
This study is focusing on the integrable (3+1)-dimensional equation that combines the potential Kadomtsev-Petviashvili (pKP) equation with B-type Kadomtsev-Petviashvili (BKP) equation, also known as the pKP-BKP equation. The idea of combining integrable equations has the potential to produce a variety of unexpected outcomes such as resonance of solitons. This article provides a wide range of alternative exact solutions for the pKP-BKP equation in three dimensional form, including dark solitons, singular solitons, singular periodic solutions, Jacobi elliptic function (JEF) solutions, rational solutions and exponential solution. The improved modified extended (IME) tanh function method is employed to investigate these solutions. All of the obtained solutions for the investigated model are presented using the Wolfram Mathematica program. To further help in understanding the solutions' physical characteristics and dynamic structure, the article provides visual representations of some derived solutions using 2D representation in addition to the 3D graphs via symbolic computation. This article aims to use a potent strategy using a powerful scheme to derive different solutions with various structures. Additionally, the results greatly improve and enhance the literature's solutions to a combined pKP-BKP equation and allow deep understanding of the nonlinear dynamic system through different exact solutions.
Citation: Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Jalil Manafian, Khaled H. Mahmoud, Kottakkaran Sooppy Nisar, Wafaa B. Rabie. Derivation of some solitary wave solutions for the (3+1)- dimensional pKP-BKP equation via the IME tanh function method[J]. AIMS Mathematics, 2024, 9(10): 27704-27720. doi: 10.3934/math.20241345
[1] | Li Wan, Qinghua Zhou, Hongbo Fu, Qunjiao Zhang . Exponential stability of Hopfield neural networks of neutral type with multiple time-varying delays. AIMS Mathematics, 2021, 6(8): 8030-8043. doi: 10.3934/math.2021466 |
[2] | Khaled zennir, Djamel Ouchenane, Abdelbaki Choucha, Mohamad Biomy . Well-posedness and stability for Bresse-Timoshenko type systems with thermodiffusion effects and nonlinear damping. AIMS Mathematics, 2021, 6(3): 2704-2721. doi: 10.3934/math.2021164 |
[3] | Boonyachat Meesuptong, Peerapongpat Singkibud, Pantiwa Srisilp, Kanit Mukdasai . New delay-range-dependent exponential stability criterion and H∞ performance for neutral-type nonlinear system with mixed time-varying delays. AIMS Mathematics, 2023, 8(1): 691-712. doi: 10.3934/math.2023033 |
[4] | Yijia Zhang, Tao Xie, Yunlong Ma . Robustness analysis of exponential stability of Cohen-Grossberg neural network with neutral terms. AIMS Mathematics, 2025, 10(3): 4938-4954. doi: 10.3934/math.2025226 |
[5] | Sheng Wang, Shaohua Long . Finite-time stability analysis of singular neutral systems with time delay. AIMS Mathematics, 2024, 9(10): 26877-26901. doi: 10.3934/math.20241308 |
[6] | Yakufu Kasimu, Gulijiamali Maimaitiaili . Non-fragile H∞ filter design for uncertain neutral Markovian jump systems with time-varying delays. AIMS Mathematics, 2024, 9(6): 15559-15583. doi: 10.3934/math.2024752 |
[7] | Xuelian Jin . Exponential stability analysis and control design for nonlinear system with time-varying delay. AIMS Mathematics, 2021, 6(1): 102-113. doi: 10.3934/math.2021008 |
[8] | Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu . Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214 |
[9] | Tijani A. Apalara, Aminat O. Ige, Cyril D. Enyi, Mcsylvester E. Omaba . Uniform stability result of laminated beams with thermoelasticity of type Ⅲ. AIMS Mathematics, 2023, 8(1): 1090-1101. doi: 10.3934/math.2023054 |
[10] | Abdelbaki Choucha, Asma Alharbi, Bahri Cherif, Rashid Jan, Salah Boulaaras . Decay rate of the solutions to the Bresse-Cattaneo system with distributed delay. AIMS Mathematics, 2023, 8(8): 17890-17913. doi: 10.3934/math.2023911 |
This study is focusing on the integrable (3+1)-dimensional equation that combines the potential Kadomtsev-Petviashvili (pKP) equation with B-type Kadomtsev-Petviashvili (BKP) equation, also known as the pKP-BKP equation. The idea of combining integrable equations has the potential to produce a variety of unexpected outcomes such as resonance of solitons. This article provides a wide range of alternative exact solutions for the pKP-BKP equation in three dimensional form, including dark solitons, singular solitons, singular periodic solutions, Jacobi elliptic function (JEF) solutions, rational solutions and exponential solution. The improved modified extended (IME) tanh function method is employed to investigate these solutions. All of the obtained solutions for the investigated model are presented using the Wolfram Mathematica program. To further help in understanding the solutions' physical characteristics and dynamic structure, the article provides visual representations of some derived solutions using 2D representation in addition to the 3D graphs via symbolic computation. This article aims to use a potent strategy using a powerful scheme to derive different solutions with various structures. Additionally, the results greatly improve and enhance the literature's solutions to a combined pKP-BKP equation and allow deep understanding of the nonlinear dynamic system through different exact solutions.
With the rapid development of science and technology, it is becoming more and more important to solve the optimal control problem by using appropriate numerical methods for satisfying various different actual requirements. Many numerical methods, such as finite volume element method, finite element method, mixed finite element method, and spectral method have been applied to approximate the solutions of optimal control problems (see, e.g., [4,7,8,9,12,16,18,20,21,22,23,25]). The optimal control problem of bilinear type considered in this paper includes a useful model of parameter estimation problems. It plays a very important role in many fields of science and engineering, where prior errors can improve accuracy and promote the development of related practical applications, such as air and water pollution control, oil exploration, and other fields. Although numerical analysis for bilinear optimal control problem was considered in a number of [11,23,28], there were few papers that consider the error estimates of finite volume element method for bilinear parabolic optimal control problem.
The finite volume element methods lie somewhere between finite difference and finite element methods, they have a flexibility similar to that of finite element methods for handling complicated solution domain geometries and boundary conditions, and they have a simplicity for implementation comparable to finite difference methods with triangulations of a simple structure. The finite volume methods are effective discretization technique for partial differential equations. Bank and Rose obtained some results for elliptic boundary value problems that the finite volume element approximation was comparable with the finite element approximation in H1-norm which can be found in [3]. In [15], the authors presented the optimal L2-error estimates for second-order elliptic boundary value problems under the assumption that f∈H1, they also obtained the H1-norm and L∞-norm error estimates for those problems. In [27], Luo and Chen used the finite volume element method to obtain the approximation solution for optimal control problem associate with a parabolic equation by using optimize-then-discretize approach and the variational discretization technique. The authors also derived some error estimates for the semi-discrete approximation. Recently, the first author of this paper investigated L∞-error estimates of the bilinear elliptic optimal control problem by rectangular Raviart-Thomas mixed finite element methods in [23]. In this paper, we will study a priori error estimates for the finite volume element approximation of bilinear parabolic optimal control problem. By using finite volume element method to discretize the state and adjoint equations. Under some reasonable assumptions, we obtained some optimal order error estimates. Moreover, by employing the backward Euler method for the discretization of time, and using finite volume element method to discretize the state and adjoint equations, we will construct the fully discrete finite volume element approximation scheme for the bilinear optimal control problem. Then we obtain a priori error estimates for the fully discrete finite volume element approximation of bilinear parabolic optimal control problem.
In this paper, we use the standard notations Wm,p(Ω) for Sobolev spaces and their associated norms ||v||m,p (see, e.g., [1]) in these paper. To simplify the notations, we denote Wm,2(Ω) by Hm(Ω) and drop the index p=2 and Ω whenever possible, i.e., ||u||m,2,Ω=||u||m,2=||u||m, ||u||0=||u||. Set H10(Ω)={v∈H1:v|∂Ω=0}. As usual, we use (⋅,⋅) to denote the L2(Ω)-inner product.
We consider the following bilinear parabolic optimal control problem
minu∈Uad{12∫T0(||y(x,t)−yd(x,t)||2L2(Ω)+α||u(x,t)||2L2(Ω))dt}, | (1.1) |
yt(x,t)−∇⋅(A∇y(x,t))+u(x,t)y(x,t)=f(x,t), t∈J, x∈Ω, | (1.2) |
y(x,t)=0, t∈J, x∈Γ, y(x,0)=y0, x∈Ω, | (1.3) |
where α is a positive constant,
∇⋅(A∇y)=∂∂xi(aij(x)∂y∂xj), |
Ω⊂R2 is a bounded convex polygonal domain and Γ is the boundary of Ω, f(⋅,t)∈L2(Ω) or H1(Ω), J=(0,T], A=(ai,j)2×2 is a symmetric, smooth enough and uniformly positive definite matrix in Ω, y0(x)=0,x∈Γ. It is assumed that the functions y have enough regularity and they satisfy appropriate compatibility conditions so that the boundary value problems (1.1)–(1.3) has a unique solution. Uad is a set defined by
Uad={u: u∈L2(J;L2(Ω)),u(x,t)≥0, a.e. in Ω, t∈J, a,b∈R}. |
The remainder of this paper is organized as follows. In Section 2, we present some notations and the finite volume element approximation for the bilinear parabolic optimal control problem. In Section 3, we analyze the error estimates between the exact solution and the finite volume element solution. In Section 4, a priori error estimates for the fully discrete finite volume element approximation of the bilinear optimal control problem are presented. a numerical example is presented to test the theoretical results in Section 5. Finally, we briefly give conclusions and some possible future works in Section 6.
For the convex polygonal domain Ω, we consider a quasi-uniform triangulation Th consisting of closed triangle elements K such that ˉΩ=⋃K∈ThK. We use Nh to denote the set of all nodes or vertices of Th. To define the dual partition T∗h of Th, we divide each K∈Th into three quadrilaterals by connecting the barycenter CK of K with line segments to the midpoints of edges of K as is shown in Figure 1.
The control volume Vi consists of the quadrilaterals sharing the same vertex zi as is shown in Figure 2.
The dual partition T∗h consists of the union of the control volume Vi. Let h=max{hK}, where hK is the diameter of the triangle K. As is shown in [15], the dual partition T∗h is also quasi-uniform. Throughout this paper, the constant C denotes different positive constant, which is independent of the mesh size h and the time step k.
We define the finite dimensional space Vh associated with Th for the trial functions by
Vh={v: v∈C(Ω), v|K∈P1(K), ∀ K∈Th, v|Γ=0}, |
and define the finite dimensional space Qh associated with the dual partition T∗h for the test functions by
Qh={q: q∈L2(Ω), q|V∈P0(V), ∀ V∈T∗h; q|Vz=0, z∈Γ}, |
where Pl(K) or Pl(V) consists of all the polynomials with degree less than or equal to l defined on K or V.
To connect the trial space and test space, we define a transfer operator Ih:Vh→Qh as follows:
Ihvh=∑zi∈Nhvh(zi)χi, Ihvh|Vi=vh(zi), ∀ Vi∈T∗h, |
where χi is the characteristic function of Vi. For the operator Ih, it is well known that there exists a positive constant C such that for all v∈Vh, we can get
||v−Ihv||≤Ch||v||1. | (2.1) |
Let a(w,v)=∫ΩA∇w⋅∇vdx. We assume a(v,v) satisfies the coercive conditions, then coercive property of a(⋅,⋅) is that there exists a positive constant c such that for all v∈Vh, we can obtain (see, e.g., [5])
a(v,v)≥c||v||21. | (2.2) |
As is defined in [6], we define the standard Ritz projection Rh:H10→Vh by
a(Rhu,χ)=a(u,χ), ∀ χ∈Vh. | (2.3) |
For the projection Rh, it has the property that (see, e.g., [6])
||Rhu−u||≤Ch2||u||2. | (2.4) |
Now, we will use the optimize-then-discretize approach to obtain the semi-discrete finite volume element scheme for the bilinear parabolic optimal control problem.
As is seen in [25], the necessary and sufficient optimal condition of (1.1)–(1.3) consists of the state equation, a co-state equation and a variational inequality, i.e., find y(⋅,t), p(⋅,t)∈H10(Ω) and u(⋅,t)∈Uad such that
(yt,w)+(A∇y,∇w)+(uy,w)=(f,w),∀ w∈H10(Ω), y(x,0)=y0(x), | (2.5) |
−(pt,q)+(A∇p,∇q)+(up,q)=(y−yd,q),∀ q∈H10(Ω), p(x,T)=0, | (2.6) |
∫T0(αu−yp,v−u)dt≥0,∀ v∈Uad. | (2.7) |
If y(⋅,t)∈H10(Ω)∩C2(Ω) and p(⋅,t)∈H10(Ω)∩C2(Ω), then the optimal control problems (2.5)–(2.7) can be written by
yt−∇⋅(A∇y)+uy=f, t∈J, x∈Ω, | (2.8) |
y(x,t)=0, t∈J, x∈Γ, y(x,0)=y0(x), x∈Ω, | (2.9) |
−pt−∇⋅(A∇p)+up=y−yd, t∈J, x∈Ω, | (2.10) |
p(x,t)=0, t∈J, x∈Γ, p(x,T)=0, x∈Ω, | (2.11) |
∫T0(αu−yp,v−u)dt≥0,∀ v∈Uad. | (2.12) |
Then, we use the finite volume element method to discretize the state and co-state equations directly. Then the continuous optimal control problems (2.8)–(2.12) can be approximated by: find (yh(⋅,t),ph(⋅,t),uh(⋅,t))∈Vh×Vh×Uad such that
(yht,Ihwh)+ah(yh,Ihwh)+(uhyh,Ihwh)=(f,Ihwh),∀ wh∈Vh, | (2.13) |
yh(x,0)=Rhy0(x), x∈Ω, | (2.14) |
−(pht,Ihqh)+ah(ph,Ihqh)+(uhph,Ihqh)=(yh−yd,Ihqh),∀ qh∈Vh, | (2.15) |
ph(x,T)=0, x∈Ω, | (2.16) |
∫T0(αuh−yhph,v−uh)dt≥0,∀ v∈Uad, | (2.17) |
where ah(ϕ,Ihψ)=−∑zi∈Nhψ(zi)∫∂ViA∇ϕ⋅nds.
Similar to [17], we can find that the variational inequality (2.12) is equivalent to
u(x,t)=max(y(x,t)p(x,t),0). | (2.18) |
And then the variational inequality (2.17) is equivalent to
uh(x,t)=max(yh(x,t)ph(x,t),0). | (2.19) |
In this section, we will analyze the error between the exact solution and the finite volume element solution. Let εa(x,y)=a(x,y)−ah(x,Ihy), it is well known (see, e.g., [6,13]) that for all y∈Vh:
|εa(x,y)|≤Ch||x||1⋅||y||1,∀ x∈Vh. | (3.1) |
To deduce the error estimates, let (yh(u), ph(u)) be the solution of
(yht(u),Ihwh)+ah(yh(u),Ihwh)+(uyh(u),Ihwh)=(f,Ihwh), | (3.2) |
yh(u)(x,0)=Rhy0(x), x∈Ω, | (3.3) |
−(pht(u),Ihqh)+ah(ph(u),Ihqh)+(uph(u),Ihqh)=(yh(u)−yd,Ihqh), | (3.4) |
ph(u)(x,T)=0, x∈Ω, | (3.5) |
where for all wh,qh∈Vh, note that yh=yh(uh), ph=ph(uh), we have the following lemma for yh(u) and ph(u).
Let (p(u),y(u)) and (ph(u),yh(u)) be the solutions of (2.13)–(2.15) and (3.2)–(3.4), respectively. Let J(⋅):Uad→R be a G-differential convex functional near the solution u which satisfies the following form:
J(u)=12||y−yd||2L2(Ω)+α2||u||2L2(Ω). |
Then we have a sequence of convex functional Jh:Uad→R:
Jh(u)=12||yh(u)−yd||2L2(Ω)+α2||u||2L2(Ω),Jh(uh)=12||yh(uh)−yd||2L2(Ω)+α2||uh||2L2(Ω). |
It can be shown that
(J′(u),v)=(αu−yp,v),(J′h(u),v)=(αu−yh(u)ph(u),v),(J′h(uh),v)=(αuh−yhph,v). |
In the following we estimate ‖u−uh‖L2(J;L2). We assume that the cost function J is strictly convex near the solution u, i.e., for the solution u there exists a neighborhood of u in L2 such that J is convex in the sense that there is a constant c>0 satisfying:
∫T0(J′(u)−J′(v),u−v)dt≥c‖u−v‖2L2(J;L2). | (3.6) |
For all v in this neighborhood of u. The convexity of J(⋅) is closely related to the second order sufficient optimality conditions of optimal control problems, which are assumed in many studies on numerical methods of the problem. For instance, in many references, the authors assume the following second order sufficiently optimality condition (see [14,26]): there is c>0 such that J′′(u)v2≥c‖v‖20.
From the assumption (3.6), by the proof contained in [2,10], there exists a constant c>0 satisfying
∫T0(J′h(v)−J′h(u),v−u)dt≥c‖v−u‖2L2(J;L2),∀ v∈Uad. | (3.7) |
Now, we estimate the error of the approximate control in L2-norm.
Theorem 3.1. Let (y,p,u) and (yh,ph,uh) are the solutions of (2.5)–(2.7) and (2.13)–(2.17), respectively. Then there exists a constant h0>0 such that for all 0<h≤h0, we have
||u−uh||L2(J;L2)≤Ch2. | (3.8) |
Proof. Let v=uh in (2.7) and v=u in (2.17), then we have
∫T0(αu−yp,uh−u)dt≥0, | (3.9) |
∫T0(αuh−yhph,u−uh)dt≥0. | (3.10) |
From (3.9) and (3.10), it is easy to see that
∫T0α(u−uh,u−uh)dt≤∫T0(yp−yhph,u−uh)dt. | (3.11) |
By using (3.7) and (3.11), we obtain
c‖u−uh‖2L2(J;L2)≤∫T0(J′h(u),u−uh)dt−∫T0(J′h(uh),u−uh)dt=∫T0(αu−yh(u)ph(u),u−uh)dt−∫T0(αuh−yhph,u−uh)dt=∫T0α(u−uh,u−uh)dt+∫T0(yhph−yh(u)ph(u),u−uh)dt≤∫T0(yp−yhph,u−uh)dt+∫T0(yhph−yh(u)ph(u),u−uh)dt=∫T0(yp−yh(u)ph(u),u−uh)dt=∫T0(yp−yh(u)p,u−uh)dt+∫T0(yh(u)p−yh(u)ph(u),u−uh)dt. | (3.12) |
Now, we estimate all terms at the right side of (3.12). By using the Theorem 4.2 in [24] and the δ-Cauchy inequality, we have
∫T0(yp−yh(u)p,u−uh)dt≤C‖y−yh(u)‖L2(J;L2)⋅‖u−uh‖L2(J;L2)≤Ch2‖u−uh‖L2(J;L2)≤Ch4+δ‖u−uh‖2L2(J;L2). | (3.13) |
In the same way, we also have
∫T0(yh(u)p−yh(u)ph(u),u−uh)dt≤C‖ph(u)−p‖L2(J;L2)⋅‖u−uh‖L2(J;L2)≤Ch2‖u−uh‖L2(J;L2)≤Ch4+δ‖u−uh‖2L2(J;L2). | (3.14) |
Putting (3.13) and (3.14) into (3.12) and choosing appropriate value for δ, we can obtain the result (3.8).
Theorem 3.2. Let (y,p,u) and (yh,ph,uh) are the solutions of (2.5)–(2.7) and (2.13)–(2.17), respectively. Then there exists a constant h0>0 such that for all 0<h≤h0, we have
‖y−yh‖L∞(J;L2)+‖p−ph‖L∞(J;L2)≤Ch2, | (3.15) |
‖y−yh‖L∞(J;H1)+‖p−ph‖L∞(J;H1)≤Ch. | (3.16) |
Proof. By employing the triangle inequality, we have
‖y−yh‖L∞(J;L2)≤‖y−yh(u)‖L∞(J;L2)+‖yh(u)−yh‖L∞(J;L2),‖p−ph‖L∞(J;L2)≤‖p−ph(u)‖L∞(J;L2)+‖ph(u)−ph‖L∞(J;L2). |
Similar to Lemma 3.1 in [16], it implies that
‖y−yh‖L∞(J;L2)≤‖y−yh(u)‖L∞(J;L2)+C‖u−uh‖L2(J;L2), | (3.17) |
‖p−ph‖L∞(J;L2)≤‖p−ph(u)‖L∞(J;L2)+C‖u−uh‖L2(J;L2). | (3.18) |
By using Theorem 3.1, (3.17)–(3.18) and Theorem 4.2 of [24], we can easily obtain
‖y−yh‖L∞(J;L2)≤‖y−yh(u)‖L∞(J;L2)+C‖u−uh‖L2(J;L2)≤Ch2+C‖u−uh‖L2(J;L2)≤Ch2. | (3.19) |
In the same way, we also have
‖p−ph‖L∞(J;L2)≤‖p−ph(u)‖L∞(J;L2)+C‖u−uh‖L2(J;L2)≤Ch2+C‖u−uh‖L2(J;L2)≤Ch2. | (3.20) |
Combining (3.19) with (3.20), we can prove (3.15). Similarly, we can obtain (3.18).
In this section, we will present a fully discrete scheme and error estimates of the finite volume element approximation.
Now, we shall construct the fully discrete approximation scheme for semi-discrete scheme (2.13)–(2.17). Let 0=t0<t1<⋯<tM−1<tm=T, ti=i△t, △t=TM, for i=1,2,⋯,M. And let ψi=ψ(x,ti), ∂ψi=(ψi−ψi−1)/△t. We define a discrete time-dependent norm for 1≤s<∞ by |||ψ|||Ls(J;Hm(Ω))=(M∑i=1△t||ψi||sm)1/s (e.g., |||ψ|||L2(J;L2)=(M∑i=1△t||ψi||2)1/2, |||ψ|||L∞(J;L2)=max1≤i≤M||ψi||). By using the backward Euler method for the discretization of time in (2.13) and (2.15), we can obtain the fully discrete scheme of (2.13)–(2.17) is to find (yih,pi−1h,uih)∈Vh×Vh×Uad such that
(∂yih,Ihwh)+ah(yih,Ihwh)+(uihyih,Ihwh)=(fi,Ihwh),∀ wh∈Vh, | (4.1) |
y0h(x)=Rhy0(x), x∈Ω, i=1,2,⋯,M; | (4.2) |
−(∂pih,Ihqh)+ah(pi−1h,Ihqh)+(uihpi−1h,Ihwh)=(yih−yid,Ihqh),∀ qh∈Vh, | (4.3) |
pMh(x)=0, x∈Ω, i=M,M−1,⋯,1; | (4.4) |
(αuih−yi−1hpi−1h,v−uih)≥0,∀ v∈Uad, i=1,2,⋯,M. | (4.5) |
To derive the fully discrete error analysis, let (yih(u),pi−1h(u)) be the solution of
(∂yih(u),Ihwh)+ah(yih(u),Ihwh)+(uiyih(u),Ihwh)=(fi,Ihwh),∀ wh∈Vh, | (4.6) |
y0h(u)(x)=Rhy0, x∈Ω, i=1,2,⋯,M, | (4.7) |
−(∂pih(u),Ihqh)+ah(pih(u),Ihqh)+(uihpi−1h(u),Ihwh)=(yih(u)−yid,Ihqh), | (4.8) |
∀ qh(u)∈Vh, pMh(u)(x)=0, x∈Ω, i=M,M−1,⋯,1. | (4.9) |
Let uh=(u0h,u1h,⋯,uMh), yh=(y0h,y1h,⋯,yMh) and ph=(p0h,p1h,⋯,pMh). For (yih(u),pi−1h(u)), we have the following lemma.
Lemma 4.1. Assume that (yih,pi−1h,uih) and (yih(u),pi−1h(u)) are the solutions of (4.1)–(4.5) and (4.6)–(4.9), respectively. Then we have the following results:
||yih(u)−yih||H1(Ω)≤C|||u−uh|||L2(J;L2(Ω)), | (4.10) |
||pih(u)−pih||H1(Ω)≤C|||u−uh|||L2(J;L2(Ω)). | (4.11) |
Proof. Let ηk=ykh(u)−ykh (1≤k≤i). Subtracting (4.1) from (4.6), we have
(∂ηk,Ihwh)+ah(ηk,Ihwh)+(ukηk,Ihwh)=((ukh−uk)ykh,Ihwh),∀ wh∈Vh. |
Let wh=∂ηk, we have
(∂ηk,Ih∂ηk)+ah(ηk,Ih∂ηk)+(ukηk,Ih∂ηk)=((ukh−uk)ykh,Ih∂ηk). |
Due to εa(x,y)=a(x,y)−ah(x,Ihy), we can get
(∂ηk,Ih∂ηk)+a(ηk,∂ηk)=εa(ηk,∂ηk)−(ukηk,Ih∂ηk)+((ukh−uk)ykh,Ih∂ηk). |
Note that
a(ηk,∂ηk)=12△t(a(ηk,ηk)−a(ηk−1,ηk−1)+a(ηk−ηk−1,ηk−ηk−1)). |
Thanks to a(ηk−ηk−1,ηk−ηk−1)≥0, we obtain
(∂ηk,Ih∂ηk)+12△t(a(ηk,ηk)−a(ηk−1,ηk−1))≤εa(ηk,∂ηk)−(ukηk,Ih∂ηk)+((ukh−uk)ykh,Ih∂ηk). |
The inverse estimate and (3.1) imply that
εa(ηk,∂ηk)≤Ch||ηk||1⋅||∂ηk||1≤C||ηk||1⋅||∂ηk||≤C||ηk||21+Cδ ||∂ηk||2. |
Note that
(ukηk,Ih∂ηk)≤C ||ηk||2+Cδ (Ih∂ηk,Ih∂ηk), |
and
((ukh−uk)ykh,Ih∂ηk)≤C ||uk−ukh||2+Cδ (Ih∂ηk,Ih∂ηk). |
Using the equivalent properties of (⋅,⋅), (⋅,Ih(⋅)) and (Ih(⋅),Ih(⋅)), we derive
Cδ (∂ηk,∂ηk)+a(ηk,ηk)≤a(ηk−1,ηk−1)+C△t||ηk||21+C△t||uk−ukh||2. |
Choosing appropriate value for δ, we have
a(ηk,ηk)≤a(ηk−1,ηk−1)+C△t||ηk||21+C△t||uk−ukh||2. |
Applying the coercive property of a(⋅,⋅), and summing k from 1 to i and noticing η0=0, we can get
||ηi||21≤i∑k=1C△t||ηk||21+i∑k=1C△t||uk−ukh||2. |
By using the discrete Gronwall's lemma (see, e.g., Lemma 3.3 in [9]), Then we have
||ηi||1=||yih(u)−yih||1≤C|||u−uh|||L2(J;L2(Ω)). |
Then we prove (4.10). In the same way as (4.10), we can obtain (4.11).
We can get the error estimate for uh in the discrete L2(J;L2)-norm by using Lemma 4.1.
