1268. https://doi.org/10.1016/j.jde.2017.03.018 doi: 10.1016/j.jde.2017.03.018
    [20] H. Cui, A. C. Cunha, J. A. Langa, Finite-dimensionality of tempered random uniform attractors, J. Nonlinear Sci., 32 (2022), 13. https://doi.org/10.1007/s00332-021-09764-8 doi: 10.1007/s00332-021-09764-8
    [21] A. Y. Abdallah, Random uniform attractors for first order stochastic non-autonomous lattice systems, Qual. Theor. Dyn. Syst., 22 (2023), 60. https://doi.org/10.1007/s12346-023-00758-3 doi: 10.1007/s12346-023-00758-3
    [22] Ó. Ciaurri, L. Roncal, Hardy's inequality for the fractional powers of a discrete Laplacian, J. Anal., 26 (2018), 211–225. https://doi.org/10.1007/s41478-018-0141-2 doi: 10.1007/s41478-018-0141-2
    [23] Ó. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, J. L. Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math., 30 (2018), 688–738. https://doi.org/10.1016/j.aim.2018.03.023 doi: 10.1016/j.aim.2018.03.023
    [24] C. Lizama, L. Roncal, Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian, Discrete Contin. Dyn. Syst., 38 (2018), 1365–1403. https://dx.doi.org/10.3934/dcds.2018056 doi: 10.3934/dcds.2018056
    [25] Y. Chen, X. Wang, Asymptotic behavior of non-autonomous fractional stochastic lattice systems with multiplicative noise, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 5205–5224. https://doi.org/10.3934/dcdsb.2021271 doi: 10.3934/dcdsb.2021271
    [26] Y. Chen, X. Wang, K. Wu, Wong-Zakai approximations and pathwise dynamics of stochastic fractional lattice systems, Commun. Pur. Appl. Anal., 21 (2022), 2529–2560. https://doi.org/10.3934/cpaa.2022059 doi: 10.3934/cpaa.2022059
    [27] C. K. R. T. Jones, Stability of the traveling wave solution of the FitzHugh-Nagumo system, Trans. Amer. Math. Soc., 286 (1984), 431–469. https://doi.org/10.1090/S0002-9947-1984-0760971-6 doi: 10.1090/S0002-9947-1984-0760971-6
    [28] B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal.-Theor., 70 (2009), 3799–3815. https://doi.org/10.1016/j.na.2008.07.011 doi: 10.1016/j.na.2008.07.011
    [29] E. Van Vleck, B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Phys. D, 212 (2005), 317–336. https://doi.org/10.1016/j.physd.2005.10.006 doi: 10.1016/j.physd.2005.10.006
    [30] A. M. Boughoufala, A. Y. Abdallah, Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts, Discrete. Contin. Dyn. Syst. Ser. B, 26 (2021), 1549–1563. https://doi.org/10.3934/dcdsb.2020172 doi: 10.3934/dcdsb.2020172
    [31] A. Adili, B. Wang, Random attractors for non-autonomous stochasitic FitzHugh-Nagumo systems with multiplicative noise, Discrete Contin. Dyn. Syst., 2013 (2013), 1–10. https://doi.org/10.3934/proc.2013.2013.1 doi: 10.3934/proc.2013.2013.1
    [32] A. Gu, Y. Li, Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions, Commun. Nonlinear Sci., 19 (2014), 3929–3937. https://doi.org/10.1016/j.cnsns.2014.04.005 doi: 10.1016/j.cnsns.2014.04.005
    [33] A. Gu, Y. Li, J. Li, Random attractors on lattice of stochastic FitzHugh-Nagumo systems driven by $\alpha$-stable Lévy noises, Int. J. Bifurcat. Chaos, 24 (2014), 1450123. https://doi.org/10.1142/S0218127414501235 doi: 10.1142/S0218127414501235
    [34] Z. Wang, S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwan. J. Math., 20 (2016), 589–616. https://doi.org/10.11650/tjm.20.2016.6699 doi: 10.11650/tjm.20.2016.6699
    [35] Z. Chen, D. Yang, S. Zhong, Limiting dynamics for stochastic FitzHugh-Nagumo lattice systems in weighted spaces, J. Dyn. Diff. Equ., 36 (2024), 321–352. https://doi.org/10.1007/s10884-022-10145-2 doi: 10.1007/s10884-022-10145-2
    [36] P. R. Stinga, J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Commun. Part. Diff. Eq., 35 (2010), 2092–2122. https://doi.org/10.1080/03605301003735680 doi: 10.1080/03605301003735680
    [37] L. Arnold, Random dynamical systems, Springer-Verlag, Berlin, 1998.
    [38] B. M. Levitan, V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge, 1982.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(429) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog