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1. Introduction

In this paper, we investigate the dynamics of a fractional stochastic FitzHugh-Nagumo lattice system
defined on the integer set Z:

˙̄ui + (−∆d)sūi + αv̄i = fi(t, ūi) + gi(t) + εūi ◦ ω̇, t > 0,
˙̄vi + σv̄i − βūi = hi(t) + εv̄i ◦ ω̇, t > 0,
ūi(0) = ūi,0, v̄i(0) = v̄i,0,

(1.1)

where ūi, v̄i ∈ R, (−∆d)s is the fractional discrete Laplacian, s ∈ (0, 1), α, σ, β are positive real constants,
f (t, u) = ( fi(t, ui))i∈Z is a nonlinear function that satisfies certain conditions, the terms g(t) = (gi(t))i∈Z

and h(t) = (hi(t))i∈Z are time-dependent, whileω is a two-sided real-valued Wiener process. The system
should be understood in the Stratonovich-integral sense.

Lattice systems with standard discrete Laplacian has been extensively investigated in the literature.
Previous studies [1, 2] have investigated the existence of traveling wave solutions in such systems,
while other relevant research mentioned in [3, 4] has also analyzed the chaotic properties associated
with these solutions. For a comprehensive understanding of the asymptotic behavior of lattice systems,
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interested readers are referred to references [5–17]. The framework of the pullback random attractor
proposed by Wang [18] effectively captures the dynamics of non-autonomous stochastic systems in
the pullback sense. However, it lacks information regarding the desired forward dynamics. Therefore,
Cui and Langa [19] introduced the concept of a random uniform attractor as a random generalization
of deterministic uniform attractors that exhibit uniform attraction in symbols from a symbol space.
Furthermore, Cui et al. [20] investigated the conditions that ensure a random uniform attractor
possesses a finite fractal dimension. A random uniform attractor is defined as being pathwise pullback-
attracting, while also exhibiting weak forward attraction in terms of probability. Recently, Abdallah
conducted a study on the existence of the random uniform attractors within the set of tempered
closed bounded random sets for a family of first-order stochastic non-autonomous lattice systems with
multiplicative white noise in [21].

The fractional discrete Laplacian, which extensively explores the fractional powers of the discrete
Laplacian, has been thoroughly investigated in previous studies [22, 23]. In [23], the discrete diffusion
systems with fractional discrete Laplacian were examined, and the pointwise nonlocal formula and
various properties associated with this operator were derived. Additionally, Schauder estimates in
discrete Hölder spaces and the existence and uniqueness of solutions for the considered system were
established. By employing the theories of analytic semigroups and cosine operators, the existence
and uniqueness of solutions to the Schrödinger, wave, and heat systems with the fractional discrete
Laplacian were successfully established in [24]. Recent studies have focused on exploring the
existence, uniqueness, and upper semi-continuity of random attractors in fractional stochastic lattice
systems with linear or nonlinear multiplicative noise [25, 26].

The FitzHugh-Nagumo systems were employed to describe the transmission of signals across axons
in neurobiology [27]. The long-term dynamics of FitzHugh-Nagumo systems have been investigated
in both deterministic scenarios [28–30] and stochastic scenarios [31–35]. Among these studies, Wang
et al. [34] derived the existence and upper semi-continuity of random attractors for FitzHugh-Nagumo
lattice systems with multiplicative noise in `2 × `2, while Chen et al. [35] obtained the existence and
uniqueness of weak pullback mean random attractors for FitzHugh-Nagumo lattice systems driven by
nonlinear noise in weighted space `2

σ × `
2
σ.

However, as far as we know, there is no result available regarding the stochastic dynamics of
fractional FitzHugh-Nagumo lattice systems with multiplicative noise. The main challenge of this
paper lies in establishing the asymptotic compactness of solutions to system (1.1), which bears
resemblance to the scenario encountered in stochastic partial differential equations on unbounded
domains where Sobolev embedding is no longer compact. More precisely, we will demonstrate, using a
cut-off technique, that the tails of solutions for system (1.1) remain uniformly small as time approaches
infinity. This aspect will play a crucial role in establishing the asymptotic compactness of solutions.
By leveraging the asymptotic compactness of solutions and uniformly absorbing sets, we can derive
the existence and uniqueness of random uniform attractors.

This paper is structured as follows: In Section 2, we establish the conditions for the Hilbert space
and state fundamental assumptions regarding the nonlinearity and forcing terms of the system (1.1).
We also present several significant lemmas and properties that greatly facilitate the analysis of solutions
throughout this paper. Additionally, we investigate the well-posedness of solutions to the system (1.1).
In Section 3, we derive all the necessary uniform estimates of the solutions. Section 4 is dedicated to
proving the existence and uniqueness of random uniform attractors for system (1.1).
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2. Spaces and assumptions

In this section, we will introduce the appropriate spaces and assumptions regarding the linear and
nonlinear parts of a fractional stochastic non-autonomous lattice system (1.1).

Consider the Hilbert space

`2 =
{
u = (ui)i∈Z|ui ∈ R,

∑
i∈Z

|ui|
2 < +∞

}
,

with the inner product and norm given by

(u, v) =
∑
i∈Z

uivi, ‖u‖2 = (u, u), u, v ∈ `2.

For 0 ≤ s ≤ 1, define `s by

`s = {u : Z→ R|‖u‖`s :=
∑
i∈Z

|ui|

(1 + |i|)1+2s < +∞}.

Obviously, `m ⊂ `n ⊂ `s if 1 ≤ m ≤ n ≤ +∞ and 0 ≤ s ≤ 1.
The fractional discrete Laplacian (−∆d)s simplifies to the discrete Laplacian −∆d if s = 1. For i ∈ Z,

the discrete Laplacian −∆d is given by

−∆dui = 2ui − ui−1 − ui+1.

For 1 < s < 1 and u j ∈ R, the fractional discrete Laplacian (−∆d)s is defined with the semigroup
method in [36] as

(−∆d)su j =
1

Γ(−s)

∫ +∞

0
(et∆d u j − u j)

dt
t1+s , (2.1)

where Γ is the Gamma function with Γ(−s) = −1
s

∫ +∞

0
r−se−rdr < 0 and v j(t) = et∆d u j is the solution for

the semidiscrete heat system ∂tv j = ∆dv j, in Z × (0,+∞),
v j(0) = u j, on Z.

(2.2)

The solution to system (2.2) can be expressed by the semidiscrete Fourier transform

et∆d u j =
∑
i∈Z

G( j − i, t)ui =
∑
i∈Z

G(i, t)u j−i, t ≥ 0, (2.3)

where the semidiscrete heat kernel G(i, t) is defined as e−2tIi(2t), and Ii represents the modified Bessel
function of order i. Subsequently, the pointwise formula for (−∆d)s has been presented as follows:

Lemma 2.1. ( [23], Lemma 2.3) Let 0 < s < 1 and u = (ui)i∈Z ∈ `s. Then, we have

(−∆d)sui =
∑

j∈Z, j,i

(ui − u j)K̃s(i − j),
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where the discrete kernel K̃s is given by

K̃s( j) =

 4sΓ( 1
2 +s)

√
π|Γ(−s)| ·

Γ(| j|−s)
Γ(| j|+1+s) , j ∈ Z \ {0},

0, j = 0.

In addition, there exist positive constants čs ≤ ĉs such that for any j ∈ Z \ {0},

čs

| j|1+2s ≤ K̃s( j) ≤
ĉs

| j|1+2s .

In this paper, we will consider the probability space (Ω,F , P), where

Ω = {ω ∈ C(R,R) : ω(0) = 0},

F is the Borel σ-algebra induced by the compact-open topology of Ω, and P is the corresponding
Wiener measure on (Ω,F ). Define the time shift by

θtω(·) = ω(· + t) − ω(t), ω ∈ Ω, t ∈ R. (2.4)

Then (Ω,F , P, (θt)t∈R) is a metric dynamical system (refer to [37] for details).
Moreover, let us consider the stochastic equation as follows:

dz + zdt = dω. (2.5)

In fact, the following lemma can be obtained:

Lemma 2.2. There exists a {θt}t∈R-invariant subset Ω′ ∈ F of full measure such that

lim
t→±∞

|ω(t)|
t
→ 0 for all ω ∈ Ω′, (2.6)

and the random variable given by

z(ω) = −

∫ 0

−∞

esω(s)ds

is well defined. Moreover, for ω ∈ Ω′, the mapping

(t, ω)→ z(θtω) = −

∫ 0

−∞

esθtω(s)ds = −

∫ 0

−∞

esω(t + s)ds + ω(t)

is a stationary solution of (2.5) with continuous trajectories. In addition, for ω ∈ Ω′,

lim
t→±∞

|z(θtω)|
t

→ 0, lim
t→±∞

1
t

∫ t

0
z(θsω)ds = 0. (2.7)

For all v = (vi)i∈Z, vi ∈ R, let p and q be two given functions satisfying the following conditions:

p(v) = (pi(vi))i∈Z, q(v) = (qi(vi))i∈Z, pi, qi ∈ C(R, (0,+∞)), (2.8)
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and there are continuous functions L1, L2 : R+ → (0,+∞) such that for s ≥ 0,

‖p(v)‖ ≤ L1(s),∀‖v‖ ≤ s, qi(r) ≤ L2(s),∀i ∈ Z, |r| ≤ s. (2.9)

For all v = (vi)i∈Z, vi ∈ R, let W be the set of functions φ with

φ(v) = (φi(vi))i∈Z, φi ∈ C′(R,R), φi(0) = 0,∀i ∈ Z, (2.10)

and

sup
i∈Z

sup
r∈R

( |φi(r)|
pi(r)

+
|φ′i(r)|
qi(r)

)
< +∞. (2.11)

By using the similar proof of Lemma 5.2 in [5], we obtain the following lemma:

Lemma 2.3. W is a real Banach space with norm given by

‖φ‖W = sup
i∈Z

sup
r∈R

( |φi(r)|
pi(r)

+
|φ′i(r)|
qi(r)

)
,∀φ ∈ W.

Moreover, we assume that
(H1) g0, h0 : R→ `2 with g0(t) = (g0i(t))i∈Z, h0(t) = (h0i(t))i∈Z are almost periodic functions of t.
(H2) f0(t, u) = ( f0i(t, ui))i∈Z is a nonlinear function of t ∈ R and u = (ui)i∈Z, ui ∈ R with f0i : R × R

such that f0(t, ·) is an almost periodic function of t with values in W and

f0i(t, r)r ≤ −λr2, t, r ∈ R, i ∈ Z (2.12)

for some λ > 0.
The space Cb(R, X) represents the Banach space of bounded continuous functions on R, where the

functions take values in a Banach space X and are equipped with a norm given by

‖ξ‖Cb(R,X) = sup
t∈R
‖ξ(t)‖X, ξ ∈ Cb(R, X). (2.13)

Let ξ0 : R → X be an almost periodic function of t with values in X. By Bochner’s criterion in [38],
the set of translations {ξ0(· + s) : s ∈ R} is precompact in Cb(R, X). The closure of this set in Cb(R, X)
is referred to as the hullH(ξ0) of the function ξ0(t), i.e.,

H(ξ0) = {ξ0(· + s) : s ∈ R} ⊂⊂ Cb(R, X). (2.14)

Furthermore, for any ξ(t) ∈ H(ξ0), ξ is almost periodic in X, andH(ξ0) = H(ξ).
In this study, we consider the time symbol ξ0(t) = (g0(t), f0(t, u), h0(t)), where g0, f0, and h0 are

determined by assumptions (H1) and (H2). It is observed that ξ0(t) exhibits almost periodic behavior
with values in `2 ×W × `2. Subsequently, we focus on the symbol space Σ = H(g0) ×H( f0) ×H(h0),
which is compact in Cb(R, `2) × Cb(R,W) × Cb(R, `2). Under these conditions, ξ(t) = (ξ1(t), ξ2(t)) =

((g(t), f (t, u)), h(t)) ∈ Σ also demonstrates almost periodicity in `2×W×`2 and Σ = H(g)×H( f )×H(h).

AIMS Mathematics Volume 9, Issue 8, 22251–22270.



22256

The objective of this study is to investigate the existence of random uniform attractors with respect
to ξ(t) = (g(t), f (t, u), h(t)) ∈ Σ for the fractional stochastic FitzHugh-Nagumo lattice system with
multiplicative white noise as follows:

˙̄u + (−∆d)sū + αv̄ = f (t, ū) + g(t) + εū ◦ ω̇, t > 0,
˙̄v + σv̄ − βū = h(t) + εv̄ ◦ ω̇, t > 0,
ū(0) = ū0, v̄(0) = v̄0,

(2.15)

where ū = (ūi)i∈Z, v̄ = (v̄i)i∈Z, f (t, ū) = ( fi(t, ūi))i∈Z, g(t) = (gi(t))i∈Z, and h(t) = (hi(t))i∈Z.
Furthermore, it can be deduced from Lemma 2.1 that the fractional discrete Laplacian (−∆d)su is a

nonlocal operator on Z, and (−∆d)su is a well-defined bounded function wherever u ∈ `q(1 ≤ q ≤ +∞).
In particular, we obtain that, for 0 < s < 1, if u ∈ `2, then

(−∆d)su ∈ `2 satisfying ‖(−∆d)su‖ ≤ 4s‖u‖. (2.16)

The subsequent lemma will be repeatedly utilized in various estimations of solutions to system (1.1).

Lemma 2.4. ( [26], Lemma 2.3) Let u, v ∈ `2. Then, for every s ∈ (0, 1),(
(−∆d)su, v

)
=

(
(−∆d)

s
2 u, (−∆d)

s
2 v

)
=

1
2

∑
i∈Z

∑
j∈Z, j,i

(ui − u j)(vi − v j)K̃s(i − j).

3. Continuous NRDS and uniform absorbing set

In this section, for ω ∈ Ω, ξ = (ξ1, ξ2) = ((g, f ), h) ∈ Σ and initial conditions (u0, v0) ∈ `2 × `2,
we aim to demonstrate the existence of global solutions (u(t, ω, ξ1, u0), v(t, ω, ξ2, v0)) to system (2.15)
by transforming the original random system into a deterministic one. Specifically, we introduce the
non-autonomous random dynamical system (NRDS) Ψ : R+ × Ω × Σ × `2 × `2 → `2 × `2 associated
with system (2.15), which is jointly continuous in both Σ and `2 × `2 and possesses a closed random
uniformlyD-(pullback) absorbing set.

By using the similar proof of Lemma 3.1 in [30], we obtain the following lemma:

Lemma 3.1. Suppose assumptions (H1) and (H2) hold. For (ξ1, ξ2) ∈ Σ, there exist non-negative
constants δ1(g0), δ2( f0), and δ3(h0) such that

‖g‖Cb(R,`2) = sup
t∈R
‖g(t)‖ = δ1(g0), ‖h‖Cb(R,`2) = sup

t∈R
‖h(t)‖ = δ2(h0), (3.1)

and for t, r ∈ R, i ∈ Z,

fi(t, r)r ≤ −λr2, (3.2)

| fi(t, r)| ≤ δ3( f0)pi(r), (3.3)∣∣∣∣∂ fi(t, r)
∂r

∣∣∣∣ ≤ δ3( f0)qi(r). (3.4)
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Next, we will define NRDS Ψ for system (2.15). To this end, we need to transform the stochastic
system (2.15) into a deterministic one through the utilization of z(θtω). Let

u(t, ω, ξ1, u0(ω)) = e−εz(θtω)ū(t, ω, ξ1, ū0(ω)),
v(t, ω, ξ2, v0(ω)) = e−εz(θtω)v̄(t, ω, ξ2, v̄0(ω)),

(3.5)

where (ū, v̄) is a solution of system (2.15), u0(ω) = e−εz(ω)ū0(ω) and v0(ω) = e−εz(ω)v̄0(ω). Then (u, v)
satisfies 

u̇ + (−∆d)su − εz(θtω)u + αv = e−εz(θtω) f (t, eεz(θtω)u) + e−εz(θtω)g(t), t > 0,
v̇ + (σ − εz(θtω))v − βu = e−εz(θtω)h(t), t > 0,
u(0) = u0, v(0) = v0.

(3.6)

According to Lemma 4.4 of [21], for f ∈ H( f0) ⊂⊂ Cb(R,W), it can be inferred that the function
f : R × `2 → `2 with (t, u) → f (t, eεz(θtω)u) is a continuous function of t. Moreover, for R > 0 and
T > 0, u1 = (u1

i )i∈Z, u2 = (u2
i )i∈Z ∈ `

2 satisfying ‖u1‖ ≤ R, ‖u2‖ ≤ R, and t ∈ [0,T ], we obtain that

‖ f (t, eεz(θtω)u1) − f (t, eεz(θtω)u2)‖ ≤ δ3( f0)L2(ea1(T )R)ea1(T )‖u1 − u2‖, (3.7)

where a1(T ) = max
t∈[0,T ]

|εz(θtω)|. Then, it follows from (2.16), (3.7), and the standard theory of ordinary

differential equations that system (3.6) has a unique local solution (u(t), v(t)) ∈ C([0,T ], `2 × `2) for
some T > 0. The following estimates show that this local solution is actually defined globally.

Lemma 3.2. For every ω ∈ Ω, (ξ1, ξ2) ∈ Σ, and (u0(ω), v0(ω)) ∈ `2 × `2, then the solution
(u(t, ω, ξ1, u0(ω)), v(t, ω, ξ2, v0(ω))) of system (3.6) satisfies

‖u(t, ω, ξ1, u0(ω))‖2 + ‖v(t, ω, ξ2, v0(ω))‖2 ≤ e−κt+2ε
∫ t

0 z(θlω)dl(‖u0(ω)‖2 + ‖v0(ω)‖2
)

+
2
γκ

(
β(δ1(g0))2 + α(δ2(h0))2) ∫ t

0
eκ(r−t)−2ε

∫ r
t z(θlω)dl−2εz(θrω)dr.

Proof. By (3.6), we have

β

2
d
dt
‖u‖2 +

α

2
d
dt
‖v‖2 + β

(
(−4d)su, u

)
− βεz(θtω)‖u‖2 + α(σ − εz(θtω))‖v‖2

= βe−εz(θtω)
(

f (t, eεz(θtω)u), u
)

+ βe−εz(θtω)
(
g(t), u

)
+ αe−εz(θtω)

(
h(t), v

)
.

(3.8)

By Lemma 2.4, we obtain

β
(
(−4d)su, u

)
= β

(
(−4d)

s
2 u, (−4d)

s
2 u

)
= β‖(−4d)

s
2 u‖2. (3.9)

By (3.2), we find

βe−εz(θtω)
(

f (t, eεz(θtω)u), u
)

= βe−2εz(θtω)
(

f (t, eεz(θtω)u), eεz(θtω)u
)
≤ −λβ‖u‖2. (3.10)
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By (3.1) and Young’s inequality, we obtain

βe−εz(θtω)
(
g(t), u

)
+ αe−εz(θtω)

(
h(t), v

)
≤
λβ

4
‖u‖2 +

β

λ
e−2εz(θtω)‖g(t)‖2 +

σα

4
‖v‖2 +

α

σ
e−2εz(θtω)‖h(t)‖2

≤
λβ

4
‖u‖2 +

β

λ
e−2εz(θtω)(δ1(g0))2 +

σα

4
‖v‖2 +

α

σ
e−2εz(θtω)(δ2(h0))2.

