The existence of a mild solution for nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneous impulse in Hilbert space is investigated in this study. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive conditions, sufficient criteria for controllability are established. Finally, an illustration of the acquired results is shown.
Citation: Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart. Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive[J]. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100
The existence of a mild solution for nonlinear Hilfer fractional stochastic differential equations of the Sobolev type with non-instantaneous impulse in Hilbert space is investigated in this study. For nonlinear Hilfer fractional stochastic differential equations of Sobolev type with non-instantaneous impulsive conditions, sufficient criteria for controllability are established. Finally, an illustration of the acquired results is shown.
[1] | X. Mao, Stochastic differential equations and their applications, Horwood, Chichester, 1997. |
[2] | A. Atangana, S. I. Araz, Fractional stochastic differential equations: Applications to Covid-19 modeling, Springer Singapore, 2022. https://doi.org/10.1007/978-981-19-0729-6 |
[3] | F. A. Rihan, C. Rajivganthi, P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson iumps and optimal control, Discrete Dyn. Nat. Soc., 2017 (2017), 5394528. https://doi.org/10.1155/2017/5394528 doi: 10.1155/2017/5394528 |
[4] | H. Ahmad, N. Alam, M. Omri, New computational results for a prototype of an excitable system, Results Phys., 28 (2021), 104666. https://doi.org/10.1016/j.rinp.2021.104666 doi: 10.1016/j.rinp.2021.104666 |
[5] | M. Adel, Numerical simulations for the variable order two-dimensional reaction sub diffusion equation: Linear and nonlinear, Fractals, 30 (2022), 2240019. https://doi.org/10.1142/S0218348X22400199 doi: 10.1142/S0218348X22400199 |
[6] | M. Adel, M. Elsaid, An efficient approach for solving fractional variable order reaction sub-diffusion equation base on Hermite formula, Fractals, 30 (2022), 2240020. https://doi.org/10.1142/S0218348X22400205 doi: 10.1142/S0218348X22400205 |
[7] | M. M. Khader, J. F. Gómez-Aguilar, M. Adel, Numerical study for the fractional RL, RC, and RLC electrical circuits using Legendre pseudo-spectral method, Int. J. Circ. Theor. App., 49 (2021), 3266–3285. https://doi.org/10.1002/cta.3103 doi: 10.1002/cta.3103 |
[8] | M. Adel, H. M. Srivastava, M. M. Khader, Implementation of an accurate method for the analysis and simulation of electrical R-L circuits, Math. Method. Appl. Sci., 2022. https://doi.org/10.1002/mma.8062 |
[9] | H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Bound Value Probl., 2020 (2020), 1–25. https://doi.org/10.1186/s13661-020-01418-0 doi: 10.1186/s13661-020-01418-0 |
[10] | J. P. Dauer, N. I. Mahmudov, Exact null controllability of semilinear integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl., 299 (2004), 322–332. https://doi.org/10.1016/j.jmaa.2004.01.050 doi: 10.1016/j.jmaa.2004.01.050 |
[11] | H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equ., 2019 (2019), 82. https://doi.org/10.1186/s13662-019-2028-1 doi: 10.1186/s13662-019-2028-1 |
[12] | P. Muthukumar, K. Thiagu, Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order $1 < q < 2$ with infinite delay and Poisson jumps, J. Dyn. Control Syst., 23 (2017), 213–235. https://doi.org/10.1007/s10883-015-9309-0 doi: 10.1007/s10883-015-9309-0 |
[13] | A. Chadha, S. N. Bora, Approximate controllability of impulsive neutral stochastic differential equations driven by Poisson jumps, J. Dyn. Control Syst., 24 (2018), 101–128. https://doi.org/10.1007/s10883-016-9348-1 doi: 10.1007/s10883-016-9348-1 |
[14] | H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Controllability and constrained controllability for nonlocal Hilfer fractional differential systems with Clarke's subdifferential, J. Inequal. Appl., 2019 (2019), 233. https://doi.org/10.1186/s13660-019-2184-6 doi: 10.1186/s13660-019-2184-6 |
[15] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: John Wiley, 1993. |
[16] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[17] | R. F. Curtain, H. Zwart, An introduction to infinite dimensional linear systems theory, New York: Springer, 1995. https://doi.org/10.1007/978-1-4612-4224-6 |
[18] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, In: Applied mathematical sciences, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |
[19] | H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083 |
[20] | I. Yaroslavtsev, Burkholder-Davis-Gundy inequalities in UMD banach spaces, Commun. Math. Phys., 379 (2020), 417–459. https://doi.org/10.1007/s00220-020-03845-7 doi: 10.1007/s00220-020-03845-7 |