Research article

Symmetric quantum calculus in interval valued frame work: operators and applications

  • Received: 02 August 2024 Revised: 05 September 2024 Accepted: 12 September 2024 Published: 24 September 2024
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15, 26D20

  • The primary emphasis of the present study is to introduce some novel characterizations of the interval-valued $ (\mathcal{I}.\mathcal{V}) $ right symmetric quantum derivative and antiderivative operators relying on generalized Hukuhara difference. To continue the study, we start with the concept of symmetric differentiability in the interval-valued sense and explore some important properties. Furthermore, through the utilization of the $ (\mathcal{I}.\mathcal{V}) $ symmetric derivative operator, we develop the right-sided $ (\mathcal{I}.\mathcal{V}) $ integral operator and explore its key properties. Also, we establish various $ (\mathcal{I}.\mathcal{V}) $ trapezium-like inequalities by considering the newly proposed operators and support line. Later on, we deliver another proof of the trapezium inequality through an analytical approach. Also, we present the numerical and visual analysis for the verification of our results.

    Citation: Yuanheng Wang, Muhammad Zakria Javed, Muhammad Uzair Awan, Bandar Bin-Mohsin, Badreddine Meftah, Savin Treanta. Symmetric quantum calculus in interval valued frame work: operators and applications[J]. AIMS Mathematics, 2024, 9(10): 27664-27686. doi: 10.3934/math.20241343

    Related Papers:

  • The primary emphasis of the present study is to introduce some novel characterizations of the interval-valued $ (\mathcal{I}.\mathcal{V}) $ right symmetric quantum derivative and antiderivative operators relying on generalized Hukuhara difference. To continue the study, we start with the concept of symmetric differentiability in the interval-valued sense and explore some important properties. Furthermore, through the utilization of the $ (\mathcal{I}.\mathcal{V}) $ symmetric derivative operator, we develop the right-sided $ (\mathcal{I}.\mathcal{V}) $ integral operator and explore its key properties. Also, we establish various $ (\mathcal{I}.\mathcal{V}) $ trapezium-like inequalities by considering the newly proposed operators and support line. Later on, we deliver another proof of the trapezium inequality through an analytical approach. Also, we present the numerical and visual analysis for the verification of our results.