Theorem 4.1. Let (y,p,u) and (yih,pi−1h,uih) be the solutions of problems (2.5)–(2.7) and (4.1)–(4.5), respectively. Then there exists a constant h0>0 such that for all 0<h≤h0, we have
|||u−uh|||L2(J;L2)≤C(h3/2+△t). | (4.12) |
Proof. Note that yih=yih(uih) and pih=pih(uih), it can be shown that
(J′h(ui),v)=(αui−yih(u)pih(u),v),(J′h(uih),v)=(αuih−yihpih,v). |
From (2.7), (3.7), and (4.5), we have
α|||u−uh|||2L2(J;L2)≤M∑i=1∫titi−1(J′h(ui),ui−uih)dt−M∑i=1∫titi−1(J′h(uih),ui−uih)dt=M∑i=1∫titi−1(αui−yih(u)pih(u),ui−uih)dt−M∑i=1∫titi−1(αuih−yihpih,ui−uih)dt=M∑i=1△t(αui−yih(u)pih(u),ui−uih)−M∑i=1△t(αuih−yihpih,ui−uih)≤M∑i=1△t(yipi−yi−1hpi−1h,ui−uih)−M∑i=1△t(yih(u)pih(u)−yihpih,ui−uih)≤M∑i=1△t(yipi−yih(u)pih(u),ui−uih)+M∑i=1△t(yihpih−yi−1hpi−1h,ui−uih)≡T1+T2. |
For the first term T1, using the Cauchy inequality and the Theorem 4.1 in [29], we can obtain
T1=M∑i=1△t(yipi−yih(u)pih(u),ui−uih)=M∑i=1△t(yipi−yih(u)pi,ui−uih)+M∑i=1△t(yih(u)pi−yih(u)pih(u),ui−uih)≤C(M∑i=1△t||yi−yih(u)||⋅||ui−uih||+M∑i=1△t||pi−pih(u)||⋅||ui−uih||)≤C(h3/2+△t)|||u−uh|||L2(J;L2(Ω)). |
For the second term T2, we can derive
T2=M∑i=1△t(yihpih−yi−1hpi−1h,ui−uih)≤C△t |||(yhph)t|||L2(J;L2(Ω))⋅|||u−uh|||L2(J;L2(Ω))≤C△t|||u−uh|||L2(J;L2(Ω)). |
Connecting T1 and T2, we can obtain (4.12) easily for sufficiently small h.
Then we can obtain the following result from Lemma 4.1 and Theorem 4.1.
Theorem 4.2. Let (y,p,u) and (yih,pi−1h,uih) be the solutions of problems (2.5)–(2.7) and (4.1)–(4.5), respectively. Then there exists a constant h0>0 such that for all 0<h≤h0, we have
|||y−yh|||L∞(J;L2)+|||p−ph|||L∞(J;L2)≤C(h3/2+△t). | (4.13) |
In this section, we give a numerical example to validate the error estimates for the control, state and adjoint state. We consider the bilinear parabolic optimal control problem:
minu(t)∈Uad12∫10(||y−yd||2L2(Ω)+||u−u0||2L2(Ω))dt,yt−Δy+uy=f, (x,t)∈Ω×J,y(x,t)=0, (x,t)∈∂Ω×J,y(x,0)=0, x∈Ω, |
where Ω=[0,1]×[0,1], J=(0,1], and Uad={u:u≥0}. The dual equation of the state equation is
−pt−Δp+up=y−yd. |
Then we assume that
y(x,t)=sin(πx1)sin(πx2)t,p(x,t)=sin(πx1)sin(πx2)(1−t),u0(x,t)=0.5−sin(πx1)sin(πx2)t,yd(x,t)=y+pt+Δp−up,u(x,t)=max(u0+yp,0),f(x,t)=yt−Δy+uy. |
Firstly, we adopt the same mesh partition for the state and the control such that △t=h32 in our test. In this case, we investigate the convergence order for the solutions which compute on a series of uniformly triangular meshes. We present the L2(J;L2), L∞(J;L2) and L∞(J;L2) errors for u, y and p in Table 1, which means that the convergent rates are O(h32+△t). We show the convergence orders in Figure 3, where dofs denotes degree of freedoms. It is easy to see that this is consistent with the results proved in the previous.
Resolution | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
16×16 | 6.24692E-03 | 3.05468E-02 | 1.91005E-02 |
32×32 | 2.10214E-03 | 9.84713E-03 | 6.35234E-03 |
64×64 | 6.66687E-04 | 3.30168E-03 | 2.11847E-03 |
128×128 | 2.39392E-04 | 1.18101E-03 | 7.44588E-04 |
In order to explore more on the rates of convergence separately in time and space, we try to validate the estimates by separating the discretization errors. We consider the behavior of the errors under refinement of the spatial triangulation for fixed △t=180. Then, we show the errors for u, y, and p in Table 2. Figure 4 depicts the convergence orders under refinement of the spatial triangulation for fixed △t=180. We can observe the order is O(h32).
h | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
116 | 4.98753E-03 | 2.53465E-02 | 1.87542E-02 |
132 | 1.66221E-03 | 8.44288E-03 | 6.22578E-03 |
164 | 5.54334E-04 | 2.81459E-03 | 2.15089E-03 |
1128 | 1.98298E-04 | 9.89101E-04 | 7.71995E-04 |
Finally, we examine the behavior of the errors for a sequence of discretizations with decreasing size of the time steps and a fixed spatial triangulation with h=1256. The L2(J;L2), L∞(J;L2) and L∞(J;L2) error norms for control variable state variable and adjoin variable are shown in Table 3. In Figure 5, the convergence orders under refinement of the time steps for h=1256 are shown. Up to the discretization errors it exhibits the proven convergence order O(△t). From the numerical results, we observe that convergence of order O(△t) which demonstrates our theoretical results.
△t | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
110 | 4.68547E-03 | 2.34568E-02 | 1.62486E-02 |
120 | 1.56117E-03 | 7.81571E-03 | 5.23753E-03 |
140 | 5.22744E-04 | 2.60798E-03 | 1.74768E-03 |
180 | 1.91003E-04 | 9.36223E-04 | 6.30968E-04 |
Seen from the numerical results listed in Tables 1–3 and Figures 3–5, it is easy to find that the convergent orders match the theories derived in the previous sections.
In this paper, we established semi-discrete and fully discrete finite volume element approximation scheme of bilinear parabolic optimal control problem. Then we used the finite volume element method to discretize the state and adjoint equations of the system. Under some reasonable assumptions, we obtained some error estimates. To our best knowledge in the context of optimal control problems, the priori error estimates of finite volume element method for bilinear parabolic optimal control problems are new.
In the future, we shall consider the finite volume element method for bilinear hyperbolic optimal control problems. Furthermore, we shall consider a priori error estimates and superconvergence of the finite volume element solutions for hyperbolic optimal control problems.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by National Science Foundation of China (11201510), National Social Science Fund of China (19BGL190), Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX0286), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202001201), Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir Area (WEPKL2018YB04), Research Center for Sustainable Development of Three Gorges Reservoir Area (2022sxxyjd01), Guangdong Basic and Applied Basic Research Foundation of Joint Fund Project (2021A1515111048), and Guangdong Province Characteristic Innovation Project (2021WTSCX120).
The authors declare that they have no competing interests.
[1] | H. Li, Y. Zhang, Y. Tai, X. Zhu, X. Qi, L. Zhou, et al., Flexible transparent electromagnetic interference shielding films with silver mesh fabricated using electric-field-driven microscale 3D printing, Opt. Laser Tech., 148 (2022). http://dx.doi.org/10.1016/j.optlastec.2021.107717 |
[2] |
Z. Li, H. Li, X. Zhu, Z. Peng, G. Zhang, J. Yang, et al., Directly printed embedded metal mesh for flexible transparent electrode via liquid substrate electric-field-driven jet, Adv. Sci., 9 (2022), 2105331. http://dx.doi.org/10.1002/advs.202105331 doi: 10.1002/advs.202105331
![]() |
[3] |
X. Zhu, M. Liu, X. Qi, H. Li, Y. Zhang, Z. Li, et al., Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing, Adv. Mat., 33 (2021), 2007772. http://dx.doi.org/10.1002/adma.202007772 doi: 10.1002/adma.202007772
![]() |
[4] | H. Zhang, X. Zhu, Y. Tai, J. Zhou, H. Li, Z. Li, et al., Recent advances in nanofiber-based flexible transparent electrodes, Int. J. Ext. Man., 2023. http://dx.doi.org/10.1088/2631-7990/acdc66 |
[5] |
X. Zhu, Q. Xu, H. Li, M. Liu, Z. Li, K. Yang, et al., Fabrication of high-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D printing and UV-assisted microtransfer, Adv. Mat., 31 (2019), 1902479. http://dx.doi.org/10.1002/adma.201902479 doi: 10.1002/adma.201902479
![]() |
[6] |
H. Li, Z. Li, N. Li, X. Zhu, Y. Zhang, L. Sun, et al., 3D printed high performance silver mesh for transparent glass heaters through liquid sacrificial substrate electric-field-driven jet, Small, 18 (2022), 2107811. http://dx.doi.org/10.1002/smll.202107811 doi: 10.1002/smll.202107811
![]() |
[7] |
M. Li, T. Wang, F. Chu, Q. Han, Z. Qin, M. J. Zuo, Scaling-Basis chirplet transform, IEEE Trans. Ind. Elec., 68 (2021), 8777–8788. http://dx.doi.org/10.1109/TIE.2020.3013537 doi: 10.1109/TIE.2020.3013537
![]() |
[8] |
H. Jiang, S. M. Li, W. G. Wang, Moderate deviations for parameter estimation in the fractional ornstein-uhlenbeck processes with periodic mean, Acta Math. Sinica, English Ser., 40 (2024), 13081324. http://dx.doi.org/10.1007/s10114-023-2157-z doi: 10.1007/s10114-023-2157-z
![]() |
[9] | K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Unveiling optical solitons and other solutions for fourth-order (2+1)-dimensional nonlinear SchrA dinger equation by modified extended direct algebraic method, J. Opt., 2024, 1–13. http://dx.doi.org/10.1007/s12596-024-01690-8 |
[10] |
A. S. Khalifa, N. M. Badra, H. M. Ahmed, W. B. Rabie, Retrieval of optical solitons in fiber Bragg gratings for high-order coupled system with arbitrary refractive index, Optik, 287 (2023), 171116. http://dx.doi.org/10.1016/j.ijleo.2023.171116 doi: 10.1016/j.ijleo.2023.171116
![]() |
[11] |
W. B. Rabie, K. K. Ahmed, N. M. Badra, H. M. Ahmed, M. Mirzazadeh, M. Eslami, New solitons and other exact wave solutions for coupled system of perturbed highly dispersive CGLE in birefringent fibers with polynomial nonlinearity law, Opt. Quan. Elec., 56 (2024), 875. http://dx.doi.org/10.1007/s11082-024-06644-9 doi: 10.1007/s11082-024-06644-9
![]() |
[12] |
K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, M. Mirzazadeh, M. Eslami, et al., Investigation of solitons in magneto-optic waveguides with Kudryashovas law nonlinear refractive index for coupled system of generalized nonlinear SchrA dingeras equations using modified extended mapping method, Nonlin. Analy. Model. Cont., 29 (2024), 205–223. http://dx.doi.org/10.15388/namc.2024.29.34070 doi: 10.15388/namc.2024.29.34070
![]() |
[13] |
A. S. Khalifa, H. M. Ahmed, N. M. Badra, W. B. Rabie, Exploring solitons in optical twin-core couplers with Kerr law of nonlinear refractive index using the modified extended direct algebraic method, Opt. Quan. Elec., 56 (2024), 1060. http://dx.doi.org/10.1007/s11082-024-06882-x doi: 10.1007/s11082-024-06882-x
![]() |
[14] |
D. Chen, T. Zhao, L. Han, Z. Feng, Single-stage multi-input buck type high-frequency links inverters with series and simultaneous power supply, IEEE Trans. Power Elec., 37 (2022), 74117421. http://dx.doi.org/10.1109/TPEL.2021.3139646 doi: 10.1109/TPEL.2021.3139646
![]() |
[15] |
C. Chen, D. Han, C. Chang, MPCCT: Multimodal vision-language learning paradigm with context-based compact transformer, Pattern Recogn., 147 (2024), 110084. http://dx.doi.org/10.1016/j.patcog.2023.110084 doi: 10.1016/j.patcog.2023.110084
![]() |
[16] |
H. Wang, D. Han, M. Cui, C. Chen, NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention, Connect. Sci., 35 (2023), 132. http://dx.doi.org/10.1080/09540091.2023.2257399 doi: 10.1080/09540091.2023.2257399
![]() |
[17] |
C. Zhu, X. Li, C. Wang, B. Zhang, B. Li, Deep Learning-Based coseismic deformation estimation from InSAR interferograms, IEEE Trans. Geosci. Remote Sens., 62 (2024), 5203610. http://dx.doi.org/10.1109/TGRS.2024.3357190 doi: 10.1109/TGRS.2024.3357190
![]() |
[18] |
R. Fei, Y. Guo, J. Li, B. Hu, L. Yang, An improved BPNN method based on probability density for indoor location, IEICE Trans. Inf. Syst., 106 (2023), 773785. http://dx.doi.org/10.1587/transinf.2022DLP0073 doi: 10.1587/transinf.2022DLP0073
![]() |
[19] |
K. Zhang, Q. Liu, H. Qian, B. Xiang, Q. Cui, J. Zhou, et al., EATN: An efficient adaptive transfer network for aspect-level sentiment analysis, IEEE Trans. Knowledge Data Eng., 35 (2021), 377389. http://dx.doi.org/10.1109/TKDE.2021.3075238 doi: 10.1109/TKDE.2021.3075238
![]() |
[20] |
D. Chen, T. Zhao, S. Xu, Single-stage multi-input buck type high-frequency links inverters with multiwinding and time-sharing power supply, IEEE Trans. Power Elec., 37 (2022), 12763–12773. http://dx.doi.org/10.1109/TPEL.2022.3176377 doi: 10.1109/TPEL.2022.3176377
![]() |
[21] |
C. Chen, D. Han, X. Shen, CLVIN: Complete language-vision interaction network for visual question answering, Knowl. Based Syst., 275 (2023), 110706. http://dx.doi.org/10.1016/j.knosys.2023.110706 doi: 10.1016/j.knosys.2023.110706
![]() |
[22] |
X. Chen, P. Yang, Y. Peng, M. Wang, F. Hu, J. Xu, Output voltage drop and input current ripple suppression for the pulse load power supply using virtual multiple quasi-notch-flters impedance, IEEE Trans. Power Elec., 38 (2023), 9552–9565. http://dx.doi.org/10.1109/TPEL.2023.3275304 doi: 10.1109/TPEL.2023.3275304
![]() |
[23] |
L. Liao, Z. Guo, Q. Gao, Y. Wang, F. Yu, Q. Zhao, et al., Color image recovery using generalized matrix completion over higher-order finite dimensional algebra, Axioms, 12 (2023), 954. http://dx.doi.org/10.3390/axioms12100954 doi: 10.3390/axioms12100954
![]() |
[24] |
S. Meng, F. Meng, H. Chi, H. Chen, A. Pang, A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries, J. Frankl. Inst., 360 (2023), 11397–11413. http://dx.doi.org/10.1016/j.jfranklin.2023.08.037 doi: 10.1016/j.jfranklin.2023.08.037
![]() |
[25] |
D. L. Chen, J. W. Zhao, S. R. Qin, SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio, Sci. China Technol. Sci., 66 (2023), 2996–3010. http://dx.doi.org/10.1007/s11431-022-2394-4 doi: 10.1007/s11431-022-2394-4
![]() |
[26] |
J. Li, H. Tang, X. Li, H. Dou, R. Li, LEF-YOLO: A lightweight method for intelligent detection of four extreme wildfires based on the YOLO framework, Int. J. Wildland Fire, 33 (2023), WF23044. http://dx.doi.org/10.1071/WF23044 doi: 10.1071/WF23044
![]() |
[27] |
T. Wang, S. Zhang, Q. Yang, S. C. Liew, Account service network: A unified decentralized web 3.0 portal with credible anonymity, IEEE Netw., 37 (2023), 101–108. http://dx.doi.org/10.1109/MNET.2023.3321090 doi: 10.1109/MNET.2023.3321090
![]() |
[28] |
J. Dou, J. Liu, Y. Wang, L. Zhi, J. Shen, G. Wang, Surface activity, wetting, and aggregation of a perfuoropolyether quaternary ammonium salt surfactant with a hydroxyethyl group, Molecules, 28 (2023), 7151. http://dx.doi.org/10.3390/molecules28207151 doi: 10.3390/molecules28207151
![]() |
[29] |
J. Hong, L. Gui, J. Cao, Analysis and experimental verification of the tangential force effect on electromagnetic vibration of pm motor, IEEE Trans. Energy Convers., 38 (2023), 1893–1902. http://dx.doi.org/10.1109/TEC.2023.3241082 doi: 10.1109/TEC.2023.3241082
![]() |
[30] |
X. He, Z. Xiong, C. Lei, Z. Shen, A. Ni, Y. Xie, et al., Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching, Carbon, 213 (2023), 118200. http://dx.doi.org/10.1016/j.carbon.2023.118200 doi: 10.1016/j.carbon.2023.118200
![]() |
[31] | K. Hosseini, F. Alizadeh, E. HinAsal, M. Ilie, M. S. Osman, Bilinear BA cklund transformation, Lax pair, PainlevA integrability, and different wave structures of a 3D generalized KdV equation, Nonlinear Dyn., 2024, 1–15. http://dx.doi.org/10.1007/s11071-024-09944-7 |
[32] |
K. Hosseini, E. Hincal, K. Sadri, F. Rabiei, M. Ilie, A. Akgül, et al., The positive multi-complexiton solution to a generalized Kadomtseva Petviashvili equation, Par. Diff. Eq. App. Math., 9 (2024), 100647. http://dx.doi.org/10.1016/j.padiff.2024.100647 doi: 10.1016/j.padiff.2024.100647
![]() |
[33] |
Y. Li, S. F. Tian, J. J. Yang, Riemanna Hilbert problem and interactions of solitons in thea component nonlinear SchrA dinger equations, Stud. in App. Math., 148 (2022), 577–605. http://dx.doi.org/10.1111/sapm.12450 doi: 10.1111/sapm.12450
![]() |
[34] |
J. J. Yang, S. F. Tian, Z. Q. Li, Riemanna Hilbert problem for the focusing nonlinear SchrA dinger equation with multiple high-order poles under nonzero boundary conditions, Physica D: Nonlin. Phen., 432 (2022), 133162. http://dx.doi.org/10.1016/j.physd.2022.133162 doi: 10.1016/j.physd.2022.133162
![]() |
[35] |
H. Ma, S. Yue, A. Deng, Lump and interaction solutions for a (2+1)-dimensional combined pKP-BKP equation in fluids, Mod. Phys. Lett. B., 36 (2022), 2250069. http://dx.doi.org/10.1142/S0217984922500695 doi: 10.1142/S0217984922500695
![]() |
[36] |
W. X. Ma, N-soliton solution of a combined pKPa BKP equation, J. Geo. Phys., 165 (2021), 104191. http://dx.doi.org/10.1016/j.geomphys.2021.104191 doi: 10.1016/j.geomphys.2021.104191
![]() |
[37] |
A. M. Wazwaz, New PainlevA integrable (3+1)-dimensional combined pKP-BKP equation: lump and multiple soliton solutions, Chin. Phys. Lett., 40 (2023), 120501. http://dx.doi.org/10.1088/0256-307X/40/12/120501 doi: 10.1088/0256-307X/40/12/120501
![]() |
[38] |
Y. Feng, S. Bilige, Resonant multi-soliton, M-breather, M-lump and hybrid solutions of a combined pKP-BKP equation, J. Geo. Phys., 169 (2021), 104322. http://dx.doi.org/10.1016/j.geomphys.2021.104322 doi: 10.1016/j.geomphys.2021.104322
![]() |
[39] |
Z. Yan, S. Lou, Special types of solitons and breather molecules for a (2+1)-dimensional fifth-order KdV equation, Comm. Nonlin. Sci. Num. Sim., 91 (2020), 105425. http://dx.doi.org/10.1016/j.cnsns.2020.105425 doi: 10.1016/j.cnsns.2020.105425
![]() |
[40] |
M. Kumar, D. V. Tanwar, Lie symmetry reductions and dynamics of solitary wave solutions of breaking soliton equation, Int. J. Geom. Meth. Mod. Phys., 16 (2019), 1950110. http://dx.doi.org/10.1142/S021988781950110X doi: 10.1142/S021988781950110X
![]() |
[41] |
V. I. Kruglov, H. Triki, Interacting solitons, periodic waves and breather for modified kortewega de vries equation, Chin. Phys. Lett., 40 (2023), 090503. http://dx.doi.org/10.1088/0256-307X/40/9/090503 doi: 10.1088/0256-307X/40/9/090503
![]() |
[42] |
X. Liu, Q. Zhou, A. Biswas, A. K. Alzahrani, W. Liu, The similarities and differences of different plane solitons controlled by (3+1) a dimensional coupled variable coefficient system, J. Adv. Res., 24 (2020), 167–173. http://dx.doi.org/10.1016/j.jare.2020.04.003 doi: 10.1016/j.jare.2020.04.003
![]() |
[43] | R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004. http://dx.doi.org/10.1017/CBO9780511543043 |
[44] | A. M. Wazwaz, Partial differential equations and solitary waves theory, Springer Berlin: Higher Education Press, 2010. http://dx.doi.org/10.1007/978-3-642-00251-9 |
[45] |
A. M. Wazwaz, Two kinds of multiple wave solutions for the potential YTSF equation and a potential YTSF-type equation, J. Appl. Nonlinear Dyn., 1 (2012), 51–58. https://doi.org/10.5890/JAND.2012.01.001 doi: 10.5890/JAND.2012.01.001
![]() |
[46] |
A. M. Wazwaz, Breather wave solutions for an integrable (3+1)-dimensional combined pKPa BKP equation, Chaos Solit. Fractals, 182 (2024), 114886. https://doi.org/10.1016/j.chaos.2024.114886 doi: 10.1016/j.chaos.2024.114886
![]() |
[47] |
M. B. Almatrafi, Construction of closed form soliton solutions to the space-time fractional symmetric regularized long wave equation using two reliable methods, Fractals, 31 (2023), 2340160. https://doi.org/10.1142/S0218348X23401606 doi: 10.1142/S0218348X23401606
![]() |
[48] |
M. B. Almatrafi, Solitary wave solutions to a fractional model using the improved modified extended tanh-function method, Fractal Fract., 7 (2023), 252. https://doi.org/10.3390/fractalfract7030252 doi: 10.3390/fractalfract7030252
![]() |
[49] |
Y. Cao, Y. Cheng, J. He, Resonant collisions of high-order localized waves in the Maccari system, J. Math. Phys., 64 (2023), 043501. https://doi.org/10.1063/5.0141546 doi: 10.1063/5.0141546
![]() |
[50] |
Y. Cao, J. He, Y. Cheng, The Wronskian, Grammian determinant solutions of a (3+1)-dimensional integrable Kadomtseva Petviashvili equation, Nonlinear Dyn., 111 (2023), 13391–13398. https://doi.org/10.1007/s11071-023-08555-y doi: 10.1007/s11071-023-08555-y
![]() |
[51] |
Y. Cao, J. He, Y. Cheng, Doubly localized twoa dimensional rogue waves generated by resonant collision in Maccari system, Stud. Appl. Math., 152 (2024), 648–672. https://doi.org/10.1111/sapm.12657 doi: 10.1111/sapm.12657
![]() |
[52] |
A. S. Khalifa, W. B. Rabie, N. M. Badra, H. M. Ahmed, M. Mirzazadeh, M. S. Hashemi, et al., Discovering novel optical solitons of two CNLSEs with coherent and incoherent nonlinear coupling in birefringent optical fibers, Opt. Quantum Electron., 56 (2024), 1340. https://doi.org/10.1007/s11082-024-07237-2 doi: 10.1007/s11082-024-07237-2
![]() |
[53] |
K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Soliton solutions of generalized Kundu-Eckhaus equation with an extra-dispersion via improved modified extended tanh-function technique, Opt. Quantum Electron., 55 (2023), 299. https://doi.org/10.1007/s11082-023-04599-x doi: 10.1007/s11082-023-04599-x
![]() |
[54] |
K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Soliton solutions and other solutions for Kundua Eckhaus equation with quintic nonlinearity and Raman effect using the improved modified extended tanh-function method, Mathematics, 10 (2022), 4203. https://doi.org/10.3390/math10224203 doi: 10.3390/math10224203
![]() |
[55] |
H. Susanto, M. Johansson, Discrete dark solitons with multiple holes, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 72 (2005), 016605. https://doi.org/10.1103/PhysRevE.72.016605 doi: 10.1103/PhysRevE.72.016605
![]() |
[56] |
A. Maitre, G. Lerario, A. Medeiros, F. Claude, Q. Glorieux, E. Giacobino, et al., Dark-soliton molecules in an exciton-polariton superfluid, Phys. Rev. X., 1 (2020), 041028. https://doi.org/10.1103/PhysRevX.10.041028 doi: 10.1103/PhysRevX.10.041028
![]() |
[57] |
D. V. Douanla, C. G. L. Tiofack, A. Alim, M. Aboubakar, A. Mohamadou, W. Albalawi, et al., Three-dimensional rogue waves and dust-acoustic dark soliton collisions in degenerate ultradense magnetoplasma in the presence of dust pressure anisotropy, Phys. Fluids, 34 (2022), 087105. https://doi.org/10.1063/5.0096990 doi: 10.1063/5.0096990
![]() |
1. | Sami Loucif, Rafik Guefaifia, Houssem Eddine Khochemane, Salah Zitouni, Well-posedness and exponential stability of piezoelectric beam with thermal effect and boundary or internal distributed delay, 2024, 0149-5739, 1, 10.1080/01495739.2024.2418538 |
Resolution | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
16×16 | 6.24692E-03 | 3.05468E-02 | 1.91005E-02 |
32×32 | 2.10214E-03 | 9.84713E-03 | 6.35234E-03 |
64×64 | 6.66687E-04 | 3.30168E-03 | 2.11847E-03 |
128×128 | 2.39392E-04 | 1.18101E-03 | 7.44588E-04 |
h | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
116 | 4.98753E-03 | 2.53465E-02 | 1.87542E-02 |
132 | 1.66221E-03 | 8.44288E-03 | 6.22578E-03 |
164 | 5.54334E-04 | 2.81459E-03 | 2.15089E-03 |
1128 | 1.98298E-04 | 9.89101E-04 | 7.71995E-04 |
△t | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
110 | 4.68547E-03 | 2.34568E-02 | 1.62486E-02 |
120 | 1.56117E-03 | 7.81571E-03 | 5.23753E-03 |
140 | 5.22744E-04 | 2.60798E-03 | 1.74768E-03 |
180 | 1.91003E-04 | 9.36223E-04 | 6.30968E-04 |
Resolution | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
16×16 | 6.24692E-03 | 3.05468E-02 | 1.91005E-02 |
32×32 | 2.10214E-03 | 9.84713E-03 | 6.35234E-03 |
64×64 | 6.66687E-04 | 3.30168E-03 | 2.11847E-03 |
128×128 | 2.39392E-04 | 1.18101E-03 | 7.44588E-04 |
h | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
116 | 4.98753E-03 | 2.53465E-02 | 1.87542E-02 |
132 | 1.66221E-03 | 8.44288E-03 | 6.22578E-03 |
164 | 5.54334E-04 | 2.81459E-03 | 2.15089E-03 |
1128 | 1.98298E-04 | 9.89101E-04 | 7.71995E-04 |
△t | Errors | ||
||u−uh||L2(J;L2) | ‖y−yh‖L∞(J;L2) | ‖p−ph‖L∞(J;L2) | |
110 | 4.68547E-03 | 2.34568E-02 | 1.62486E-02 |
120 | 1.56117E-03 | 7.81571E-03 | 5.23753E-03 |
140 | 5.22744E-04 | 2.60798E-03 | 1.74768E-03 |
180 | 1.91003E-04 | 9.36223E-04 | 6.30968E-04 |