Research article

The number of rational points of certain quartic diagonal hypersurfaces over finite fields

  • Received: 28 December 2019 Accepted: 10 March 2020 Published: 17 March 2020
  • MSC : 11T23, 11T24

  • Let $p$ be an odd prime and let $\mathbb{F}_q$ be a finite field of characteristic $p$ with order $q = p^s$. For $f(x_1, \cdots, x_n)\in\mathbb{F}_q[x_1, ..., x_n]$, we denote by $N(f(x_1, \cdots, x_n) = 0)$ the number of $\mathbb{F}_q$-rational points on the affine hypersurface $f(x_1, \cdots, x_n) = 0$. In 1981, Myerson gave a formula for $N(x_1^4+\cdots+x_n^4 = 0)$. Recently, Zhao and Zhao obtained an explicit formula for $N(x_1^4+x_2^4 = c)$ with $c\in\mathbb{F}_q^*: = \mathbb{F}_q\setminus \{0\}$. In this paper, by using the Gauss sum and Jacobi sum, we arrive at explicit formulas for $N(x_1^4+x_2^4+x_3^4 = c)$ and $N(x_1^4+x_2^4+x_3^4+x_4^4 = c)$ with $c\in\mathbb{F}_q^*$.

    Citation: Junyong Zhao, Shaofang Hong, Chaoxi Zhu. The number of rational points of certain quartic diagonal hypersurfaces over finite fields[J]. AIMS Mathematics, 2020, 5(3): 2710-2731. doi: 10.3934/math.2020175

    Related Papers:

  • Let $p$ be an odd prime and let $\mathbb{F}_q$ be a finite field of characteristic $p$ with order $q = p^s$. For $f(x_1, \cdots, x_n)\in\mathbb{F}_q[x_1, ..., x_n]$, we denote by $N(f(x_1, \cdots, x_n) = 0)$ the number of $\mathbb{F}_q$-rational points on the affine hypersurface $f(x_1, \cdots, x_n) = 0$. In 1981, Myerson gave a formula for $N(x_1^4+\cdots+x_n^4 = 0)$. Recently, Zhao and Zhao obtained an explicit formula for $N(x_1^4+x_2^4 = c)$ with $c\in\mathbb{F}_q^*: = \mathbb{F}_q\setminus \{0\}$. In this paper, by using the Gauss sum and Jacobi sum, we arrive at explicit formulas for $N(x_1^4+x_2^4+x_3^4 = c)$ and $N(x_1^4+x_2^4+x_3^4+x_4^4 = c)$ with $c\in\mathbb{F}_q^*$.


    加载中


    [1] A. Adolphson and S. Sperber, p-Adic estimates for exponential sums and the theorem of ChevalleyWarning, Ann. Sci.'Ecole Norm. Sup., 20 (1987), 545-556. doi: 10.24033/asens.1543
    [2] S. Akiyama, On the pure Jacobi sums, Acta Arith., 75 (1996), 97-104. doi: 10.4064/aa-75-2-97-104
    [3] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
    [4] J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255-261. doi: 10.2307/2373163
    [5] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998.
    [6] W. Cao, A special degree reduction of polynomials over finite fields with applications, Int. J. Number Theory, 7 (2011), 1093-1102. doi: 10.1142/S1793042111004277
    [7] W. Cao and Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195-202. doi: 10.4064/aa130-2-8
    [8] S. Chowla, J. Cowles and M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502-506. doi: 10.1016/0022-314X(77)90010-5
    [9] L. Carlitz, The numbers of solutions of a particular equation in a finite field, Publ. Math. Debrecen, 4 (1956), 379-383.
    [10] S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135-153. doi: 10.1016/j.jnt.2015.04.006
    [11] S. N. Hu and J. Y. Zhao, The number of rational points of a family of algebraic varieties over finite fields, Algebra Colloq., 24 (2017), 705-720. doi: 10.1142/S1005386717000475
    [12] H. Huang, W. Gao and W. Cao, Remarks on the number of rational points on a class of hypersurfaces over finite fields, Algebra Colloq., 25 (2018), 533-540. doi: 10.1142/S1005386718000366
    [13] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second Edition, Springer-Verlag, New York, 1990.
    [14] N. Jacobson, Basic Algebra I, Freeman, New York, 1985.
    [15] R. Lidl, H. Niederreiter, Finite Fields, second ed., Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 1997.
    [16] O. Moreno and C. J. Moreno, Improvement of Chevalley-Warningandthe Ax-Katz theorem, Amer. J. Math., 117 (1995), 241-244. doi: 10.2307/2375042
    [17] G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95-99. doi: 10.1016/0022-314X(79)90023-4
    [18] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264. doi: 10.4064/aa-39-3-251-264
    [19] W. M. Schmidt, Equatuions over Finite Fields, An Elementary Approach, Springer Verlag, BerlinHeidelberg-New York, 1976.
    [20] T. Storer, Cyclotomy and Difference Sets, Chicago, IL: Marham, 1967.
    [21] A. Weil, On some exponential sums, Proc. Natu. Acad. Sci., 34 (1948), 204-207. doi: 10.1073/pnas.34.5.204
    [22] J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247-257. doi: 10.1016/0022-314X(92)90091-3
    [23] W. P. Zhang and J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Math. Rep. (Bucur.), 20 (2018), 73-80.
    [24] J. Y. Zhao and Y. Zhao, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., in press.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3444) PDF downloads(409) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog