This article presents the link between the fuzzy differential subordination and the q-theory of functions. We use the fuzzy differential subordination to define certain subclasses of univalent functions associated with the q-difference operator. Certain inclusion results are proved, and invariance of the $ q $-Bernardi integral operator for certain classes is discussed.
Citation: Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi. On fuzzy differential subordination associated with $ q $-difference operator[J]. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336
This article presents the link between the fuzzy differential subordination and the q-theory of functions. We use the fuzzy differential subordination to define certain subclasses of univalent functions associated with the q-difference operator. Certain inclusion results are proved, and invariance of the $ q $-Bernardi integral operator for certain classes is discussed.
[1] | S. S. Miller, P. T. Mocanu, Differential subordinations theory and applications, New York, Basel: Marcel Dekker, 2000. |
[2] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math. J., 28 (1981), 157–171. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507 |
[3] | S. S. Miller, P. T. Mocanu, Second order-differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 298–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6 |
[4] | G. I. Oros, Gh. Oros, The notion of subordination in fuzzy sets theory, Gen. Math., 19 (2011), 97–103. |
[5] | G. I. Oros, Gh. Oros, Fuzzy differential subordination, Acta Univ. Apulensis., 3 (2012), 55–64. |
[6] | A. A. Lupas, A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative, J. Comput. Anal. Appl., 25 (2018), 1116–1124. |
[7] | A. A. Lupas, A. Cãtas, Fuzzy differential subordination of the Atangana-Baleanu fractional integral, Symmetry, 13 (2021), 1929. https://doi.org/10.3390/sym13101929 doi: 10.3390/sym13101929 |
[8] | G. I. Oros, Fuzzy differential subordinations obtained using a hypergeometric integral operator, Mathematics, 20 (2021), 2539. https://doi.org/10.3390/math9202539 doi: 10.3390/math9202539 |
[9] | G. I. Oros, New fuzzy differential subordinations, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70 (2007), 229–240. https://doi.org/10.31801/cfsuasmas.784080 doi: 10.31801/cfsuasmas.784080 |
[10] | G. I. Oros, Univalence criteria for analytic functions obtained using fuzzy differential subordinations, Turkish J. Math., 46 (2022), 1478–1491. https://doi.org/10.55730/1300-0098.3174 doi: 10.55730/1300-0098.3174 |
[11] | G. I. Oros, Gh. Oros, Briot-Bouquet fuzzy differential subordination, An. Univ. Oradea Fasc. Mat., 19 (2012), 83–87. |
[12] | S. A. Shah, E. E. Ali, A. A. Maitlo, T. Abdeljawad, A. M. Albalahi, Inclusion results for the class of fuzzy $\alpha$-convex functions, AIMS Math., 8 (2022), 1375–1383. https://doi.org/10.3934/math.2023069 doi: 10.3934/math.2023069 |
[13] | H. M. Srivastava, S. M. El-Deeb, Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution, Symmetry, 13 (2021), 1023. https://doi.org/10.3390/sym13061023 doi: 10.3390/sym13061023 |
[14] | S. M. El-Deeb, A. A. Lupas, Fuzzy differential subordinations associated with an integral operator, An. Univ. Oradea Fasc. Mat., XXVII (2020), 133–140. |
[15] | S. M. El-Deeb, G. I. Oros, Fuzzy differential subordinations connected with the linear operator, Math. Bohem., 146 (2021), 397–406. https://doi.org/10.21136/MB.2020.0159-19 doi: 10.21136/MB.2020.0159-19 |
[16] | S. M. El-Deeb, N. Khan, M. Arif, A. Alburaikan, Fuzzy differential subordination for meromorphic function, Axioms, 11 (2022), 534. https://doi.org/10.3390/axioms11100534 doi: 10.3390/axioms11100534 |
[17] | O. A. Arqub, Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. Appl., 28 (2017), 1591–1610. https://doi.org/10.1007/s00521-015-2110-x doi: 10.1007/s00521-015-2110-x |
[18] | M. Alshammari, M. Al-Smadi, O. A. Arqub, I. Hashim, M. A. Alias, Residual series representation algorithm for solving fuzzy duffing oscillator equations, Symmetry, 12 (2020), 572. https://doi.org/10.3390/sym12040572 doi: 10.3390/sym12040572 |
[19] | O. A. Arqub, J. Singh, B. Maayah, M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag-Leffler kernel differential operator, Math. Method. Appl. Sci., 2021. https://doi.org/10.1002/mma.7305 |
[20] | S. G. Gal, A. I. Ban, Elemente de matematică fuzzy, Romania: Editura Universităţii din Oradea, 1996. |
[21] | F. H. Jackson, A On q-functions and a certain difference operator, T. Roy. Soc. Edin., 46 (1908), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[22] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[23] | S. A. Shah, K. I. Noor, Study on q-analogue of certain family of linear operators, Turkish J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41 |
[24] | H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Int. Trans. Spec. Funct., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577 |
[25] | K. I. Noor, S. Riaz, M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11. |
[26] | M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5 |
[27] | H. Shamsan, S. Latha, On genralized bounded Mocanu variation related to q-derivative and conic regions, Ann. Pure Appl. Math., 17 (2018), 67–83. https://doi.org/10.18226/21782687.v17.Dossie.4 doi: 10.18226/21782687.v17.Dossie.4 |