    加载中


    [1] S. Dragomir, C Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science Direct Working Paper, 2003.
    [2] J. Peajcariaac, Y. Tong, Convex functions, partial orderings, and statistical applications, San Diego: Academic Press, 1992.
    [3] G. Zabandan, A. Bodaghi, A. Kılıçman, The Hermite-Hadamard inequality for $r$-convex functions, J. Inequal. Appl., 2012 (2012), 215. http://dx.doi.org/10.1186/1029-242X-2012-215 doi: 10.1186/1029-242X-2012-215
    [4] J. de la Cal, J. Cárcamo, Multidimensional Hermite-Hadamard inequalities and the convex order, J. Math. Anal. Appl., 324 (2006), 248–261. http://dx.doi.org/10.1016/j.jmaa.2005.12.018 doi: 10.1016/j.jmaa.2005.12.018
    [5] M. Bessenyei, The Hermite-Hadamard inequality in Beckenbach's setting, J. Math. Anal. Appl., 364 (2010), 366–383. http://dx.doi.org/10.1016/j.jmaa.2009.11.015 doi: 10.1016/j.jmaa.2009.11.015
    [6] L. Li, Z. Hao, On Hermite-Hadamard inequality for $h$-convex stochastic processes, Aequat. Math., 91 (2017), 909–920. http://dx.doi.org/10.1007/s00010-017-0488-5 doi: 10.1007/s00010-017-0488-5
    [7] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set. Syst., 161 (2010), 1564–1584. http://dx.doi.org/10.1016/j.fss.2009.06.009 doi: 10.1016/j.fss.2009.06.009
    [8] R. Moore, R. Baker Kearfott, M. Cloud, Introduction to interval analysis, Philadelphia: Society for Industrial and Applied Mathematics, 2009.
    [9] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2001. http://dx.doi.org/10.1007/978-1-4613-0071-7
    [10] M. Bilal, A. Iqbal, S. Rastogi, Quantum symmetric analogues of various integral inequalities over finite intervals, J. Math. Inequal., 17 (2023), 615–627. http://dx.doi.org/10.7153/jmi-2023-17-40 doi: 10.7153/jmi-2023-17-40
    [11] W. Zhao, V. Rexma Sherine, T. Gerly, G. Britto Antony Xavier, K. Julietraja, P. Chellamani, Symmetric difference operator in quantum calculus, Symmetry, 14 (2022), 1317. http://dx.doi.org/10.3390/sym14071317 doi: 10.3390/sym14071317
    [12] M. Vivas-Cortez, M. Javed, M. Awan, S. Dragomir, A. Zidan, Properties and applications of symmetric quantum calculus, Fractal Fract., 8 (2024), 107. http://dx.doi.org/10.3390/fractalfract8020107 doi: 10.3390/fractalfract8020107
    [13] M. Vivas Cortez, M. Javed, M. Awan, K. Brahim, S. Dragomir, H. Budak, et al., On interval valued quantum symmetric calculus with applications, Heliyon, unpublished work.
    [14] J. Tariboon, S. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 282. http://dx.doi.org/10.1186/1687-1847-2013-282 doi: 10.1186/1687-1847-2013-282
    [15] N. Alp, M. Sarıkaya, M. Kunt, İ. İşcan, $q$-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193–203. http://dx.doi.org/10.1016/j.jksus.2016.09.007 doi: 10.1016/j.jksus.2016.09.007
    [16] W. Sudsutad, S. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. http://dx.doi.org/10.7153/jmi-09-64 doi: 10.7153/jmi-09-64
    [17] B. Bin-Mohsin, M. Javed, M. Awan, A. Khan, C. Cesarano, M. Noor, Exploration of quantum milne-mercer-type inequalities with applications, Symmetry, 15 (2023), 1096. http://dx.doi.org/10.3390/sym15051096 doi: 10.3390/sym15051096
    [18] A. Nosheen, S. Ijaz, K. Khan, K. Awan, M. Albahar, M. Thanoon, Some q-symmetric integral inequalities involving s-convex functions, Symmetry, 15 (2023), 1169. http://dx.doi.org/10.3390/sym15061169 doi: 10.3390/sym15061169
    [19] M. Kunt, A. Baidar, Z. Şanlı, Some quantum integral inequalities based on left-right quantum integrals, Turkish Journal of Science and Technology, 17 (2022), 343–356. http://dx.doi.org/10.55525/tjst.1112582 doi: 10.55525/tjst.1112582
    [20] M. Kunt, A. Kashuri, T. Du, A. Baidar, Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities, AIMS Mathematics, 5 (2020), 5439–5457. http://dx.doi.org/10.3934/math.2020349 doi: 10.3934/math.2020349
    [21] M. Ali, H. Budak, M. Fečkan, S. Khan, A new version of $q$-Hermite-Hadamard's midpoint and trapezoid type inequalities for convex functions, Math. Slovaca, 73 (2023), 369–386. http://dx.doi.org/10.1515/ms-2023-0029 doi: 10.1515/ms-2023-0029
    [22] S. Jhanthanam, J. Tariboon, S. Ntouyas, K. Nonlaopon, On $q$-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. http://dx.doi.org/10.3390/math7070632 doi: 10.3390/math7070632
    [23] T. Du, C. Luo, B. Yu, Certain quantum estimates on the parameterized integral inequalities and their applications, J. Math. Inequal., 15 (2021), 201–228. http://dx.doi.org/10.7153/jmi-2021-15-16 doi: 10.7153/jmi-2021-15-16
    [24] M. Adil Khan, N. Mohammad, E. Nwaeze, Y. Chu, Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 99. http://dx.doi.org/10.1186/s13662-020-02559-3 doi: 10.1186/s13662-020-02559-3
    [25] W. Saleh, B. Meftah, A. Lakhdari, Quantum dual Simpson type inequalities for $q$-differentiable convex functions, IJNAA, 14 (2023), 63–76. http://dx.doi.org/10.22075/IJNAA.2023.29280.4109 doi: 10.22075/IJNAA.2023.29280.4109
    [26] B. Bin-Mohsin, M. Javed, M. Awan, H. Budak, H. Kara, M. Noor, Quantum integral inequalities in the setting of majorization theory and applications, Symmetry, 14 (2022), 1925. http://dx.doi.org/10.3390/sym14091925 doi: 10.3390/sym14091925
    [27] H. Budak, M. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. http://dx.doi.org/10.1007/s10957-020-01726-6 doi: 10.1007/s10957-020-01726-6
    [28] Y. Chalco-Cano, A. Flores-Franulič, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. http://dx.doi.org/10.1590/S1807-03022012000300002 doi: 10.1590/S1807-03022012000300002
    [29] Y. Chalco-Cano, W. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. http://dx.doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6
    [30] T. Costa, H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sciences, 420 (2017), 110–125. http://dx.doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055
    [31] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. http://dx.doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [32] D. Zhao, T. An, G. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Set. Syst., 396 (2020), 82–101. http://dx.doi.org/10.1016/j.fss.2019.10.006 doi: 10.1016/j.fss.2019.10.006
    [33] H. Budak, T. Tunç, M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718. http://dx.doi.org/10.1090/PROC/14741 doi: 10.1090/PROC/14741
    [34] B. Mohsin, M. Awan, M. Javed, H. Budak, A. Khan, M. Noor, Inclusions involving interval-valued harmonically co-ordinated convex functions and Raina's fractional double integrals, J. Math., 2022 (2022), 5815993. http://dx.doi.org/10.1155/2022/5815993 doi: 10.1155/2022/5815993
    [35] T. Lou, G. Ye, D. Zhao, W. Liu, $I_q$-calculus and $I_q$-Hermite-Hadamard inequalities for interval-valued functions, Adv. Differ. Equ., 2020 (2020), 446. http://dx.doi.org/10.1186/s13662-020-02902-8 doi: 10.1186/s13662-020-02902-8
    [36] H. Kalsoom, M. Ali, M. Idrees, P. Agarwal, M. Arif, New post quantum analogues of Hermite-Hadamard type inequalities for interval-valued convex functions, Math. Probl. Eng., 2021 (2021), 5529650. http://dx.doi.org/10.1155/2021/5529650 doi: 10.1155/2021/5529650
    [37] M. Ali, H. Budak, G. Murtaza, Y. Chu, Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions, J. Inequal. Appl., 2021 (2021), 84. http://dx.doi.org/10.1186/s13660-021-02619-6 doi: 10.1186/s13660-021-02619-6
    [38] B. Bin-Mohsin, S. Rafique, C. Cesarano, M. Javed, M. Awan, A. Kashuri, et al., Some general fractional integral inequalities involving LR-Bi-convex fuzzy interval-valued functions, Fractal Fract., 6 (2022), 565. http://dx.doi.org/10.3390/fractalfract6100565 doi: 10.3390/fractalfract6100565
    [39] T. Du, T. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Soliton. Fract., 156 (2022), 111846. http://dx.doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
    [40] B. Bin-Mohsin, M. Awan, M. Javed, A. Khan, H. Budak, M. Mihai, et al. Generalized AB-fractional operator inclusions of Hermite-Hadamard's type via fractional integration, Symmetry, 15 (2023), 1012. http://dx.doi.org/10.3390/sym15051012 doi: 10.3390/sym15051012
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(472) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog