Research article

A symbolic computation approach and its application to the Kadomtsev-Petviashvili equation in two (3+1)-dimensional extensions

  • Received: 05 June 2022 Revised: 14 July 2022 Accepted: 02 August 2022 Published: 13 September 2022
  • MSC : 35Q58, 35Q99, 34A34

  • This work examines the multi-rogue-wave solutions for the Kadomtsev-Petviashvili (KP) equation in form of two (3+1)-dimensional extensions, which are soliton equations, using a symbolic computation approach. This approach is stated in terms of the special polynomials developed through a Hirota bilinear equation. The first, second, and third-order rogue wave solutions are derived for these equations. The interaction of many rogue waves is illustrated by the multi-rogue waves. The physical explanations and properties of the obtained results are plotted for specific values of the parameters $ \alpha $ and $ \beta $ to understand the physics behind the huge (rogue) wave appearance. The figures are represented in three-dimensional, and the contour plots and the density are shown at different values of parameters. The obtained results are significant for showing the dynamic actions of higher-rogue waves in the deep ocean and nonlinear optical fibers.

    Citation: Weaam Alhejaili, Mohammed. K. Elboree, Abdelraheem M. Aly. A symbolic computation approach and its application to the Kadomtsev-Petviashvili equation in two (3+1)-dimensional extensions[J]. AIMS Mathematics, 2022, 7(11): 20085-20104. doi: 10.3934/math.20221099

    Related Papers:

  • This work examines the multi-rogue-wave solutions for the Kadomtsev-Petviashvili (KP) equation in form of two (3+1)-dimensional extensions, which are soliton equations, using a symbolic computation approach. This approach is stated in terms of the special polynomials developed through a Hirota bilinear equation. The first, second, and third-order rogue wave solutions are derived for these equations. The interaction of many rogue waves is illustrated by the multi-rogue waves. The physical explanations and properties of the obtained results are plotted for specific values of the parameters $ \alpha $ and $ \beta $ to understand the physics behind the huge (rogue) wave appearance. The figures are represented in three-dimensional, and the contour plots and the density are shown at different values of parameters. The obtained results are significant for showing the dynamic actions of higher-rogue waves in the deep ocean and nonlinear optical fibers.



    加载中


    [1] W. R. Sun, B. Tian, H. L. Zhen, Y. Sun, Breathers and rogue waves of the fifth-order nonlinear Schr$\ddot{o}$dinger equation in the Heisenberg ferromagnetic spin chain, Nonlinear Dyn., 81 (2015), 725–732. https://doi.org/10.1007/s11071-015-2022-4 doi: 10.1007/s11071-015-2022-4
    [2] X. Y. Xie, B. Tian, Y. F. Wang, Y. Sun, Y. Jiang, Rogue wave solutions for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber, Ann. Phys., 362 (2015), 884–892. https://doi.org/10.1016/j.aop.2015.09.001 doi: 10.1016/j.aop.2015.09.001
    [3] C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue waves in the ocean: Observations, theories and modeling, Advances in Geophysical and Environmental Mechanics and Mathematics Series, Springer, Berlin, 2009.
    [4] A. Osborne, Nonlinear ocean waves and the inverse scattering transform, Elsevier, New York, 2010.
    [5] N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace, Phys. Lett. A, 373 (2009), 675–678. https://doi.org/10.1016/j.physleta.2008.12.036 doi: 10.1016/j.physleta.2008.12.036
    [6] N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz, Extreme waves that appear from nowhere: on the nature of rogue waves, Phys. Lett. A, 373 (2009), 2137–2145. https://doi.org/10.1016/j.physleta.2009.04.023 doi: 10.1016/j.physleta.2009.04.023
    [7] E. Pelinovsky, C. Kharif, Extreme ocean waves, Springer, Berlin 2008. https://doi.org/10.1007/978-1-4020-8314-3
    [8] P. A. Clarkson, E. Dowie, Rational solutions of the Boussinesq equation and applications to rogue waves, Trans. Math. Appl., 1 (2017), 1–26. https://doi.org/10.1093/imatrm/tnx003 doi: 10.1093/imatrm/tnx003
    [9] A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, P. V. E. McClintock, Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium, Phys. Rev. Lett., 101 (2008), 065303. https://doi.org/10.1103/PhysRevLett.101.065303 doi: 10.1103/PhysRevLett.101.065303
    [10] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, et al., The Peregrine soliton in nonlinear fibre optics, Nature Phys., 6 (2010), 790–795. https://doi.org/10.1038/nphys1740 doi: 10.1038/nphys1740
    [11] J. He, L. Guo, Y. Zhang, A. Chabchoub, Theoretical and experimental evidence of non-symmetric doubly localized rogue waves, Proc. Math. Phys. Eng. Sci., 470 (2014), 20140318. https://doi.org/10.1098/rspa.2014.0318 doi: 10.1098/rspa.2014.0318
    [12] A. Chabchoub, N. P. Hoffmann, N. Akhmediev, Rogue wave observation in a water wave tank, Phys. Rev. Lett., 106 (2011), 204502. https://doi.org/10.1103/PhysRevLett.106.204502 doi: 10.1103/PhysRevLett.106.204502
    [13] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, The inverse scattering transform for the focusing nonlinear Schrodinger equation with asymmetric boundary conditions, J. Math. Phys., 55 (2014), 101505. https://doi.org/10.1063/1.4898768 doi: 10.1063/1.4898768
    [14] W. Liu, Y. Zhang, Families of exact solutions of the generalized (3+1)-dimensional nonlinear-wave equation, Mod. Phys. Lett. B, 32 (2018), 1850359. https://doi.org/10.1142/S0217984918503591 doi: 10.1142/S0217984918503591
    [15] B. Guo, L. Ling, Q. P. Liu, Nonlinear Schr$\ddot{o}$dinger equation: Generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85 (2012), 026607. https://doi.org/10.1103/PhysRevE.85.026607 doi: 10.1103/PhysRevE.85.026607
    [16] X. W. Yan, S. F. Tian, M. J. Dong, L. Zou, B$\ddot{a}$cklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dyn., 92 (2018), 709–720. https://doi.org/10.1007/s11071-018-4085-5 doi: 10.1007/s11071-018-4085-5
    [17] K. J. Wang, Periodic solution of the time-space fractional complex nonlinear Fokas-Lenells equation by an ancient Chinese algorithm, Optik, 243 (2021), 167461. https://doi.org/10.1016/j.ijleo.2021.167461 doi: 10.1016/j.ijleo.2021.167461
    [18] K. J. Wang, G. D. Wang, Variational theory and new abundant solutions to the (1+2)-dimensional chiral nonlinear Schr$\ddot{o}$dinger equation in optics, Phys. Lett. A, 412 (2021), 127588. https://doi.org/10.1016/j.physleta.2021.127588 doi: 10.1016/j.physleta.2021.127588
    [19] K. J. Wang, G. D. Wang, Study on the explicit solutions of the Benney-Luke equation via the variational direct method, Math. Methods Appl. Sci., 44 (2021), 14173–14183. https://doi.org/10.1002/mma.7683 doi: 10.1002/mma.7683
    [20] B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539–541.
    [21] M. K. Elboree, Higher order rogue waves for the (3+1)-dimensional Jimbo-Miwa equation, Int. J. Nonlinear Sci. Numer. Simul., 2021. https://doi.org/10.1515/ijnsns-2020-0065
    [22] W. Liu, Y. Zhang, Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation, Appl. Math. Lett., 98 (2019), 184–190. https://doi.org/10.1016/j.aml.2019.05.047 doi: 10.1016/j.aml.2019.05.047
    [23] M. S. Ullah, H. O. Roshid, F. S. Alshammari, M. Z. Ali, Collision phenomena among the solitons, periodic and Jacobi elliptic functions to a (3+1)-dimensional Sharma-Tasso-Olver-like model, Results Phys., 36 (2022), 105412. https://doi.org/10.1016/j.rinp.2022.105412 doi: 10.1016/j.rinp.2022.105412
    [24] H. O. Roshid, N. F. M. Noor, M. S. Khatun, H. M. Baskonus, F. B. M. Belgacem, Breather, multi-shock waves and localized excitation structure solutions to the extended BKP-Boussinesq equation, Commun. Nonlinear Sci. Numer. Simul., 101 (2021), 105867. https://doi.org/10.1016/j.cnsns.2021.105867 doi: 10.1016/j.cnsns.2021.105867
    [25] R. Li, X. Geng, Rogue periodic waves of the sine-Gordon equation, Appl. Math. Lett., 102 (2020), 106147. https://doi.org/10.1016/j.aml.2019.106147 doi: 10.1016/j.aml.2019.106147
    [26] M. Zheng, X. Dong, C. Chen, M. Li, Multiple-order rogue wave solutions to a (2+1)-dimensional Boussinesq type equation, Commun. Theor. Phys., 74 (2022), 085002.
    [27] J. G. Liu, W. H. Zhu, Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation, Chin. J. Phys., 67 (2020), 492–500. https://doi.org/10.1016/j.cjph.2020.08.008 doi: 10.1016/j.cjph.2020.08.008
    [28] J. G. Rao, Y. B. Liu, C. Qian, J. S. He, Rogue waves and Hybrid solutions of the Boussinesq equation, Z. Naturforsch. A, 72 (2017), 307–314.
    [29] Z. Zhao, L. He, Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation, Appl. Math. Lett., 95 (2019), 114–121. https://doi.org/10.1016/j.aml.2019.03.031 doi: 10.1016/j.aml.2019.03.031
    [30] Z. Zhao, L. He, Resonance Y-type soliton and hybrid solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Appl. Math. Lett., 122 (2021), 107497. https://doi.org/10.1016/j.aml.2021.107497 doi: 10.1016/j.aml.2021.107497
    [31] L. He, Z. Zhao, Multiple lump solutions and dynamics of the generalized (3+1)-dimensional KP equation, Mod. Phys. Lett. B, 34 (2020), 2050167. https://doi.org/10.1142/S0217984920501675 doi: 10.1142/S0217984920501675
    [32] Zhaqilao, A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems, Comput. Math. Appl., 75 (2018), 3331–3342. https://doi.org/10.1016/j.camwa.2018.02.001 doi: 10.1016/j.camwa.2018.02.001
    [33] R. Hirota, Direct method in soliton theory, In: R. K. Bullough, P. J. Caudrey, Solitons, Springer, Berlin, 1980. https://doi.org/10.1007/978-3-642-81448-8_5
    [34] A. M. Wazwaz, Multiple soliton solutions for two (3+1)-dimensional extensions of the KP equation, Int. J. Nonlinear Sci., 12 (2011), 471–477.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1223) PDF downloads(62) Cited by(1)

Article outline

Figures and Tables

Figures(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog