In this article, we implemented the idea of a fuzzy interval-valued function with the well-known generalized fuzzy fractional operators, associated with different types of convexities and preinvexities. We developed the Prabhakar fuzzy fractional operators using the fuzzy interval-valued function. We presented the novel extensions of Hermite-Hadamard fuzzy-type and trapezoidal fuzzy-type inequalities, based on the $ h $-Godunova-Levin convex and $ h $-Godunova preinvex fuzzy interval-valued functions.
Citation: Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin. Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities[J]. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
In this article, we implemented the idea of a fuzzy interval-valued function with the well-known generalized fuzzy fractional operators, associated with different types of convexities and preinvexities. We developed the Prabhakar fuzzy fractional operators using the fuzzy interval-valued function. We presented the novel extensions of Hermite-Hadamard fuzzy-type and trapezoidal fuzzy-type inequalities, based on the $ h $-Godunova-Levin convex and $ h $-Godunova preinvex fuzzy interval-valued functions.
[1] | P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 148. https://doi.org/10.1186/s13660-020-02419-4 doi: 10.1186/s13660-020-02419-4 |
[2] | G. Farid, A. U. Rehman, S. Bibi, Y. M. Chu, Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results, Open J. Math. Sci., 5 (2021), 1–10. https://doi.org/10.30538/oms2021.0139 doi: 10.30538/oms2021.0139 |
[3] | M. A. Khan, S. Begum, Y. Khurshid, Y. M. Chu, Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 70. https://doi.org/10.1186/s13660-018-1664-4 doi: 10.1186/s13660-018-1664-4 |
[4] | X. Z. Yang, G. Farid, W. Nazeer, M. Yussouf, Y. M. Chu, C. F. Dong, Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions, AIMS Mathematics, 5 (2020), 6325–6340. https://doi.org/10.3934/math.2020407 doi: 10.3934/math.2020407 |
[5] | M. V. Cortez, M. A. Ali, A. Kashuri, H. Budak, Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions, AIMS Mathematics, 6 (2021), 9397–9421. http://dx.doi.org/10.3934/math.2021546 doi: 10.3934/math.2021546 |
[6] | A. Almutairi, A. Kilicman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 192. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2 |
[7] | M. Samraiz, F. Nawaz, S. Iqbal, T. Abdeljawad, G. Rahman, K. S. Nisar, Certain mean-type fractional integral inequalities via different convexities with applications, J. Inequal. Appl., 2020 (2020), 208. https://doi.org/10.1186/s13660-020-02474-x doi: 10.1186/s13660-020-02474-x |
[8] | O. Almutairi, A. Kilicman, New fractional inequalities of midpoint type via $s$-convexity and their application, J. Inequal. Appl., 2019 (2019), 267. https://doi.org/10.1186/s13660-019-2215-3 doi: 10.1186/s13660-019-2215-3 |
[9] | M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. https://doi.org/10.1016/0022-247X(81)90123-2 doi: 10.1016/0022-247X(81)90123-2 |
[10] | M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323–330. https://doi.org/10.1080/02331939408843995 doi: 10.1080/02331939408843995 |
[11] | M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463–475. https://doi.org/10.1016/j.jmaa.2004.08.014 doi: 10.1016/j.jmaa.2004.08.014 |
[12] | T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8 |
[13] | U. W. Kulisch, W. L. Miranker, Computer arithmetic in theory and practice, New York: Academic Press, 1981. https://doi.org/10.1016/C2013-0-11018-5 |
[14] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[15] | B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001 |
[16] | B. Bede, Fuzzy analysis, In: Mathematics of fuzzy sets and fuzzy logic, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-35221-8_8 |
[17] | H. Román-Flores, Y. Chalco-Cano, G. N. Silva, A note on Gronwall type inequality for interval-valued functions, In: 2013 Joint IFSA world congress and NAFIPS annual meeting, 2013, 1455–1458. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608616 |
[18] | Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. http://dx.doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6 |
[19] | D. Zhao, T. An, G. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Sets Syst., 396 (2020), 82–101. https://doi.org/10.1016/j.fss.2019.10.006 doi: 10.1016/j.fss.2019.10.006 |
[20] | D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3 |
[21] | D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003 |
[22] | G. Toader, Some generalizations of the convexity, In: Proceedings of the colloquium on approximation and optimization, Univ. Cluj-Napoca, 1985,329–338. https://doi.org/10.12691/tjant-2-3-1 |
[23] | M. Tariq, S. K. Ntouyas, A. A. Shaikh, A comprehensive review of the Hermite-Hadamard inequality pertaining to fractional integral operators, Mathematics, 11 (2023), 1953. https://doi.org/10.3390/math11081953 doi: 10.3390/math11081953 |
[24] | M. R. Delavar, S. M. Aslani, M. De La Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018), 5864091. https://doi.org/10.1155/2018/5864091 doi: 10.1155/2018/5864091 |
[25] | O. Almutairi, A. Kilicman, Some integral inequalities for $h$-Godunova-Levin preinvexity. Symmetry, 11 (2019), 1500. https://doi.org/10.3390/sym11121500 doi: 10.3390/sym11121500 |
[26] | R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, arXiv preprint, 2008, arXiv: 0805.3823. https://doi.org/10.48550/arXiv.0805.3823 |
[27] | T. M. Costa, H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sciences, 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055 |
[28] | O. Kaleva, Fuzzy differential equations. Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7 |
[29] | M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. https://doi.org/10.3390/sym13040673 doi: 10.3390/sym13040673 |
[30] | M. B. Khan, M. A. Noor, M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-$h$-convex interval-valued functions by means of pseudo-order relation, Math. Meth. Appl. Sci., 45 (2022), 1310–1340. https://doi.org/10.1002/mma.7855 doi: 10.1002/mma.7855 |
[31] | S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129–132. https://doi.org/10.1016/0165-0114(92)90256-4 doi: 10.1016/0165-0114(92)90256-4 |
[32] | M. A. Noor, Fuzzy preinvex functions, Fuzzy Sets Syst., 64 (1994), 95–104. https://doi.org/10.1016/0165-0114(94)90011-6 doi: 10.1016/0165-0114(94)90011-6 |
[33] | L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal. Theor., 71 (2009), 1311–1328. http://dx.doi.org/10.1016/j.na.2008.12.005 doi: 10.1016/j.na.2008.12.005 |
[34] | G. Alefeld, G. Mayer, Interval analysis: Theory and applications, J. Comput. Appl. Math., 121 (2000), 421–464. https://doi.org/10.1016/S0377-0427(00)00342-3 doi: 10.1016/S0377-0427(00)00342-3 |
[35] | R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler functions, related topics and applications, Berlin, Heidelberg: Springer, 2014. https://doi.org/10.1007/978-3-662-43930-2 |