This work examines the multi-rogue-wave solutions for the Kadomtsev-Petviashvili (KP) equation in form of two (3+1)-dimensional extensions, which are soliton equations, using a symbolic computation approach. This approach is stated in terms of the special polynomials developed through a Hirota bilinear equation. The first, second, and third-order rogue wave solutions are derived for these equations. The interaction of many rogue waves is illustrated by the multi-rogue waves. The physical explanations and properties of the obtained results are plotted for specific values of the parameters $ \alpha $ and $ \beta $ to understand the physics behind the huge (rogue) wave appearance. The figures are represented in three-dimensional, and the contour plots and the density are shown at different values of parameters. The obtained results are significant for showing the dynamic actions of higher-rogue waves in the deep ocean and nonlinear optical fibers.
Citation: Weaam Alhejaili, Mohammed. K. Elboree, Abdelraheem M. Aly. A symbolic computation approach and its application to the Kadomtsev-Petviashvili equation in two (3+1)-dimensional extensions[J]. AIMS Mathematics, 2022, 7(11): 20085-20104. doi: 10.3934/math.20221099
This work examines the multi-rogue-wave solutions for the Kadomtsev-Petviashvili (KP) equation in form of two (3+1)-dimensional extensions, which are soliton equations, using a symbolic computation approach. This approach is stated in terms of the special polynomials developed through a Hirota bilinear equation. The first, second, and third-order rogue wave solutions are derived for these equations. The interaction of many rogue waves is illustrated by the multi-rogue waves. The physical explanations and properties of the obtained results are plotted for specific values of the parameters $ \alpha $ and $ \beta $ to understand the physics behind the huge (rogue) wave appearance. The figures are represented in three-dimensional, and the contour plots and the density are shown at different values of parameters. The obtained results are significant for showing the dynamic actions of higher-rogue waves in the deep ocean and nonlinear optical fibers.
[1] | W. R. Sun, B. Tian, H. L. Zhen, Y. Sun, Breathers and rogue waves of the fifth-order nonlinear Schr$\ddot{o}$dinger equation in the Heisenberg ferromagnetic spin chain, Nonlinear Dyn., 81 (2015), 725–732. https://doi.org/10.1007/s11071-015-2022-4 doi: 10.1007/s11071-015-2022-4 |
[2] | X. Y. Xie, B. Tian, Y. F. Wang, Y. Sun, Y. Jiang, Rogue wave solutions for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber, Ann. Phys., 362 (2015), 884–892. https://doi.org/10.1016/j.aop.2015.09.001 doi: 10.1016/j.aop.2015.09.001 |
[3] | C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue waves in the ocean: Observations, theories and modeling, Advances in Geophysical and Environmental Mechanics and Mathematics Series, Springer, Berlin, 2009. |
[4] | A. Osborne, Nonlinear ocean waves and the inverse scattering transform, Elsevier, New York, 2010. |
[5] | N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A, 373 (2009), 675–678. https://doi.org/10.1016/j.physleta.2008.12.036 doi: 10.1016/j.physleta.2008.12.036 |
[6] | N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz, Extreme waves that appear from nowhere: on the nature of rogue waves, Phys. Lett. A, 373 (2009), 2137–2145. https://doi.org/10.1016/j.physleta.2009.04.023 doi: 10.1016/j.physleta.2009.04.023 |
[7] | E. Pelinovsky, C. Kharif, Extreme ocean waves, Springer, Berlin 2008. https://doi.org/10.1007/978-1-4020-8314-3 |
[8] | P. A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue waves, Trans. Math. Appl., 1 (2017), 1–26. https://doi.org/10.1093/imatrm/tnx003 doi: 10.1093/imatrm/tnx003 |
[9] | A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, P. V. E. McClintock, Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium, Phys. Rev. Lett., 101 (2008), 065303. https://doi.org/10.1103/PhysRevLett.101.065303 doi: 10.1103/PhysRevLett.101.065303 |
[10] | B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, et al., The Peregrine soliton in nonlinear fibre optics, Nature Phys., 6 (2010), 790–795. https://doi.org/10.1038/nphys1740 doi: 10.1038/nphys1740 |
[11] | J. He, L. Guo, Y. Zhang, A. Chabchoub, Theoretical and experimental evidence of non-symmetric doubly localized rogue waves, Proc. Math. Phys. Eng. Sci., 470 (2014), 20140318. https://doi.org/10.1098/rspa.2014.0318 doi: 10.1098/rspa.2014.0318 |
[12] | A. Chabchoub, N. P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106 (2011), 204502. https://doi.org/10.1103/PhysRevLett.106.204502 doi: 10.1103/PhysRevLett.106.204502 |
[13] | F. Demontis, B. Prinari, C. van der Mee, F. Vitale, The inverse scattering transform for the focusing nonlinear Schrodinger equation with asymmetric boundary conditions, J. Math. Phys., 55 (2014), 101505. https://doi.org/10.1063/1.4898768 doi: 10.1063/1.4898768 |
[14] | W. Liu, Y. Zhang, Families of exact solutions of the generalized (3+1)-dimensional nonlinear-wave equation, Mod. Phys. Lett. B, 32 (2018), 1850359. https://doi.org/10.1142/S0217984918503591 doi: 10.1142/S0217984918503591 |
[15] | B. Guo, L. Ling, Q. P. Liu, Nonlinear Schr$\ddot{o}$dinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85 (2012), 026607. https://doi.org/10.1103/PhysRevE.85.026607 doi: 10.1103/PhysRevE.85.026607 |
[16] | X. W. Yan, S. F. Tian, M. J. Dong, L. Zou, B$\ddot{a}$cklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dyn., 92 (2018), 709–720. https://doi.org/10.1007/s11071-018-4085-5 doi: 10.1007/s11071-018-4085-5 |
[17] | K. J. Wang, Periodic solution of the time-space fractional complex nonlinear Fokas-Lenells equation by an ancient Chinese algorithm, Optik, 243 (2021), 167461. https://doi.org/10.1016/j.ijleo.2021.167461 doi: 10.1016/j.ijleo.2021.167461 |
[18] | K. J. Wang, G. D. Wang, Variational theory and new abundant solutions to the (1+2)-dimensional chiral nonlinear Schr$\ddot{o}$dinger equation in optics, Phys. Lett. A, 412 (2021), 127588. https://doi.org/10.1016/j.physleta.2021.127588 doi: 10.1016/j.physleta.2021.127588 |
[19] | K. J. Wang, G. D. Wang, Study on the explicit solutions of the Benney-Luke equation via the variational direct method, Math. Methods Appl. Sci., 44 (2021), 14173–14183. https://doi.org/10.1002/mma.7683 doi: 10.1002/mma.7683 |
[20] | B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539–541. |
[21] | M. K. Elboree, Higher order rogue waves for the (3+1)-dimensional Jimbo-Miwa equation, Int. J. Nonlinear Sci. Numer. Simul., 2021. https://doi.org/10.1515/ijnsns-2020-0065 |
[22] | W. Liu, Y. Zhang, Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation, Appl. Math. Lett., 98 (2019), 184–190. https://doi.org/10.1016/j.aml.2019.05.047 doi: 10.1016/j.aml.2019.05.047 |
[23] | M. S. Ullah, H. O. Roshid, F. S. Alshammari, M. Z. Ali, Collision phenomena among the solitons, periodic and Jacobi elliptic functions to a (3+1)-dimensional Sharma-Tasso-Olver-like model, Results Phys., 36 (2022), 105412. https://doi.org/10.1016/j.rinp.2022.105412 doi: 10.1016/j.rinp.2022.105412 |
[24] | H. O. Roshid, N. F. M. Noor, M. S. Khatun, H. M. Baskonus, F. B. M. Belgacem, Breather, multi-shock waves and localized excitation structure solutions to the extended BKP-Boussinesq equation, Commun. Nonlinear Sci. Numer. Simul., 101 (2021), 105867. https://doi.org/10.1016/j.cnsns.2021.105867 doi: 10.1016/j.cnsns.2021.105867 |
[25] | R. Li, X. Geng, Rogue periodic waves of the sine-Gordon equation, Appl. Math. Lett., 102 (2020), 106147. https://doi.org/10.1016/j.aml.2019.106147 doi: 10.1016/j.aml.2019.106147 |
[26] | M. Zheng, X. Dong, C. Chen, M. Li, Multiple-order rogue wave solutions to a (2+1)-dimensional Boussinesq type equation, Commun. Theor. Phys., 74 (2022), 085002. |
[27] | J. G. Liu, W. H. Zhu, Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation, Chin. J. Phys., 67 (2020), 492–500. https://doi.org/10.1016/j.cjph.2020.08.008 doi: 10.1016/j.cjph.2020.08.008 |
[28] | J. G. Rao, Y. B. Liu, C. Qian, J. S. He, Rogue waves and Hybrid solutions of the Boussinesq equation, Z. Naturforsch. A, 72 (2017), 307–314. |
[29] | Z. Zhao, L. He, Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Lett., 95 (2019), 114–121. https://doi.org/10.1016/j.aml.2019.03.031 doi: 10.1016/j.aml.2019.03.031 |
[30] | Z. Zhao, L. He, Resonance Y-type soliton and hybrid solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Appl. Math. Lett., 122 (2021), 107497. https://doi.org/10.1016/j.aml.2021.107497 doi: 10.1016/j.aml.2021.107497 |
[31] | L. He, Z. Zhao, Multiple lump solutions and dynamics of the generalized (3+1)-dimensional KP equation, Mod. Phys. Lett. B, 34 (2020), 2050167. https://doi.org/10.1142/S0217984920501675 doi: 10.1142/S0217984920501675 |
[32] | Zhaqilao, A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems, Comput. Math. Appl., 75 (2018), 3331–3342. https://doi.org/10.1016/j.camwa.2018.02.001 doi: 10.1016/j.camwa.2018.02.001 |
[33] | R. Hirota, Direct method in soliton theory, In: R. K. Bullough, P. J. Caudrey, Solitons, Springer, Berlin, 1980. https://doi.org/10.1007/978-3-642-81448-8_5 |
[34] | A. M. Wazwaz, Multiple soliton solutions for two (3+1)-dimensional extensions of the KP equation, Int. J. Nonlinear Sci., 12 (2011), 471–477. |