(3.11)

It follows from (3.8)–(3.11) that

d
dt

(
β‖u‖2 + α‖v‖2

)
+ (κ − 2εz(θtω))

(
β‖u‖2 + α‖v‖2

)
+ 2β‖(−4d)

s
2 u‖2 +

λβ

2
‖u‖2

≤
2e−2εz(θtω)

κ

(
β(δ1(g0))2 + α(δ2(h0))2), (3.12)

where κ = min{λ, σ}. Let γ = min{α, β}, multiplying (3.12) by eκt−2ε
∫ t

0 z(θlω)dl, we have

d
dt

(
eκt−2ε

∫ t
0 z(θlω)dl(‖u‖2 + ‖v‖2

))
+ eκt−2ε

∫ t
0 z(θlω)dl

(
2‖(−4d)

s
2 u‖ +

λ

2
‖u‖2

)
≤ eκt−2ε

∫ t
0 z(θlω)dl−2εz(θtω) 2

γκ

(
β(δ1(g0))2 + α(δ2(h0))2),

which implies that

‖u(t, ω, ξ1, u0(ω))‖2 + ‖v(t, ω, ξ2, v0(ω))‖2

+ 2
∫ t

0
eκ(r−t)−2ε

∫ r
t z(θlω)dl‖(−4d)

s
2 u(r, ω, ξ1, u0(ω))‖2dr

+
λ

2

∫ t

0
eκ(r−t)−2ε

∫ r
t z(θlω)dl‖u(r, ω, ξ1, u0(ω))‖2dr

≤ e−κt+2ε
∫ t

0 z(θlω)dl(‖u0(ω)‖2 + ‖v0(ω)‖2
)

+
2
γκ

(
β(δ1(g0))2 + α(δ2(h0))2) ∫ t

0
eκ(r−t)−2ε

∫ r
t z(θlω)dl−2εz(θrω)dr.

(3.13)

This completes the proof. �

For ω ∈ Ω, (ξ1, ξ2) ∈ Σ, and (u0, v0) ∈ `2 × `2, by Lemma 3.2, we get that the solution
(u(t, ω, ξ1, u0(ω)), v(t, ω, ξ2, v0(ω))) to the system (3.6) is defined globally in `2×`2 which is measurable.
Then, system (3.6) generates the NRDS Φ : R+ ×Ω × Σ × `2 × `2 → `2 × `2, where

Φ(t, ω, ξ, u0(ω), v0(ω)) = (u(t, ω, ξ1, u0(ω)), v(t, ω, ξ2, v0(ω))). (3.14)

By the fact of (3.5), the system (2.15) generates the NRDS Ψ : R+ ×Ω × Σ × `2 × `2 → `2 × `2, where

Ψ(t, ω, ξ, ū0(ω), v̄0(ω)) = (ū(t, ω, ξ1, ū0(ω)), v̄(t, ω, ξ2, v̄0(ω)))
= eεz(θtω)(u(t, ω, ξ1, u0(ω)), v(t, ω, ξ2, v0(ω))),

(3.15)

where (u0(ω), v0(ω)) = e−εz(ω)(ū0(ω), v̄0(ω)).
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Lemma 3.3. The NRDS Ψ associated with system (2.15) is jointly continuous in Σ and `2 × `2, i.e., for
ω ∈ Ω and t ≥ 0, the mapping (ξ, ū0(ω), v̄0(ω))→ Ψ(t, ω, ξ, ū0(ω), v̄0(ω)) is continuous from Σ× `2× `2

into `2 × `2.

Proof. For ω ∈ Ω, t ≥ 0, r ∈ [0, t], and n = 1, 2, let (un(r, ω, ξn
1, u

n
0(ω)), vn(r, ω, ξn

2, v
n
0(ω))) be the

solution of system (3.6) with symbol ξn = (ξn
1, ξ

n
2) = ((gn, f n), hn) and initial data (un(0), vn(0)) =

(un
0(ω), vn

0(ω)). Set(
ũ(r), ṽ(r)

)
=

(
u1(r, ω, ξ1

1, u
1
0(ω)) − u2(r, ω, ξ2

1, u
2
0(ω)), v1(r, ω, ξ1

2, v
1
0(ω)) − v2(r, ω, ξ2

2, v
2
0(ω))

)
.

By system (3.6), we obtain ˙̃u + (−∆d)sũ − εz(θrω)ũ + αṽ = e−εz(θrω)( f 1(r, eεz(θrω)u1) − f 2(r, eεz(θrω)u2) + g1(r) − g2(r)
)
,

˙̃v + (σ − εz(θrω))ṽ − βũ = e−εz(θrω)(h1(r) − h2(r)
)
,

which implies that

1
2

d
dr

(
β‖ũ‖2 + α‖ṽ‖2

)
+ β

(
(−∆d)sũ, ũ

)
− βεz(θrω)‖ũ‖2 + α

(
σ − εz(θrω)

)
‖ṽ‖2

= βe−εz(θrω)
(

f 1(r, eεz(θrω)u1) − f 2(r, eεz(θrω)u2), ũ
)

+ βe−εz(θrω)
(
g1(r) − g2(r), ũ

)
+ αe−εz(θrω)

(
h1(r) − h2(r), ṽ

)
.

(3.16)

Let a2 = a2(ω) = max{‖u1
0(ω)‖2 + ‖v1

0(ω)‖2, ‖u2
0(ω)‖2 + ‖v2

0(ω)‖2}. By (3.13), we obtain

‖un‖2 + ‖vn‖2 ≤ a3, n = 1, 2, ‖ũ‖2 + ‖ṽ‖2 ≤ 2a3, (3.17)

where

a3 = a3(t, ω) =a2 max
r∈[0,t]

e−κr+2ε
∫ r

0 z(θlω)dl

+
2
γκ

(
β(δ1(g0))2 + α(δ2(h0))2) max

r∈[0,t]

∫ r

0
eκ(s−r)−2ε

∫ s
r z(θlω)dl−2εz(θsω)ds.

(3.18)

By (2.9) and (3.4), we have

βe−εz(θrω)
∣∣∣∣( f 1(r, eεz(θrω)u1) − f 2(r, eεz(θrω)u2), ũ

)∣∣∣∣
≤ βe−εz(θrω)‖ũ‖‖ f 2(r, eεz(θrω)u2) − f 2(r, eεz(θrω)u1)‖

+ βe−εz(θrω)‖ũ‖‖ f 2(r, eεz(θrω)u1) − f 1(r, eεz(θrω)u1)‖

≤ βδ3( f0)L2(
√

2a3eεz(θrω))‖ũ‖2 +
√

2a3βe−εz(θrω)‖ f 2(r, eεz(θrω)u1) − f 1(r, eεz(θrω)u1)‖.

(3.19)

Note that

βe−εz(θrω)
(
g1(r) − g2(r), ũ

)
+ αe−εz(θrω)

(
h1(r) − h2(r), ṽ

)
≤

√
2a3e−εz(θrω)(β‖g1(r) − g2(r)‖ + α‖h1(r) − h2(r)‖

)
.

