Research article Special Issues

Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory

  • Received: 01 November 2019 Accepted: 12 March 2020 Published: 17 March 2020
  • MSC : 26A33, 34A08

  • This article aims to prove the existence and uniqueness of solutions to a nonlinear boundary value problem of fractional differential equations involving the Caputo-Hadamard fractional derivative with nonlocal fractional integro-differential boundary conditions. The concerned results are obtained employing topological degree for condensing maps via a priori estimate method and the Banach contraction principle fixed point theorem. Besides, two illustrative examples are presented.

    Citation: Choukri Derbazi, Hadda Hammouche. Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory[J]. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174

    Related Papers:

  • This article aims to prove the existence and uniqueness of solutions to a nonlinear boundary value problem of fractional differential equations involving the Caputo-Hadamard fractional derivative with nonlocal fractional integro-differential boundary conditions. The concerned results are obtained employing topological degree for condensing maps via a priori estimate method and the Banach contraction principle fixed point theorem. Besides, two illustrative examples are presented.


    加载中


    [1] S. Abbas, M. Benchohra, N. Hamidi, et al. Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027-1045. doi: 10.1515/fca-2018-0056
    [2] G. Adomian, G. E. Adomian, Cellular systems and aging models, Comput. Math. Appl., 11 (1985), 283-291. doi: 10.1016/0898-1221(85)90153-1
    [3] R. P. Agarwal, D. O'Regan, Toplogical degree theory and its applications, Tylor and Francis, 2006.
    [4] B. Ahmad and A. Alsaedi, Nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions, Bound. Value Probl., 2012 (2012), 124.
    [5] B. Ahmad, A. Alsaedi and S. K. Ntouyas, Nonlinear Langevin equations and inclusions involving mixed fractional order derivatives and variable coefficient with fractional nonlocal-terminal conditions, AIMS Mathematics, 4 (2019), 626-647. doi: 10.3934/math.2019.3.626
    [6] B. Ahmad, M. Alghanmi, S. K. Ntouyas, et al. A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions, AIMS Mathematics, 4 (2019), 26-42.
    [7] A. Ali, B. Samet, K. Shah, et al. Existence and stability of solution to a toppled systems of differential equations of non-integer order, Bound. Value Probl., 2017 (2017), 16.
    [8] N. Ali, K. Shah, D. Baleanu, et al. Study of a class of arbitrary order differential equations by a coincidence degree method, Bound. Value Probl., 2017 (2017), 111.
    [9] A. Ardjouni, A. Djoudi, Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open J. Math. Anal., 3 (2019), 62-69.
    [10] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Mathematics, 4 (2019) 1101-1113.
    [11] Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional differential equations, Surveys in Mathematics and its Applications, 12 (2017), 103-115.
    [12] M. B. Zada, K. Shah and R. A. Khan, Existence theory to a coupled system of higher order fractional hybrid differential equations by topological degree theory, Int. J. Appl. Comput. Math., 4 (2018), 102.
    [13] P. W. Bates, On some nonlocal evolution equations arising in materials science. Nonlinear dynamics and evolution equations, Fields Inst. Commun., 48 (2006), 13-52.
    [14] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal., 71 (2009), 2391-2396. doi: 10.1016/j.na.2009.01.073
    [15] M. Benchohra, S. Bouriah, J. J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 112 (2018), 25-35.
    [16] M. Benchohra, Z. Bouteffal, J. Henderson, et al. Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces, AIMS Mathematics, 5 (2020), 15-25. doi: 10.3934/math.2020002
    [17] W. Benhamida, J. R. Graef, S. Hamani, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Fract. Differ. Calc., 8 (2018), 165-176.
    [18] W. Benhamida, S. Hamani, J. Henderson, Boundary Value Problems For Caputo-Hadamard Fractional Differential Equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 138-145.
    [19] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387-400. doi: 10.1016/S0022-247X(02)00049-5
    [20] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamardtype fractional integrals, J. Math. Anal. Appl., 269 (2002), 1-27. doi: 10.1016/S0022-247X(02)00001-X
