Research article Special Issues

A new stochastic diffusion process based on generalized Gamma-like curve: inference, computation, with applications

  • Received: 14 July 2024 Revised: 02 September 2024 Accepted: 19 September 2024 Published: 25 September 2024
  • MSC : 62M86, 60H30, 65C30

  • This paper introduces a novel non-homogeneous stochastic diffusion process, useful for modeling both decreasing and increasing trend data. The model is based on a generalized Gamma-like curve. We derive the probabilistic characteristics of the proposed process, including a closed-form unique solution to the stochastic differential equation, the transition probability density function, and both conditional and unconditional trend functions. The process parameters are estimated using the maximum likelihood (ML) method with discrete sampling paths. A small Monte Carlo experiment is conducted to evaluate the finite sample behavior of the trend function. The practical utility of the proposed process is demonstrated by fitting it to two real-world data sets, one exhibiting a decreasing trend and the other an increasing trend.

    Citation: Safa' Alsheyab, Mohammed K. Shakhatreh. A new stochastic diffusion process based on generalized Gamma-like curve: inference, computation, with applications[J]. AIMS Mathematics, 2024, 9(10): 27687-27703. doi: 10.3934/math.20241344

    Related Papers:

  • This paper introduces a novel non-homogeneous stochastic diffusion process, useful for modeling both decreasing and increasing trend data. The model is based on a generalized Gamma-like curve. We derive the probabilistic characteristics of the proposed process, including a closed-form unique solution to the stochastic differential equation, the transition probability density function, and both conditional and unconditional trend functions. The process parameters are estimated using the maximum likelihood (ML) method with discrete sampling paths. A small Monte Carlo experiment is conducted to evaluate the finite sample behavior of the trend function. The practical utility of the proposed process is demonstrated by fitting it to two real-world data sets, one exhibiting a decreasing trend and the other an increasing trend.



    加载中


    [1] A. El Azri, N. Ahmed, A stochastic log-logistic diffusion process: statistical computational aspects and application to real data, Stoch. Models, 40 (2024), 261–277. https://doi.org/10.1080/15326349.2023.2241070 doi: 10.1080/15326349.2023.2241070
    [2] A. Nafidi, A. El Azri, R. Gutiérrez-Sánchez, A stochastic Schumacher diffusion process: probability characteristics computation and statistical analysis, Methodol. Comput. Appl. Probab., 25 (2023), 66. https://doi.org/10.1007/s11009-023-10031-4 doi: 10.1007/s11009-023-10031-4
    [3] A. Nafidi, I. Makroz, R. Gutiérrez-Sánchez, A stochastic Lomax diffusion process: statistical inference and application, Mathematics, 9 (2021), 100. https://doi.org/10.3390/math9010100 doi: 10.3390/math9010100
    [4] A. Nafidi, M. Bahij, R. Gutiérrez-Sánchez, B. Achchab, Two-parameter stochastic Weibull diffusion model: statistical inference and application to real modeling example, Mathematics, 8 (2020), 160. https://doi.org/10.3390/math8020160 doi: 10.3390/math8020160
    [5] A. Nafidi, G. Moutabir, R. Gutiérrez-Sánchez, E. Ramos-Ábalos, Stochastic square of the Brennan-Schwartz diffusion process: statistical computation and application, Methodol. Comput. Appl. Probab., 7 (2020), 455–476. https://doi.org/10.1007/s11009-019-09714-8 doi: 10.1007/s11009-019-09714-8
    [6] A. Nafidi, G. Moutabir, R. Gutiérrez-Sánchez, Stochastic Brennan–Schwartz diffusion process: statistical computation and application, Mathematics, 7 (2019), 1062. https://doi.org/10.3390/math7111062 doi: 10.3390/math7111062
    [7] R. Gutiérrez, R. Gutiérrez-Sánchez, A. Nafidi, The trend of the total stock of the private car-petrol in Spain: stochastic modelling using a new gamma diffusion process, Appl. Energy, 86 (2009), 18–24. https://doi.org/10.1016/j.apenergy.2008.03.016 doi: 10.1016/j.apenergy.2008.03.016
    [8] R. Gutiérrez, R. Gutiérrez-Sánchez, A. Nafidi, Modelling and forecasting vehicle stocks using the trends of stochastic Gompertz diffusion models: the case of Spain, Appl. Stoch. Model. Bus. Ind., 25 (2009), 385–405. https://doi.org/10.1002/asmb.754 doi: 10.1002/asmb.754
    [9] R. Gutiérrez, R. Gutiérrez-Sánchez, A. Nafidi, The stochastic Rayleigh diffusion model: statistical inference and computational aspects. Applications to modelling of real cases, Appl. Math. Comput., 175 (2006), 628–644. https://doi.org/10.1016/j.amc.2005.07.047 doi: 10.1016/j.amc.2005.07.047
    [10] B. M. Bibby, M. Sørensen, Martingale estimation functions for discretely observed diffusion processes, Bernoulli, 1 (1995), 17–39. https://doi.org/10.2307/3318679 doi: 10.2307/3318679
    [11] P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer Berlin, Heidelberg, 1992. https://doi.org/10.1007/978-3-662-12616-5
    [12] B. L. S. Prakasa Rao, Statistical inference for diffusion type processes, Arnold, London, UK, 1999.
    [13] E. W. Stacy, A generalization of the Gamma distribution, Ann. Math. Statist., 33 (1962), 1187–1192. https://doi.org/10.1214/aoms/1177704481 doi: 10.1214/aoms/1177704481
    [14] M. J. Schervish, Theory of statistics, Springer-Verlag, New York, USA, 1995. https://doi.org/10.1007/978-1-4612-4250-5
    [15] The R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2016. Available from: https://web.mit.edu/r_v3.3.1/fullrefman.pdf.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(378) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog