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1. Introduction

Convexities and preinvexities significantly contribute to advancing the optimization theory in
both pure and applied mathematics. The increasing demand for fractional operators stems from the
extensions and generalizations of fractional inequalities. Modifications applied to fractional operators
enhance their kernels, and multi-dimensional series of special functions play a pivotal role in deriving
new kernel versions, thereby improving the precision and applicability of fractional operators. Over the
past two decades, extensive research has been conducted on extending generalized fractional operators,
utilizing multi-index special functions as kernels. Researchers have diligently explored the use of these
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generalized operators to illustrate inequalities, garnering considerable attention in the field of fractional
order analysis [1-5]. The interconnection between control optimization and the theory of inequalities
is closely linked to the presence of (non)convex functions within their structures. This relationship
has been thoroughly examined by researchers [6—8]. The classical theory of convexities facilitates
numerous generalizations and extensions. One such essential generalization is the concept of an invex
function, introduced by Hanson in [9]. This concept serves as a foundational extension of convex
functions.

Furthermore, the fundamental characteristics of preinvex mappings and their applications in the
realms of optimization and variational inequalities have been extensively explored. Noor [10,11], along
with the works of Weir and Mond [12], has addressed these preinvex mappings, solving a multitude of
problems related to equilibria. The application of preinvex mappings has proven to be instrumental in
addressing challenges within optimization and variational inequalities, contributing to the resolution
of complex equilibrium-related issues.

Diverse strategies are employed to tackle issues related to community specifications, decision-
making, and optimizations, with their significance growing daily. The conventional crisp sets, which
provide membership values of 0 or 1, pose a challenge when an object exhibits a property to varying
degrees. To address this limitation, Zadeh introduced the concept of the fuzzy set theory, designed to
handle ambiguous or uncertain information by allowing membership values in the range [0, 1]. The
degree of membership within this interval reflects the level of assurance or conviction associated with
the corresponding output value.

The most commonly concept of the fuzzy number theory is based on the characteristics function,
but in fuzzy domain, the characteristics function is known as membership function that depends on
the unit interval [0, 1]. This means that each subset of R, and any real number, are exponential cases
of the fuzzy number theory. In decision-making processes entailing unclear or imprecise information,
fuzzy interval-valued functions prove invaluable. They enable the representation and analysis of hazy
preferences or ambiguous results. Pioneering works by Moore in 1966, Kulish and Miranker [13]
delved into the idea of interval analysis, uncovering its applications in arithmetic. Furthermore, a
multitude of studies in [14] have explored fuzzy-set theory and system development across various
fields, making noteworthy contributions to solving a wide array of problems in applied and pure
mathematics. These contributions extend to disciplines such as computer science, operational research,
management sciences, control optimization theory, decision sciences, and artificial intelligence.

So far, numerous researchers have explored the diverse properties and applications of variational
inequalities within a set of functions exhibiting generalized convexity [15, 16]. Additionally, in the
realm of studying fractional inequalities using fuzzy interval-valued functions (FIV-functions), which
involve fractional integrals with the integrand as an FIV-function, several noteworthy works have
been addressed by researchers. For instance, Flores et al. [17] extended the Gronwall inequality
to encompass interval-valued functions (IV-functions). Furthermore, Chalco et al. [18] applied
generalized Hukuhara derivatives to establish Ostrowski-type inequalities for FIV-functions and delved
into their numerical applications. Zhao et al. [19, 20] directed their attention to I'V-functions for the
modification of well-known inequalities such as Jensen’s, Chebyshev, and Hermite-Hadamard type
inequalities. Following this line of research, Zhang et al. [21] derived Jensen’s inequalities through the
utilization of fuzzy set-valued functions.

The primary motivation of this study stems from the essential and widely applicable nature of
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two classes of functions characterized by convexity and preinvexity properties within the realm of
optimization. In the context of fuzzy optimization, we aim to articulate optimality conditions under
such functions and explore the derivation of various variational inequalities of fuzzy type. FIV-
functions emerge as a pivotal fuzzy notion, offering a means to establish innovative applied fractional
fuzzy inequalities through their combination with fractional operators. The incorporation of FIV-
functions into these inequalities provides a unique avenue for investigating uncertainties in prediction
scenarios, departing from the semantic norms of standard non-fuzzy inequalities. We delve into the
utilization of FIV-functions to formulate fuzzy integral inequalities, where uncertainties manifest in
the integrand rather than the measures of integration. To achieve this, we draw on a specific group
of h-convex and h-preinvex FIV-functions of the Godunova-Levin type. This strategic utilization
facilitates the derivation of notable fuzzy-based integral inequalities. In essence, the research endeavors
to bridge the conceptual gap between convexity, preinvexity, and fuzzy optimization, offering a novel
perspective on uncertainties in prediction situations through the lens of FIV-functions and fractional
fuzzy inequalities.

In the following section, certain essential concepts are revisited to serve as a reminder. Section 3
explores Prabhakar fuzzy-based Hermite-Hadamard (H-H) type inequalities utilizing 4-Godunova-
Levin FIV-functions endowed with convexity. The convexity property is formulated explicitly within
this section. In Section 4, the focus shifts to Prabhakar fuzzy-based trapezoidal-type inequalities,
this time incorporating h-Godunova-Levin FIV-functions with the preinvexity property. The study
culminates in Section 5, presenting concluding remarks and insights drawn from the findings.

2. Preliminaries

In the present section, we focus on some basic definitions and properties, which are helpful to
understand the contents of the paper. Throughout the paper, K C R is a convex set.

Definition 2.1. [22] The function x : K — R is said to be convex if

y(tu+ (1 =1v) < tyw) + (1 = Hy(v),
where t € [0, 1] and u,v € K are arbitrary.

By considering the convex function defined above, the Hermite-Hadamard (H-H) type inequality

y(u+v)s ;fuy(u)dusw
2 v—uJ, 2

was discussed many remarkable results in [23], where u,v € K C R and u < v.

Definition 2.2. [24] The preinvex function 'y : K — R, where u,v € K (Here, K C R is an invex set
w.r.t. the bi-function £ on K X K) and A € (0, 1], is defined as

v+ 48w, v)) < Ay(u) + (1 = Dy(v).

Definition 2.3. [25] Consider the functions h : (0,1) —» R andy : K — R>°. Then, the h-Godunova-
Levin function y satisfies

Yy o)

ht)  h(l-p’

y(tu + (1 —t)v) <
forallu,v e K andt € (0,1).
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Definition 2.4. [25] Consider the functions h : (0,1) - Randy : K — R. Then the h-Godunova-
Levin preinvex function y w.r.t. & satisfies

Y .y
hl-t)  h@)’

y(u + té(v,u)) <

so that u,v € K, t € (0, 1) are arbitrary.

Definition 2.5. [26] Let y € L'[u,v]. The Riemann-Liouville left and right integrals ]I,'}y and ]I’j,y of
order b > 0 are defined as follows

IL.y(r) = % f r(r -0 y(ndt, r>u,
and

P y(r) = 0 f (t—r"y@wdt, r<v.

By considering F' C R as the fuzzy interval, let 71;, i1, € F. The partial order relation < is given by

m<h o [ml <, Yelo,1],

where [71]¢ is called the ¢-level set of 7 defined by
(Al ={reR: £ <A}
Proposition 2.6. [27] For hy,h, € F, c € Rand € € [0, 1], we have
I = ]+l
(x| = () x o,
[e-m]" = cml’,
1" = c+ml"

Let /iy = fi,+H, where H € F. In this case, the Hukuhara difference (H-difference) of #; and 7%, is
represented by the symbol 7, —7, and we have

(H)'(0) = (l=To)"(€) = 1(6) = 15(6),  (H).(€) = (1=T2).(£) = Ty () = Tau(0).

The left fuzzy-based Riemann-Liouville integral of the function y is defined as

=T f (x = 0"y (t)dt

- bl .
_r(b)j;(x 07 [y, 0,y (¢, Oldt, x> u,

[ u*y(-x)

where

[, y.(x,0)] = ol f (x =" y.(t, O1dt, x> u,
and

501 = f - 0P O, x> i

We denote the family of all bounded closed fuzzy intervals of R by K.
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Definition 2.7. [28] For all ¢ € [0, 1], the FIV-function y : K C R — K, is formulated by y,(x) =
[v.(x, €),y"(x,0)], Y x € K in which the left and right functions y*(x, {), y.(x,€) : K — R are named as
the upper and lower functions of y.

Note that the FIV-function y : K C R — K, is continuous at x € K if for all £ € [0, 1], both y.(x, £)
and y*(x, €) are continuous at x € K.

Definition 2.8. [29] Assume that K, is the aforesaid class of intervals and H € K,.. Then
A=A, AN]l={adeR|A, <a<A},(A,, A" €eR).
If A. = N*, then we say that A is degenerate.

In this research, we consider all the fuzzy intervals as the non-degenerate intervals. If A, > 0, then
[A., A"] is named as a positive interval, and all of them can be specified by the symbol K. so that

Kj. = {[A. AT : [A,, A"] € Kj,e and A, 2 0.
Let o € R. Then, we define the scalar multiplication as [29]
[cA.,ocA] if o >0,
o-A=
[cA*,oA,] if o <0.

Also, the Minkowski algebraic difference and addition actions A;—A; and A1+A; , where Ay, A, € K,
are defined as

[Al*’AT] - [Az*’A;] = [A]* - AZ*,AT - A;]’
[Are A1+ [Ag A3 = [Ar + Ages A} + AL

Moreover, the inclusion “ C ” means that A; C A, if and only if [A,,A]] € [As., AJ] iff Ay, <
Ao, AT < AS[29].
The fuzzy order relation < is defined on K, as

AL, AT <1 [A2, Al © Al < Ao, AT A,
for all [A1., A7, [As., A5] € Ky [30].
Definition 2.9. [31] The FIV-functiony : [u,v] — K, is convex on [u,v] if
e+ (1= 1) < y@F(1 = )y),
so that u,v € [u,v],t € [0,1], y(v) > 0 forall v € [u,Vv].

Definition 2.10. [32] For u,v € K., A € [0, 1], if ¢ : [a,B] — R is the bi-function, then the invex set
K. C R is defined as follows:
v+ Aé(u,v) € Kpe. 2.1

Definition 2.11. [32] The FIV-function y : [a,B] = K. is preinvex w.r.t. & on invex interval [a, B] if

Yy + A, v)) < Ayw)+(1 = Dy(v),
so that u,v € [a,B],t € [0, 1], and y(u) > 0,V v € [a,B].
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Definition 2.12. [29] Let P be a partition on [a,Blas P = {u = x; < xp < x3 < x4 < x5 < -+ <
X, = v}. The subintervals including the point p, having the maximum length, are termed as the mesh
of partition P given by

Mesh(p) = max{x; —x;. : j=1,2,...,m}.

The collection of all possible partitions for [u,v] is denoted by P{6, [a,B]} and for p € P(6, [a,B]), we
have Mesh(p) < ¢o. For every point b; belonging to the subinterval [x;_i, x;], where 1 < j < m, we
define the Riemann sum of the function y corresponding to p € P{9, [a,B]} as

SO, p.0) = ) y(b)(x; = xj0),
j=1

so thaty : [a,B] = K.

Definition 2.13. [33] Assume y : [a, ] — Kj.. We say that y is Riemann-integrable (R-integrable) on

[, B] if
d(S(y, P,8),B) <6,

where B € R and 6 > 0. For each choice of b; € [y;_1,y;, 1 < j < m, Bis called the R-integral of y
w.rt. [a,B), and is denoted by B = (R) f y(t)dt.

u

Definition 2.14. The integral form of gamma function is defined as given below

Iy = f ) ke *dk, (2.2)
0

for R(k) > 0
Definition 2.15. The Pochammer’s symbol is defined as follows
— 1, fOI" k= O’y * 0’
O = { yy+1D)..o+k-1), for k=>1. (2.3)

ForkeNandye C:
I'(y+k)

Iy °’

Ok = (2.4)

where I is the gamma function.

Theorem 2.16. [34] Lety : [a,8] € R — K, be an FIV-function such that y(x) = [y.,y*]. Theny is
R-integrable on [, B] iff y. and y* are R-integrable on [a, 5], and

(R) f y(x)dx = [(R) f v.(x), (R) f v (x)dx

Definition 2.17. [35] The Prabhakar fractional linear operator on a space L of functions by integral
and employs fractional operator integration I : L — L to prove results for a < x, a,B,p, A € C and

R(a) > 0,R(p) > 0 as follows:

€ f () = f (- FEL Ax = 0 f(dt (R(B)) >0, 2.5)
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and operator for a > x

f (x) = f (t = XV EL At = ) f(ndt (R(B)) >0, (2.6)
for any real number a > 0 where the function
_ (P)nx"
Ef ,(x) = Z Fanigm R@>0 2.7)

is an entire function of order (R(a))™".

Definition 2.18. The left- and right-sided Prabhakar fuzzy fractional integral operators pertaining lefft,
right end point functions, are defined as given below

i) = [ o 0r B - oo

f (x = 0B jAx = [ (L D), £l D]dt, (2.8)
where
R = f x(x — Y EL A= 0 (L Ddt (x> a), (2.9)
@fo*(x, h = f x(x =0 EL jAx = 0 fu(l,Dde (x> a). (2.10)
And

€4 0] = [€4 0] f (t = 2P A = %) (L, 1)t

f (t = P B A — 0 Lf (L), £l D]dr. (2.11)

Remark 2.19. Prabhakar fuzzy fractional integral operators are represented with the difference £(x, a)
in short notation as follows:

(624 700] futfagﬂ ) fnde = €5 fo D, (2.12)

[ f(x) f(r—x)ﬂ E' (g( )f(l Ndt = €%, _f(x. D). (2.13)

3. On the (H-H)-type inequalities using the Prabhakar FIV-functions endowed with
h-Godunova-Levin convexity

In the present section, we introduce a novel category of Prabhakar FIV-functions characterized
by the convexity property aligned with the s-Godunova-Levin type. Through the application of
these Prabkakar FIV-functions, we obtain (H-H)-type inequalities and delve into their applications,
illustrated through various examples and cases.
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Definition 3.1. The FIV-function y : [a, 8] = K. is said to be the Godunova-Levin FIV-function if

y(u) ~ y(v)
y(tu+ (1 —1tw) < T+:’

is satisfied for all u,v € [u,v],t € (0, 1).

Definition 3.2. Consider h : (0,1) — R. The FIV-function y : [a,B] — K, is named as a convex
FIV-function of the h-Godunova-Levin type if

yu)— y(v)
y(tl/t + (1 - l’)V) < %'Fm,

is satisfied for all u,v € [u,v],t € (0, 1).

Definition 3.3. Consider h : (0,1) — R. The FIV-function y : [a,] — K, is named as a preinvex
FIV-function of the h-Godunova-Levin type w.r.t. £ if
yu) —y(v)

Y+ 160, 10) < ST,

is satisfied for all u,v € [u,v],t € (0, 1).

Now, we are going to prove the (H-H)-type inequality for convex FIV-functions of the #-Godunova-
Levin type.

Theorem 3.4. Consider h : (0,1) - R andy € Li[u,v] such that h(w) # 0 and y : [u,v] = K. is a
convex FIV-function of the h-Godunova-Levin type with 0 < u < v. Then the fuzzy fractional integral
inequalities

h(3)
> Y

u+v 1 @ —
ISt < 5o (€ OTE, ()] (3.1)

2 )T T o (n —
Y Fy(v) fl[ 1 1 [
< WLER Aw®dw,
2 ), Laow T w1 ap W AW

—W)

hold.

Proof. In view of the h-Godunova-Levin convexity for the FIV-function y on the closed interval [u, v],
for each x,y € [u, v], we have

yx)~ y()

y(ox+ (1 -9)y) < @-Fm’

6€(0,1).

Putx = wu + (1 =w)v,y = (1 —w)u + wv and § = 1. Hence

h(%)y(u ; V) < [yOwu + (1 = W) Fy((1 = e + wi)].

For each ¢ € [0, 1] and for the lower FIV-function y,, we can write

h(%)y*(uT—H}, f) < [ye(wu + (1 = w)v, €) + y.((1 = wu + wv, £)]. (3.2)
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Multiplying w?~ IEQ sAw® by Eq (3.2) and integrating w.r.t. w on [0, 1], we obtain

I\ (u+v b
A )= » - Ep “ :
h(2)y ( 2 K)L v ap W AW 3.3)

1 1
< f WD Awy.(wu + (1 = w)v, O)dw + f WLED sy (1 = whu + w, Odw.
0 0

Now, by substituting » = wu + (1 — w)v and = (1 — w)u + wv, it becomes

1 u+v
W3 (55 ) (3.4)

v _ p£-1 _ 04 d v f— £-1 t— 04
f(v r) EZB/I(V r) . (r0)- ! +f( ”) E A(—”) y.(t,
L \v—u Py — -u J, \v—u B

! [ v(v—r)ﬂ‘lE‘Z,ﬁ/l(v ) V. (7, f)dr+f(l—u)ﬂ E, ( ) y:(t, f)dt]

and so,

h(%) u+v 1
=27, OE A< ——
2 y( 2 ) aptl 2(v—u)ﬁ[

Similarly, we continue the calculation for upper FIV-function y*, and we obtain

hG3) (u+v N\,
S (5

e, O + €y, 0)] (3.5)

1
12 5 (€0, 0.0+ €y o). (3.6)

From inequalities (3.5) and (3.6), the inequality
D1 (u+v NUER
T[y( 2 ’5)’y ( 2 5)]E§ﬁ+11
€030 O+ €4 3, 0. €%y 0,0+ €% 0|

S P
2(v — u)p

is derived; that is,

1
Eqpad < (V_u)ﬁ[ Y TET, y(u)] (3.7)

e

Now, we again consider the 4-Godunova-Levin convexity for the FIV-function y to prove the second
part of the inequality (3.1). We have

y(wu + (- w)v) ;(( ))I T 1(f)w) (3.8)

and

y(u) I)’(V)
h(1—=w) hw)

y((l —Wu + wv) < 3.9)

AIMS Mathematics Volume 9, Issue 7, 17696-17715.



17705

By adding (3.8) and (3.9), we get

y(wu +(1 - w)v) + y((l —wWu + wv) (y(u)+y(v))[h(1w) + i 1_ w)]'

For each ¢ € [0, 1] and for the lower FIV-function y., we have

et (=, €) (1= whct wv,€) < (0,0 + 3.0), f)[h(lw) * L W)]. (3.10)

By multiplying wf~'E /lw by both sides of (3.10) and integrating on [0, 1] w.r.t. w, we get

1
f WB_IEg’ﬁ/lw“y*(wu + (1 =w)v, {’)dw + f WB_IE’ZﬁﬂWay*((l — WU + wv, f)dw
0 0

< (y*(u,{’)+y*(v, f)) fo 1 [ - (lw) ; h(ll_w)]wﬁlEZﬁ/lwwdw.

After simplification, we obtain

. [@ Y O + (G N y(u, 0)]

't 1
< () + yu(v. 0)] fo [

how) Rl —w)

Similarly, we continue our computation for the upper FIV-function y*, and we obtain

w1 . 3.11)

1
o oY 020 + Gy (1, 0)] (3.12)
1
< 4 ¢ ]WB_lE‘U wdw.
[ (u, &) + y"(v, )]f o) h(l—w) a gV dwW
Combining inequalities (3.11) and (3.12), the inequality
1

G 0+ € DGy 0 0+ €y w0

r 1
<[y, ©) + y.(v, O1, [y"(u, £) + y* (v, O)]] fo [

how) Rl —w)

]WB_IEZﬁ/lw“dw,

is derived; that is,

[@p,l YFE p/l yw)] y(u)+y(v) 1
- L < WIER Aw®dw. 3.13
20— up f h(w) h(l—w)] oW AW 3.13)
From (3.7) and (3.13), we get
h(z) (u+v\_, 1 o
Ty( 5 )Ea/,,B+1/l < m[ pﬂ’u*y(v)—i_("p/l/ y(l/l)] (314)
y(u)+y(v) f [ 1 1 ] »
< 227 wWPLED Aaw®dw,
2 J, Laow) TR =) ap W AW
which is our desired result. i
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Some special cases of the conclusion of the above theorem can be stated in the framework of several
examples.

Example 3.5. In Theorem 3.4, put h(w) = w’. Then the (H-H)-type inequality

[

(3)°
2—y(u b o YO FE,  y(w)]

1

P -

2 2 )E"*ﬁ“/l <2(v —u)
y(u)+y(v) 1 1 10 e

<= fo [(w)5+(1 ]wﬂ E° Aw“dw,

— ‘,‘))uY (lﬁ
is derived for the FIV-function with convexity of the s-Godunova-Levin type.
Example 3.6. In Theorem 3.4, put h(w) = 1. Then

(v +(E“ﬂ, u T
1y(u+v) - (€ M YW) ppA y()] < y(u)+y(v). (3.15)
2°\ 2 2(v —upE, i1 2
1
Example 3.7. In Theorem 3.4, put h(w) = —. Then the (H-H)-type inequality
w
u+v [ (Gie u+)’(V)+ p/l - y(”)] y(u)+y(v)
y( ) < < , (3.16)
2 2(v — uPE” 2

17 ﬁ+1
is derived for the convex FIV-function.

Example 3.8. In Theorem 3.4, put h(w) = w. Then the (H-H)-type inequality

b 1 (Ed,ﬁ/ . (V)I(Eaﬂ, B (u) —~ 1 -2
(4 )y(u+v) < My W) YOHO) (C W e GAT)
2 2 a,f+1 2(v_u).3 2 0 1-w @

is derived for the FIV-function with convexity of the Godunova-Levin type.

1
Example 3.9. (1) By choosing the value h(w) = — in Theorem 3.4, the (H-H)-type inequality
W‘S

E° . A [€" y)FE u —w)
(M+V) a,B+1 < [ 0,4 ,u y( ) p/l v y( )] < y(u)"‘y(V)f w' +(1 W) ]E‘;ﬁ/lw"dw,

2 ) 2t 2(v — u)f
is derived for the FIV-function with s-convexity.
1
(2) If we take the value A = 0, h(w) = — in Theorem 3.4, then
WS

wli-B

§— u-+v r(ﬁ + ) y(u)+y(v) ) i
: ly( 2 )\ 2(v - )ﬁ[ﬂﬂd(V)HI'B y(u )] ﬁf + (1= w)' W dw,

is derived for the FIV-function with s-convexity.
1
(3) If we take the value A = 0, h(w) = —,B = 1 in Theorem 3.4, then
WS

L (u+V 1 g y(u)+y(v)
251 (” ) < —f < 2
N2 v—uJ, ywldw s+1
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4. On the trapezoidal-type inequalities using Prabhakar FIV-functions characterized by the
preinvexity property of the #-Godunova-Levin type

In this context, we formulate a lemma specific to Prabhakar FIV-functions featuring ~A-Godunova-
Levin preinvexity, providing valuable support in establishing our key findings. Indeed, within this
section, we deduce fuzzy-based trapezoidal-type inequalities and explore their applications through
illustrated examples and cases.

Lemma 4.1. Lety : K = [u,u + £(v,u)] — R be a differentiable function, and K be an invex set w.r.t.
¢ KX K — Rsothat E(v,u) > 0 foru,v € K. Then

—_ (Y,ﬂ—l a/ﬁ 1
Yty + €0, 1) pp [ sy Y0 OFE 001 Y O A
2 @B 261 (v, u) 2

Proof. Consider the integral

1
= f WUED j AWy (u + wé(v, u))dw — f (1= WY EG AL = )"y (u + wé (v, w))dw.
0

For every ¢ € [0, 1], we have

1 1
I = f WUED J AWy (u + wé(v, u), Ddw — f (1= wy™ EL ;A0 = w)y, (u + wé(v, ), Ddw.
0 0
Now we solve the integrals of the above equation by considering it as /; and I,. Simply, for /;, we get

ylu+&,w), 0 , o A(P)ulan +B—1)
EW, u) Eqopt Z n!I'(an + B)éWV, u)

yilu + £, u), ) EP Q- f t—u t—u\"
v (v ) ( o, u)) Brs- ri(gi;;;g) y.(t. 0,

a,f-1
_ €00y C oot sy Vst )
E(v, u) op (v, u)

Using the similar inference to that of I, we have

1
w“”+ﬁ_2y*(u + wé, u), O)dw

and so,

1

a,f-1
Y-, ) p €0 ey Y+t 0)

b= Fas (v, 1)

Consequently,

yilu + &, u), 0) pACE 0
&, u) &, u)
0

E /l 1 a,B—-1 a,[-1
[y*(l/l f) + y*(l/l + é:(v l/l) f)] é‘:( [) fﬁ(V, I/t) [(gp A (u+&(v,u))~ y*(l/l f) +C A (v+E(u, v))*y*(v’ f)]

1
0 a,B—-1 a,f-1
]Ea,ﬂ/l T (v, u) [@p v rrany Yo O+ €l oy YV, 5)]
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1 1
= f wB_lEgﬁxlw“y;(u + wév, u), Hdw — f (I- W)B_lEgﬁ/l(l —w)Y(u+wEw,u), hdw.  (4.1)
0 0

Similarly, we continue our computations for the upper FIV-function y™*, and we get
0

* * Easﬁﬂ 1 (Eoz,,B—l £ @a,ﬁ—l £
@ + 3"+ €00, 0] 20 = s | oy Y W O+ €5V 0]

1 1
_ f WB_IEgﬁ/lw“y'*(u + wéW, u), Ddw — f (1- W)ﬁ‘lEgﬁ/l(l — W)Y (u + wé(v,u), Ddw. (4.2)
0 0

By combining Eqs (4.1) and (4.2), then we have

E A
[Ve(u, ) + y.(u + EW,u), €),y (u, €) + y* (u + E(v,u), £)] b
&(u, €)
1 a,f-1 a,[-1 a,f—1 * -1 *
", u) (& Yo O+ Gy Vo 0, €y W O+ C ey (00
1
= f wB‘lEZﬁ/lw"(y'*(u +wéW, u), 1), y.(u + wé, u), ))dw (4.3)
0

1
- f (1= wYf ™ EL j A0 = w) (7" (u + wé(v, u), 1), y,(u + wé(v, u), D)dw.
0

That is,
Egﬁ/l R
Eu, ) (v, u)

This completes the proof. O

[y Fy(u + £, w))] (G (u, FE4! W, 0| =1

0, (£, 0 (£ )Y

By Lemma 4.1, we can state the following theorem.

Theorem 4.2. Consider the functiony : K = [u,u + £(v,u)] — (0, ). Assume that the differentiable
FIV-function |y'| has the preinvexity property of the h-Godunova-Levin type on K. Then

—_— (Z,ﬁ—l —~ a/,ﬁ—]
y)+y(u + &(v, u))Ep 1 [(‘fp, v wseeany- YU OFC T ey YV, {’)]'
2 i 265 1(v, u)
f(V, u) ’ Ty : —1 P a -1 o a
Y @RV O [ W B = (= WP L AL - w)
0

B

Proof. Using Lemma 4.1, we obtain that for every ¢ € [0, 1]

Y@)+y(u + £, )

P, (u+E(v,u)) 0., (v+Eu))*

28 1(v, u)

o e y(u, OFE] y(v,f)]‘
a,B -

2
V) (M e e 1= oy
- 5 f WLED jaw®y (u + wé(v, u))dw — f (1= wY ™ EL ja(1 = w)®y (u + wé(, ”))dw‘
0 0

él:(u, V) ! —1 Q. : —1 ./
= /5= f WD AWy (u + wé(v, u))dw — f (1= wV ™ Ef JA(1 = w)*y (u + wé(v, u), Ddw
0 0
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§u, v)

1 1
f ’wB_IEgﬁ/lw"y’(u - WEW, u))| dw — f ](1 — WP TER JA(L = W)Y+ wé v, 1), D)| dw
0 0

()"
— I'(an + B)n!

£u, v)
2

1
f (W — (1= w) ™ B 1y (e + we, w), D] dw.
0

The h-Godunova-Levin preinvexity property of the FIV-function |y (u + wé(v, u), €)| gives

Eu) [ @ | it Y00 Y020
LHS. <= ;r(an+ﬁ)n!f0|w e | v Vg
Eu) | @l | ) sty (0] 0.0
=73 ;F(an+ﬁ)n! fo i =y h(w) h(l—w)]dw' “44)

Similarly, we repeat the computations to solve it this time for the upper FIV-function y™*. We have

&u, V) (P)n A" f | antf-1 _ (1 _ )(m+,3—1|[|y,*(u’€)| 4 y'*(v,€)|
T2 F(a/n + B)n! h(w) h(l —w)

LHS. <

]dw. (4.5)

From inequalities (4.4) and (4.5), we get

L.H.S.
SV 0, 0) + 5.0, OL Iy 1, O + (v, O] f W B2 — (1 = WP B 21—t o
<=1, Y. Y y O s ) o
1
2 ’ TN — a 1
<Oy iy ] fo " = (1 = P 21 | s,
as required. O

Some special cases of the conclusion of the above theorem can be stated in the framework of several
examples.

Example 4.3. In Theorem 4.2, put £(v,u) = v — u. Then

YWry®) oy ) ety A+ E)*
2 @B 2(v — u)p!

vV-w. , .~ : —1 P « —1 P
<SS CORYOI [ B = 1w
0

Gy W, OF A o, 5)]‘

1
Y ——dw.
w

Theorem 4.4. Consider the functiony : K = [u,u + £(v,u)] — (0, ). Assume that the differentiable
FIV-function |y'|? has the preinvexity property of the h-Godunova-Levin type on K so that q = 1% with
p > 1. Then

—_ a,f-1 a,B—-1
Ya)+y(u + 50 w) pp (& Y0 OFET i Y 5)]'
2 @B 28P-1(v, u)

§(V u)

<

% 1 1 5
"W) (fo mdw) |
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Proof. Using Lemma 4.1, and Holder’s integral inequality for every ¢ € [0, 1], we obtain

y(u)+y(u ) (€0 ey Y OFEL 2O, f)]'
261 (v, 1)

) (” Y f WHLER Ay (1 + wé(v, w)dw f (1= WY EG gA(1 = )Y (e + WE(, u))dw]
0

< (MZ,V)f ‘WB—I AW = (L= WP E2 A1 = wy
0
< f(Vz,u)(fl |W5—1E'Zﬁ/lwa_(1_W)ﬁ—lEZ’B/l(l_ apdw),l,( 1 )‘11
g 0
- g(vz’ u)( fl |Mﬁ_1E§’ﬁ/lwa -(1- W)ﬁ_lEZ,ﬂ/l(l - w)” g dw);( fl V. qu)‘l’,
’ 0
(4.6)

where L + 1 =1,
P q

The h-Godunova-Levin preinvexity property of the FIV-function |y, (u + wé(v, u)), € |q gives

L Ly, 81 Ly, (), €
Lly*(u+w§(v,u)),€lqdw§£( o) +h(1—w))dw' 4.7)

* q, and we get

L Yy ), 07y ), )
foly (u+w§(v,u)),€|‘7dwsv£( 7w + Wi —w) )dw. (4.8)

Similarly, we solve it for the upper FIV-function

By combining (4.7) and (4.8), we have

LHS. < (Iy.(u, &) + y, (v, O, Iy, €) + y (v, f)l")f v )

< (¥ @IFy I f m‘”" 4.9)

Using (4.9) in (4.6), we get the required result. O
Theorem 4.5. The H-H inequality related to the hypotheses of Theorem 4.4 is as follows

B-1 B-1
y(u)"'y(u +&(v,u) p /l _ [Gp/l (u+EQ,u))~ y(u, €)+(Ep/1 (e, v))+)’(V, 5)] '
2 281 (v, u)

1-1
£ ) ) A 1)" ‘
< (I @7 Fly ()| [EMH (2) Ef it 5

L e = (= W B A =y
X f : dw| .
0 h(w)
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Proof. Using Lemma 4.1, and thanks to the power-mean inequality, the last inequality becomes for

every ¢ € [0, 1]

0
Ea’ﬁ/l -

— a,B—-1 ~ =51
) Fy(u + £0v, ) | ety Yt OFE Ly ¥, 0] '

2
&(u,v) flwﬁ_l
0

2851 (v, u)

2
1
< f(uz’ : f B A = (1= L AL = )| . )] v,
0
_ -1 ~ -1
Yty + &0, w) op [ st Y0 OFE T YO 5)]'
2 a8 255_1 (V, M)
1 -3
< f(v’”)(f WP EL gw = (1= wy U EL A1 = ) dW) q
2\ o "

(fol 'm/“Eg

The h-Godunova-Levin preinvexity of the FIV-function |y’(u + wé(v, u))

J
J

J

IA

IA

V' (u + wé(v, u))|qdw)a.

s = (= wYTE Al - w)*

q .
, We can obtain

1
[ L A = (1= W B AL = )

v, (u+ wéWv, u), €)|qdw

1
[ EL = (1= W B AL = )

h(w) h(l —w)
WA ED o = (1= W B AT = )
h(w)

(Iy. @, 817 + |y, (v, O)dw.

Similarly, for the upper FIV-function [y*|9, we get

[
o
sfol

By combining (4.12)

L.H.S.

fl )wﬁ-lEgﬁAwa — (L= WP EL Al - w)a]
<
0

WUED jaw® — (1= wf ™ Ef A1 —w)?

V(U + wE, u), {’)|qdw

WED aw® — (1= wf ™ Ef A1 —w)?

h(w) h(l —w)
wﬁ‘lEgﬁ/lw“ —(1- w)ﬁ‘lEgﬁ/l(l —w)*
h(w)

and (4.13), we have

(Y (u, O + |y (v, OI)dw.

h(w) (Iy @)+ly MI)dw.

On the other hand, using the equation

1
f W9 L o = (1= W) B A1 = )
0

and (4.14) and (4.12)

AIMS Mathematics

, we get the required result.

(Iy*(u),fl" LAY f)lq)dw

(Iy'*(u, or . v, Ol )dw

) 1 p-1 ) 1 a
dw =2 E,pd- 5 E, 51 IRE

1
Egﬁ/lw"y'(u + wé(v, u))dw — f (1- W)B_IE'Z’B/I(l —w)y (u + wé(v, u))dw
0

(4.10)

4.11)

(4.12)

(4.13)

(4.14)

O
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5. Conclusions

In this research, we introduced a novel classification of convex FIV-functions and preinvex FIV-
functions, employing an arbitrary auxiliary A-function of the Godunova-Levin type. Utilizing this
category, we derived updated versions of Hermite-Hadamard (H-H) and trapezoidal-type inequalities
by implementation of newly described fuzzy fractional operators (Prabhakar fuzzy-based operators).
The application of these findings was demonstrated through various examples, highlighting diverse
cases. We conclude that extending Prabhakar (H-H) and Prabhakar trapezoidal-type fractional
inequalities to encompass different types of fuzzy-based convexities and preinvexities under Prabhakar
FIV-functions is both feasible and applicable. Looking ahead, we plan to explore this concept further
within the domain of generalized convex FIV-functions, with a focus on applications in fuzzy-interval-
valued non-linear programming. We anticipate that this exploration will contribute valuable insights
to the broader field of fuzzy-based optimization theory and provide a foundation for other researchers
in fulfilling their roles within this realm. Moreover, we conclude that such type of fractional operators,
extensions, and generalizations of inequalities and its refinments could be discussed for fuzzy interval
valued functions. The validated results are expected to open new avenues for future research in this
evolving area. These outcomes indicate a promising route for further exploration in the sphere of
integral inequalities.
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