(3.20)
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It follows from (3.16) and (3.19)–(3.20) that
1
2

d
dr

(
β‖ũ‖2 + α‖ṽ‖2

)
− βεz(θrω)‖ũ‖2 + α(σ − εz(θrω))‖ṽ‖2

≤ βδ3( f0)L2(
√

2a3eεz(θrω))‖ũ‖2 +
√

2a3βe−εz(θrω)‖ f 2(r, eεz(θrω)u1) − f 1(r, eεz(θrω)u1)‖

+
√

2a3e−εz(θrω)(β‖g1(r) − g2(r)‖ + α‖h1(r) − h2(r)‖
)
.

(3.21)

Let γ = min{α, β}, a4 = a4(t, ω) =
2β
γ

max
r∈[0,t]

(
ε|z(θrω)| + δ3( f0)L2(

√
2a3eεz(θrω))

)
+ 2α

γ
max
r∈[0,t]

(
σ + ε|z(θrω)|

)
,

a5 =
2
√

2a3
γ

max
r∈[0,t]

eε|z(θrω)|. Then, by (3.21), we obtain

d
dr

(
‖ũ‖2 + ‖ṽ‖2

)
− a4

(
‖ũ‖2 + ‖ṽ‖2

)
≤ a5β‖ f 2(r, eεz(θsω)u1) − f 1(r, eεz(θrω)u1)‖

+ a5
(
β‖g1(r) − g2(r)‖ + α‖h1(r) − h2(r)‖

)
,

which implies that
d
dr

[
e−a4r(‖ũ‖2 + ‖ṽ‖2

)]
≤ a5βe−a4r‖ f 2(r, eεz(θrω)u1) − f 1(r, eεz(θrω)u1)‖

+ a5e−a4r(β‖g1(r) − g2(r)‖ + α‖h1(r) − h2(r)‖
)
.

Integrating both sides of the above inequality from 0 into t, we obtain

‖ũ(t)‖2 + ‖ṽ(t)‖2 ≤ea4t(‖ũ(0)‖2 + ‖ṽ(0)‖2
)

+
a5β

a4
ea4t max

r∈[0,t]
‖ f 2(r, eεz(θrω)u1(r)) − f 1(r, eεz(θrω)u1(r))‖

+
a5

a4
ea4t max

r∈[0,t]

(
β‖g1(r) − g2(r)‖ + α‖h1(r) − h2(r)‖

)
.

(3.22)

By (2.9) and (3.17), we have

sup
r∈[0,t]

‖ f 2(r, eεz(θrω)u1(r)) − f 1(r, eεz(θrω)u1(r))‖2

= sup
r∈[0,t]

∑
i∈Z

∣∣∣pi
(
eεz(θrω)u1

i (r)
)∣∣∣2 | f 2

i (r, eεz(θrω)u1
i (r)) − f 1

i (r, eεz(θrω)u1
i (r))|2∣∣∣pi

(
eεz(θrω)u1

i (r)
)∣∣∣2

≤ sup
r∈R

sup
i∈Z

sup
υ∈R

| f 2
i (r, υ) − f 1

i (r, υ)|2

|pi(υ)|2
sup

r∈[0,t]

∑
i∈Z

∣∣∣pi
(
eεz(θrω)u1

i (r)
)∣∣∣2

≤ ‖ f 2 − f 1‖2Cb(R,W) sup
r∈[0,t]

‖p
(
eεz(θrω)u1(r)

)
‖2 ≤

(
L1

( a5γ

2
√

2

))2
‖ f 2 − f 1‖2Cb(R,W).

(3.23)

Observe that
sup

r∈[0,t]

(
β‖g1(r) − g2(r)‖ + α‖h1(r) − h2(r)‖

)
≤ sup

r∈R

(
β‖g1(r) − g2(r)‖ + α‖h1(r) − h2(r)‖

)
≤ β‖g1 − g2‖Cb(R,`2) + α‖h1 − h2‖Cb(R,`2).

(3.24)

It follows from (3.22)–(3.24) that

‖ũ(t)‖2 + ‖ṽ(t)‖2 ≤ea4t(‖ũ(0)‖2 + ‖ṽ(0)‖2
)

+
a5β

a4
ea4t

(
L1

( a5γ

2
√

2

))2
‖ f 2 − f 1‖2Cb(R,W)

+
a5

a4
ea4t

(
β‖g1 − g2‖Cb(R,`2) + α‖h1 − h2‖Cb(R,`2)

)
,

which shows the desired result. �
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For ω ∈ Ω, let D = D(ω) be a family of nonempty subsets of `2 × `2. D is called tempered if for
every ς > 0, the following holds:

lim
t→+∞

e−ςt‖D(θ−tω)‖ = 0, (3.25)

where ‖D‖ = supx∈D ‖x‖. In the sequel, we denote by D the collection of all families of tempered
nonempty subsets of `2 × `2.

Lemma 3.4. For ω ∈ Ω, the NRDS Ψ associated with system (2.15) has a closed random uniformly
D-(pullback) absorbing set Q ⊂ D such that

Q(ω) = {(ū, v̄) ∈ `2 × `2 : ‖ū‖2 + ‖v̄‖2 ≤ R(ω)}, (3.26)

where R(ω) is given by (3.29).

Proof. Replacing ω by θ−tω in (3.13), we have

‖u(t, θ−tω, ξ1, u0(θ−tω))‖2 + ‖v(t, θ−tω, ξ2, v0(θ−tω))‖2

≤ e−κt+2ε
∫ t

0 z(θl−tω)dl(‖u0(θ−tω)‖2 + ‖v0(θ−tω)‖2
)

+
2
γκ

(
β(δ1(g0))2 + α(δ2(h0))2) ∫ t

0
eκ(r−t)−2ε

∫ r
t z(θl−tω)dl−2εz(θr−tω)dr

≤ e−κt+2ε
∫ 0
−t z(θlω)dl(‖u0(θ−tω)‖2 + ‖v0(θ−tω)‖2

)
+

2
γκ

(
β(δ1(g0))2 + α(δ2(h0))2) ∫ 0

−∞

eκr−2ε
∫ r

0 z(θlω)dl−2εz(θrω)dr.

(3.27)

By (3.15), we note that for D ∈ D(`2 × `2) and
(
u0(θ−tω), v0(θ−tω)

)
∈ D(θ−tω),(

ū(t, θ−tω, ξ1, ū0(θ−tω)), v̄(t, θ−tω, ξ2, v̄0(θ−tω))
)

= eεz(ω)(u(t, θ−tω, ξ1, u0(θ−tω)), v(t, θ−tω, ξ2, v0(θ−tω))
)
,

which, along with (3.27) implies that

‖ū(t, θ−tω, ξ1, ū0(θ−tω))‖2 + ‖v̄(t, θ−tω, ξ2, v̄0(θ−tω))‖2

≤ e2εz(ω)−κt+2ε
∫ 0
−t z(θlω)dl−2εz(θ−tω)(‖ū0(θ−tω)‖2 + ‖v̄0(θ−tω)‖2

)
+

2e2εz(ω)

γκ

(
β(δ1(g0))2 + α(δ2(h0))2) ∫ 0

−∞

eκr−2ε
∫ r

0 z(θlω)dl−2εz(θrω)dr.

(3.28)

By (2.7), we obtain

R(ω) =
4e2εz(ω)

γκ

(
β(δ1(g0))2 + α(δ2(h0))2) ∫ 0

−∞

eκr−2ε
∫ r

0 z(θlω)dl−2εz(θrω)dr < +∞, (3.29)

and there exists T1 = T1(ω) > 0 such that

−κt + 2ε
∫ 0

−t
z(θlω)dl − 2εz(θ−tω) < −

κ

2
t, t ≥ T1,
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which, together with (3.25) implies that

lim
t→+∞

e−κt+2ε
∫ 0
−t z(θlω)dl−2εz(θ−tω)(‖ū0(θ−tω)‖2 + ‖v̄0(θ−tω)‖2

)
≤ lim

t→+∞
e−

κ
2 t(‖ū0(θ−tω)‖2 + ‖v̄0(θ−tω)‖2

)
= 0.

(3.30)

Then, there exists T2 = T2(ω,D) > 0 such that for t ≥ T2,

e2εz(ω)−κt+2ε
∫ 0
−t z(θlω)dl−2εz(θ−tω)(‖ū0(θ−tω)‖2 + ‖v̄0(θ−tω)‖2

)
≤

1
2

R(ω). (3.31)

By (3.28), (3.29), and (3.31), we have

‖ū(t, θ−tω, ξ1, ū0(θ−tω))‖2 + ‖v̄(t, θ−tω, ξ2, v̄0(θ−tω))‖2 ≤ R(ω), t ≥ T2. (3.32)

Then, the set Q given by (3.26) is a closed random uniformlyD-(pullback) absorbing set for Ψ. Next,
we need to obtain Q ∈ D(`2 × `2). Indeed, for any ζ > 0, we obtain

e−ζtR(θ−tω) = 4
(
β(δ1(g0))2 + α(δ2(h0))2)e−ζt+2εz(θ−tω)

γκ

∫ 0

−∞

eκr−2ε
∫ r

0 z(θl−tω)dl−2εz(θr−tω)dr

= 4
(
β(δ1(g0))2 + α(δ2(h0))2)e−ζt+2εz(θ−tω)

γκ

∫ −t

−∞

eκ(r+t)−2ε
∫ r
−t z(θlω)dl−2εz(θrω)dr.

By (2.7), we find that there exists T3 = T3(ω) such that

2εz(θ−tω) ≤
1
2
ζt, t ≥ T3.

Then,

lim
t→+∞

e−ζt+2εz(θ−tω) ≤ lim
t→+∞

e−
1
2 ζt = 0,

which implies that

lim
t→+∞

e−ζtR(θ−tω) = 0.

This completes the proof. �

4. Random uniform attractors

In this section, we will derive uniform estimates for the tails of solutions to system (2.15), which
is crucial in establishing the asymptotic compactness of solutions. To this end, we select a smooth
function ϑ(r) that satisfies 0 ≤ ϑ(r) ≤ 1 for all s ∈ R+, and

ϑ(r) =

{
0, 0 ≤ r ≤ 1,
1, r ≥ 2.

Moreover, given s ∈ (0, 1), by Lemma 3.3 of [6], we note that for all i ∈ Z and k ∈ N,∑
j∈Z, j,i

∣∣∣∣ϑ( |i|k )
− ϑ

( | j|
k

)∣∣∣∣2K̃s(i − j) ≤
L2

s

k2s . (4.1)
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Lemma 4.1. For ε > 0, ω ∈ Ω, and D ∈ D(`2×`2), there are K = K(ω, ε) > 0 and T = T (ω, ε,D) > 0,
such that for all (ξ1, ξ2) ∈ Σ, (ū0(θ−tω), v̄0(θ−tω)) ∈ D(θ−tω), t ≥ T and k ≥ K, the solution (ū, v̄) to
system (2.15) satisfies∑

|i|≥k

(
|ūi(t, θ−tω, ξ1, ū0(θ−tω))|2 + |v̄i(t, θ−tω, ξ2, v̄0(θ−tω))|2

)
≤ ε.

Proof. By (3.6), we have
1
2

d
dt

∑
i∈Z

ϑ
( |i|

k

)
(β|ui|

2 + α|vi|
2) + β

∑
i∈Z

ϑ
( |i|

k

)
(−4d)sui · ui

− βεz(θtω)
∑
i∈Z

ϑ
( |i|

k

)
|ui|

2 + α(σ − εz(θtω))
∑
i∈Z

ϑ
( |i|

k

)
|vi|

2

= βe−εz(θtω)
∑
i∈Z

ϑ
( |i|

k

)
fi(t, eεz(θtω)ui)ui + βe−εz(θtω)

∑
i∈Z

ϑ
( |i|

k

)
gi(t)ui

+ αe−εz(θtω)
∑
i∈Z

ϑ
( |i|

k

)
hi(t)vi.

(4.2)

By Lemma 2.4 and (4.1), we obtain

−β
∑
i∈Z

ϑ
( |i|

k

)
(−4d)sui · ui = −

β

2

∑
i∈Z

∑
j∈Z, j,i

(ui − u j)
(
ϑ
( |i|

k

)
ui − ϑ

( | j|
k

)
u j

)
K̃s(i − j)

= −
β

2

∑
i∈Z

∑
j∈Z, j,i

(
ϑ
( |i|

k

)
− ϑ

( | j|
k

))
(ui − u j)uiK̃s(i − j)

−
β

2

∑
i∈Z

∑
j∈Z, j,i

ϑ
( | j|

k

)
|ui − u j|

2K̃s(i − j)

≤
β

2
‖u‖

[∑
i∈Z

( ∑
j∈Z, j,i

∣∣∣∣ϑ( |i|k )
− ϑ

( | j|
k

)∣∣∣∣2K̃s(i − j)
)

×
( ∑

i∈Z, j,i

|ui − u j|
2K̃s(i − j)

)] 1
2

≤

√
2β
4

Ls

ks (‖u‖2 + ‖(−4d)
s
2 u‖2).

(4.3)

By (3.2), we obtain

βe−εz(θtω)
∑
i∈Z

ϑ
( |i|

k

)
fi(t, eεz(θtω)ui)ui = βe−2εz(θtω)

∑
i∈Z

ϑ
( |i|

k

)
fi(t, eεz(θtω)ui)eεz(θtω)ui

≤ −λβ
∑
i∈Z

ϑ
( |i|

k

)
|ui|

2.

(4.4)

By Young’s inequality and κ = min{λ, σ}, we have

βe−εz(θtω)
∑
i∈Z

ϑ
( |i|

k

)
gi(t)ui + αe−εz(θtω)

∑
i∈Z

ϑ
( |i|

k

)
hi(t)vi ≤

λβ

2

∑
n∈Z

ϑ
( |i|

k

)
|ui|

2 +
σα

2

∑
n∈Z

ϑ
( |i|

k

)
|vi|

2

+
e−2εz(θtω)

2κ

∑
i∈Z

ϑ
( |i|

k

)(
β|gi(t)|2 + α|hi(t)|2

)
.

(4.5)
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It follows from (4.2)–(4.5) that

d
dt

[∑
i∈Z

ϑ
( |i|

k

)
(β|ui|

2 + α|vi|
2)
]

+
(
κ − 2εz(θtω)

)∑
i∈Z

ϑ
( |i|

k

)
(β|ui|

2 + α|vi|
2)

≤

√
2β
2

Ls

ks

(
‖u‖2 + ‖(−4d)

s
2 u‖2

)
+

e−2εz(θtω)

κ

∑
i∈Z

(
β|gi(t)|2 + α|hi(t)|2

)
,

which implies that for t ≥ 0,

d
dt

[
eκt−2ε

∫ t
0 z(θlω)dl

∑
i∈Z

ϑ
( |i|

k

)
(β|ui|

2 + α|vi|
2)
]
≤

√
2β
2

Ls

ks eκt−2ε
∫ t

0 z(θlω)dl(‖u‖2 + ‖(−4d)
s
2 u‖2

)
+

e−2εz(θtω)

κ
eκt−2ε

∫ t
0 z(θlω)dl

∑
i∈Z

(
β|gi(t)|2 + α|hi(t)|2

)
.

(4.6)

Integrating both sides of (4.6) from 0 into t, we have∑
i∈Z

ϑ
( |i|

k

)(
|ui(t, ω, ξ1, u0(ω))|2 + |vi(t, ω, ξ2, v0(ω))|2

)
≤ e−κt+2ε

∫ t
0 z(θlω)dl

∑
i∈Z

ϑ
( |i|

k

)(
|u0i(ω)|2 + |v0i(ω)|2

)
+

√
2β

2γ
Ls

ks

∫ t

0
eκ(r−t)−2ε

∫ r
t z(θlω)dl(‖u(r, ω, ξ1, u0(ω))‖2 + ‖(−4d)

s
2 u(r, ω, ξ1, u0(ω))‖2

)
dr

+
1
γκ

∫ t

0
eκ(r−t)−2ε

∫ r
t z(θlω)dl−2εz(θrω)

∑
i∈Z

(
β|gi(r)|2 + α|hi(r)|2

)
dr,

where γ = min{α, β}. Replacing ω by θ−tω, we find∑
i∈Z

ϑ
( |i|

k

)
(|ui(t, θ−tω, ξ1, u0(θ−tω))|2 + |vi(t, θ−tω, ξ2, v0(θ−tω))|2)

≤ e−κt+2ε
∫ t

0 z(θl−tω)dl
∑
i∈Z

ϑ
( |i|

k

)
(|u0i(θ−tω)|2 + |v0i(θ−tω)|2)

+

√
2β

2γ
Ls

ks

∫ t

0
eκ(r−t)−2ε

∫ r
t z(θl−tω)dl‖u(r, θ−tω, ξ1, u0(θ−tω))‖2dr

+

√
2β

2γ
Ls

ks

∫ t

0
eκ(r−t)−2ε

∫ r
t z(θl−tω)dl‖(−4d)

s
2 u(r, θ−tω, ξ1, u0(θ−tω))‖2dr

+
1
γκ

∫ t

0
eκ(r−t)−2ε

∫ r
t z(θl−tω)dl−2εz(θr−tω)

∑
i∈Z

(
β|gi(r)|2 + α|hi(r)|2

)
dr.

(4.7)

Since s ∈ (0, 1) and Ls is independent of s, given ε0 > 0, there exists K1 = K1(ε0) ≥ 1 such that for all
k ≥ K1,

√
2β

2γ
Ls

ks (‖u‖2 + ‖(−4d)
s
2 u‖2) ≤ ε0(‖u‖2 + ‖(−4d)

s
2 u‖2),
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which, along with (3.13) and (4.7), implies that∑
i∈Z

ϑ
( |i|

k

)
(|ui(t, θ−tω, ξ1, u0(θ−tω))|2 + |vi(t, θ−tω, ξ2, v0(θ−tω))|2)

≤ (1 + η)e−κt−2ε
∫ t

0 z(θl−tω)dl
∑
i∈Z

ϑ
( |i|

k

)
(|u0i(θ−tω)|2 + |v0i(θ−tω)|2)

+
1 + η

γκ

∫ t

0
eκ(r−t)−2ε

∫ r
t z(θl−tω)dl−2εz(θr−tω)

∑
i∈Z

(
β|gi(r)|2 + α|hi(r)|2

)
dr,

(4.8)

where η = max{ ε0
2 ,

2ε0
λ
}. Since g and h are almost periodic functions, the sets {(gi(t))i∈Z : t ∈ R} and

{(hi(t))i∈Z : t ∈ R} are precompact in `2. Then, for ε > 0, there exists K2 = K2(g, h, ω, ε) > 0 such that
for all k ≥ K2,

1 + η

γκ

∑
|i|≥k

(
β|gi(r)|2 + α|hi(r)|2

)
≤

ε

2a6
, (4.9)

where

a6 = a6(ω) =

∫ 0

−∞

eκr−2ε
∫ r

0 z(θlω)dl−2εz(θrω)dr. (4.10)

By (4.9), g ∈ H(g0), and h ∈ H(h0), we get that there exists a constant K3 = K3(ω, ε) > 0 such that for
all k ≥ K3,

1 + η

γκ

∑
|i|≥k

(
β|gi(r)|2 + α|hi(r)|2

)
≤

ε

2a6
,

which implies that for all k ≥ K3,

1 + η

γκ

∫ t

0
eκ(r−t)−2ε

∫ r
t z(θl−tω)dl−2εz(θr−tω)

∑
|i|≥k

(
β|gi(r)|2 + α|hi(r)|2

)
dr ≤

ε

2
. (4.11)

By (2.7), we note that there exists T4 = T4(ω, ε,D) such that for (u0(θ−tω), v0(θ−tω)) ∈ D(θ−tω) and
t ≥ T4,

(1 + η)e−κt+2ε
∫ t

0 z(θl−tω)dl−2εz(θ−tω)
∑
i∈Z

ϑ
( |i|

k

)
(|u0i(θ−tω)|2 + |v0i(θ−tω)|2)

≤ (1 + η)e−
κ
2 t‖D(θ−tω)‖2 ≤

ε

2
.

(4.12)

Note that ∑
|i|≥2k

(
|ūi(t, θ−tω, ξ1, ū0(θ−tω))|2 + |v̄i(t, θ−tω, ξ2, v̄0(θ−tω))|2

)
≤

∑
i∈Z

ϑ
( |i|

k

)(
|ūi(t, θ−tω, ξ1, ū0(θ−tω))|2 + |v̄i(t, θ−tω, ξ2, v̄0(θ−tω))|2

)
= e2εz(ω)

∑
i∈Z

ϑ
( |i|

k

)(
|ui(t, θ−tω, ξ1, u0(θ−tω))|2 + |vi(t, θ−tω, ξ2, v0(θ−tω))|2

)
,

which, along with (4.8), (4.11), and (4.12) conclude the proof. �
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Lemma 4.2. The NRDS Ψ associated with system (2.15) is uniformly D-(pullback) asymptotically
compact, i.e., for D ∈ D(`2 × `2), ω ∈ Ω, any sequence {(tn, ξ

n, ūn
0(θ−tnω), v̄n

0(θ−tnω))}+∞n=1
with (tn, ξ

n, ūn
0(θ−tnω), v̄n

0(θ−tnω)) ∈ R+ × Σ × D(θ−tnω) and limn→+∞ tn = +∞, the sequence
{Ψ(tn, θ−tnω, ξ

n, ūn
0(θ−tnω), v̄n

0(θ−tnω))}+∞n=1 has a convergent subsequence.

Proof. By the boundedness of D(ω), for sufficiently large n, we obtain

Ψ(tn, θ−tnω, ξ
n, ūn

0(θ−tnω), v̄n
0(θ−tnω)) ∈ Q(ω).

Then, there is (ū∗, v̄∗) ∈ `2 × `2 and a subsequence of {Ψ(tn, θ−tnω, ξ
n, ūn

0(θ−tnω), v̄n
0(θ−tnω))}+∞n=1 (still

denoted by {Ψ(tn, θ−tnω, ξ
n, ūn

0(θ−tnω), v̄n
0(θ−tnω))}+∞n=1 ) such that

{Ψ(tn, θ−tnω, ξ
n, ūn

0(θ−tnω), v̄n
0(θ−tnω))} → (ū∗, v̄∗) weakly in `2 × `2. (4.13)

The present study aims to demonstrate the equivalence between weak convergence and strong
convergence, i.e., for ε > 0 there is N = N(ε, ω,D) > 0 such that

‖ū(tn, θ−tnω, ξ
n
1, ū

n
0(θ−tnω)) − ū∗‖2 + ‖v̄(tn, θ−tnω, ξ

n
2, v̄

n
0(θ−tnω) − v̄∗‖2 ≤ ε2, n ≥ N. (4.14)

From Lemma 4.1, there are N1 = N1(ε, ω,D) > 0 and K4 = K4(ε, ω) > 0 such that∑
|i|≥K4

(
|ūi(tn, θ−tnω, ξ

n
1, ū

n
0(θ−tnω))|2 + |v̄i(tn, θ−tnω, ξ

n
2, v̄

n
0(θ−tnω))|2

)
≤
ε2

8
, n ≥ N1. (4.15)

Since (ū∗, v̄∗) ∈ `2 × `2, then there is K5 = K5(ε) > 0 such that∑
|i|≥K5

(|ū∗i |
2 + |v̄∗i |

2) ≤
ε2

8
. (4.16)

Choosing K = K(ε, ω) = max{K4(ε, ω),K5(ε)} and by (4.13), we have for |i| ≤ K as n→ +∞,

Ψi(tn, θ−tnω, ξ
n, ūn

0(θ−tnω), v̄n
0(θ−tnω))→ (ū∗i , v̄

∗
i ) strongly in R, (4.17)

and so there is N2 = N2(ε, ω,D) > 0 such that for all n ≥ N2,∑
|i|≤K

(
|ūi(tn, θ−tnω, ξ

n
1, ū

n
0(θ−tnω)) − ū∗i |

2 + |v̄i(tn, θ−tnω, ξ
n
2, v̄

n
0(θ−tnω)) − v̄∗i |

2) ≤ ε2

2
. (4.18)

Let N = N(ε, ω,D) = max{N1(ε, ω,D),N2(ε, ω,D)}. Then, by (4.15)–(4.17), we find that for n ≥ N,

‖ū(tn, θ−tnω, ξ
n
1, ū

n
0(θ−tnω)) − ū∗‖2 + ‖v̄(tn, θ−tnω, ξ

n
2, v̄

n
0(θ−tnω)) − v̄∗‖2

=
∑
|i|≤K

(
|ūi(tn, θ−tnω, ξ

n
1, ū

n
0(θ−tnω)) − ū∗i |

2 + |v̄i(tn, θ−tnω, ξ
n
2, v̄

n
0(θ−tnω)) − v̄∗i |

2)
+

∑
|i|>K

(
|ūi(tn, θ−tnω, ξ

n
1, ū

n
0(θ−tnω)) − ū∗i |

2 + |v̄i(tn, θ−tnω, ξ
n
2, v̄

n
0(θ−tnω)) − v̄∗i |

2)
≤ ε2.

This completes the proof. �
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The main result can be readily derived by applying Theorem 2.7 in [21], along with Lemmas 3.3, 3.4
and 4.2 from this paper.

Theorem 4.1. The NRDS Ψ associated with system (2.15) has a unique random D-uniform attractor
A ∈ D(`2 × `2) given by

A(ω) =W(ω,Σ,Q),∀ω ∈ Ω.

Furthermore, for all t ≥ 0 and ω ∈ Ω, the attractorA is negatively semi-invariant, i.e.,

A(θtω) ⊂ Ψ(t, ω,Σ,A(ω)),

and is uniformlyD-forward-attracting in probability, i.e.,

lim
t→+∞

P
(
ω ∈ Ω, sup

ξ∈Σ

d(Ψ(t, ω, ξ,D(ω)),A(θtω)) > ε
)

= 0,∀ε > 0,D ∈ D(`2 × `2).

5. Conclusions

The current focus lies in the theoretical proof of the well-posedness of solutions, as well as the
existence and uniqueness of randomD-uniform attractors for a fractional stochastic FitzHugh-Nagumo
lattice systems. In future research, we will explore the convergence and approximation of these
systems’ randomD-uniform attractors under noise perturbation. Furthermore, we can investigate these
asymptotic behavior for retarded lattice systems on Zk in weighted spaces.
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