    [21] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1-15. doi: 10.1016/S0022-247X(02)00066-5
    [22] A. Bednarz, L. Byszewski, On abstract nonlocal Cauchy problem, Czasopismo Techniczne, (2015), 11-17.
    [23] L. Byszewski, Theorem about existence and uniqueness of continuous solutions of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal., 12 (1991), 173-180.
    [24] L. Byszewski, Existence and uniqueness of a classical solution to a functional-differential abstract nonlocal Cauchy problem, J. Appl. Math. Stochastic Anal., 12 (1999), 91-97. doi: 10.1155/S1048953399000088
    [25] D. Chergui, T. E. Oussaeif, M. Ahcene, Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions, AIMS Mathematics, 4 (2019), 112-133. doi: 10.3934/Math.2019.1.112
    [26] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.
    [27] Y. Y. Gambo, F. Jarad, D. Baleanu, et al. On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 10.
    [28] J. R. Graef, N. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Stud. Univ. Babes-Bolyai Math., 62 (2017), 427-438. doi: 10.24193/subbmath.2017.4.02
    [29] A. Guezane-Lakoud, R. Khaldi, Solvability of a fractional boundary value problem with integral condition, Nonlinear Analysis, 75 (2012), 2692-2700. doi: 10.1016/j.na.2011.11.014
    [30] J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Mat. Pure Appl. Ser., 8 (1892), 101-186.
    [31] R. Hilfer, Application of fractional calculus in physics, New Jersey: World Scientific, 2001.
    [32] F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comenian. (N.S.), 75 (2006), 233-240.
    [33] F. Jarad, D. Baleanu, A. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142.
    [34] R. A. Khan and K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Communications in Applied Analysis, 19 (2015), 515-526.
    [35] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
    [36] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Sudies, Elsevier Science, 2006.
    [37] Z. Laadjal, Q.-H. Ma, Existence and uniqueness of solutions for nonlinear Volterra-Fredholm integro-differential equation of fractional order with boundary conditions, Math. Meth. Appl. Sci., 2019.
    [38] Q. Ma, R. Wang, J. Wang, et al. Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436-445.
    [39] K. S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, wiley, New YorK, 1993.
    [40] K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9-12. doi: 10.1016/j.advengsoft.2008.12.012
    [41] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1993.
    [42] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus-Theoretical Developments and Applications in Physics and Engineering, Dordrecht: Springer, 2007.
    [43] K. Shah, A. Ali and R. A. Khan, Degree theory and existence of positive solutions to coupled systems of multi-point boundary value problems, Bound. Value Probl., 2016 (2016), 43.
    [44] K. Shah and R. A. Khan, Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory, Numer. Funct. Anal. Optim., 37 (2016), 887-899. doi: 10.1080/01630563.2016.1177547
    [45] K. Shah, W. Hussain, P. Thounthong, et al. On nonlinear implicit fractional differential equations with integral boundary condition involving p-Laplacian operator without compactness, Thai J. Math., 16 (2018), 301-321.
    [46] K. Shah and W. Hussain, Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory, Numer. Funct. Anal. Optim., 40 (2019), 1355-1372. doi: 10.1080/01630563.2019.1604545
    [47] M. Shoaib, K. Shah, R. Ali Khan, Existence and uniqueness of solutions for coupled system of fractional differential equation by means of topological degree method, Journal Nonlinear Analysis and Application, 2018 (2018), 124-135.
    [48] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg & Higher Education Press, Beijing, 2010.
    [49] J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, et al. Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Space. Appl., 2018 (2018), 1-8.
    [50] J. Wang, Y. Zhou and W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Funct. Anal. Optim., 33 (2012), 216-238. doi: 10.1080/01630563.2011.631069
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3993) PDF downloads(567) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog