Using Atangana-Baleanu ($ AB $) fractional integral operators, we first establish some fractional Hermite-Hadamard-Mercer inclusions for interval-valued functions in this study. In this, some fresh developments of the Hermite-Hadamard inequality for fractional integral operators are presented. A few instances are also given to support our conclusions. The resulting results could provide new insight into a variety of integral inequalities for fuzzy interval-valued functions, fractional interval-valued functions, and the optimization issues they raise. Finally, matrices-related applications are also shown.
Citation: Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi. Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel[J]. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
Using Atangana-Baleanu ($ AB $) fractional integral operators, we first establish some fractional Hermite-Hadamard-Mercer inclusions for interval-valued functions in this study. In this, some fresh developments of the Hermite-Hadamard inequality for fractional integral operators are presented. A few instances are also given to support our conclusions. The resulting results could provide new insight into a variety of integral inequalities for fuzzy interval-valued functions, fractional interval-valued functions, and the optimization issues they raise. Finally, matrices-related applications are also shown.
[1] | K. Mehren, P. Agarwal, New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications, J. Comput. Appl. Math., 350 (2019), 274–285. https://doi.org/10.1016/j.cam.2018.10.022 doi: 10.1016/j.cam.2018.10.022 |
[2] | D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Dordrecht: Springer, 1993. https://doi.org/10.1007/978-94-017-1043-5 |
[3] | A. Mcd Mercer, A variant of Jensen's inequality, J. Ineq. Pure Appl. Math., 4 (2003), 73. |
[4] | A. Matković, J. Pečarić, I. Perić, A variant of Jensen's inequality of Mercers type for operators with applications, Linear Algebra Appl., 418 (2006), 551–564. https://doi.org/10.1016/j.laa.2006.02.030 doi: 10.1016/j.laa.2006.02.030 |
[5] | M. Niezgoda, A generalization of Mercer's result on convex functions, Nonlinear Anal. Theory Methods Appl., 71 (2009), 2771–2779. https://doi.org/10.1016/j.na.2009.01.120 doi: 10.1016/j.na.2009.01.120 |
[6] | M. Kian, Operator Jensen inequality for superquadratic functions, Linear Algebra Appl., 456 (2014), 82–87. https://doi.org/10.1016/j.laa.2012.12.011 doi: 10.1016/j.laa.2012.12.011 |
[7] | M. Kian, M. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra, 26 (2013), 742–753. https://doi.org/10.13001/1081-3810.1684 doi: 10.13001/1081-3810.1684 |
[8] | J. Zhao, S. I. Butt, J. Nasir, Z. Wang, I. Tlili, Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives, J. Funct. Spaces, 2020 (2020), 7061549. https://doi.org/10.1155/2020/7061549 doi: 10.1155/2020/7061549 |
[9] | H. R. Moradi, S. Furuichi, Improvement and generalization of some Jensen-Mercer-type inequalities, J. Math. Ineq., 14 (2020), 377–383. http://doi.org/10.7153/jmi-2020-14-24 doi: 10.7153/jmi-2020-14-24 |
[10] | M. Niezgoda, A generalization of Mercer's result on convex functions, Nonlinear Anal. Theory Methods Appl., 71 (2009), 2771–2779. https://doi.org/10.1016/j.na.2009.01.120 doi: 10.1016/j.na.2009.01.120 |
[11] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[12] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9 |
[13] | A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. http://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[14] | Y. Chalco-Cano, A. Flores-Franulic, H. Roman-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. https://doi.org/10.1590/S1807-03022012000300002 doi: 10.1590/S1807-03022012000300002 |
[15] | Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. https://doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6 |
[16] | H. Budak, T. Tunc, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Am. Math. Soc., 148 (2020), 705–718. |
[17] | T. M. Costa, Jensen's inequality type integral for fuzzy interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 doi: 10.1016/j.fss.2017.02.001 |
[18] | T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055 |
[19] | D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 302. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3 |
[20] | J. P. Aubin, A. Cellina, Differential Inclusions, Berlin, Heidelberg: Springer, 1984. https://doi.org/10.1007/978-3-642-69512-4 |
[21] | H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals, Turk. J. Math., 46 (2022), 2193–2207. https://doi.org/10.55730/1300-0098.3263 doi: 10.55730/1300-0098.3263 |
[22] | S. Markov, On the algebraic properties of convex bodies and some applications, J. Convex Anal., 7 (2000), 129–166. |
[23] | V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005 |
[24] | R. E. Moore, Interval Analysis, Hoboken: Prentice-Hall, 1966. |
[25] | T. Du, T. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Solitons Fractals, 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846 |
[26] | R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to Interval Analysis, SIAM, 2009. https://doi.org/10.1137/1.9780898717716 |
[27] | D. Zhao, G. Ye, W. Liu, D. F. Torres, Some inequalities for interval-valued functions on time scales, Soft Comput., 23 (2019), 6005–6015. https://doi.org/10.1007/s00500-018-3538-6 doi: 10.1007/s00500-018-3538-6 |
[28] | E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results. Math., 32 (1997), 332–337. https://doi.org/10.1007/BF03322144 doi: 10.1007/BF03322144 |
[29] | W. W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Revue d'analyse numérique et de théorie de l'approximation, 22 (1993), 39–51. |
[30] | R. Osuna-Gómez, M. D. Jime´nez-Gamero, Y. Chalco-Cano, M. A. Rojas-Medar, Hadamard and Jensen inequalities for $s$-convex fuzzy processes, In: Soft Methodology and Random Information Systems, Berlin, Heidelberg: Springer, 2004. https://doi.org/10.1007/978-3-540-44465-7_80 |
[31] | I. B. Sial, S. Mei, M. A. Ali, H. Budak, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, In press. |
[32] | M. Sababheh, Convex functions and means of matrices, J. Math. Ineq., 20 (2017), 29–47. https://doi.org/10.7153/mia-20-03 doi: 10.7153/mia-20-03 |