Research article Topical Sections

Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus

  • Received: 19 August 2024 Revised: 24 September 2024 Accepted: 27 September 2024 Published: 08 October 2024
  • MSC : 05A30, 30C45

  • This paper employs differential subordination and quantum calculus to investigate a new class of q-starlike functions associated with an eight-like image domain. Our study laid a foundational understanding of the behavior of these q-starlike functions. We derived the results in first-order differential subordination. We established sharp inequalities for the initial Taylor coefficients and provided optimal estimates for solving the Fekete-Szegö problem and a second-order Hankel determinant applicable to all q-starlike functions in this class. Furthermore, we presented a series of corollaries that demonstrate the broader implications of our findings in geometric function theory.

    Citation: Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan. Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus[J]. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379

    Related Papers:

    [1] Min Li, Ke Chen, Yunqing Bai, Jihong Pei . Skeleton action recognition via graph convolutional network with self-attention module. Electronic Research Archive, 2024, 32(4): 2848-2864. doi: 10.3934/era.2024129
    [2] Wangwei Zhang, Menghao Dai, Bin Zhou, Changhai Wang . MCADFusion: a novel multi-scale convolutional attention decomposition method for enhanced infrared and visible light image fusion. Electronic Research Archive, 2024, 32(8): 5067-5089. doi: 10.3934/era.2024233
    [3] Bingsheng Li, Na Li, Jianmin Ren, Xupeng Guo, Chao Liu, Hao Wang, Qingwu Li . Enhanced spectral attention and adaptive spatial learning guided network for hyperspectral and LiDAR classification. Electronic Research Archive, 2024, 32(7): 4218-4236. doi: 10.3934/era.2024190
    [4] Hui Xu, Jun Kong, Mengyao Liang, Hui Sun, Miao Qi . Video behavior recognition based on actional-structural graph convolution and temporal extension module. Electronic Research Archive, 2022, 30(11): 4157-4177. doi: 10.3934/era.2022210
    [5] Huimin Qu, Haiyan Xie, Qianying Wang . Multi-convolutional neural network brain image denoising study based on feature distillation learning and dense residual attention. Electronic Research Archive, 2025, 33(3): 1231-1266. doi: 10.3934/era.2025055
    [6] Kun Zheng, Li Tian, Zichong Li, Hui Li, Junjie Zhang . Incorporating eyebrow and eye state information for facial expression recognition in mask-obscured scenes. Electronic Research Archive, 2024, 32(4): 2745-2771. doi: 10.3934/era.2024124
    [7] Bojian Chen, Wenbin Wu, Zhezhou Li, Tengfei Han, Zhuolei Chen, Weihao Zhang . Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection. Electronic Research Archive, 2024, 32(1): 643-669. doi: 10.3934/era.2024031
    [8] Jiange Liu, Yu Chen, Xin Dai, Li Cao, Qingwu Li . MFCEN: A lightweight multi-scale feature cooperative enhancement network for single-image super-resolution. Electronic Research Archive, 2024, 32(10): 5783-5803. doi: 10.3934/era.2024267
    [9] Wangwei Zhang, Hao Sun, Bin Zhou . TBRAFusion: Infrared and visible image fusion based on two-branch residual attention Transformer. Electronic Research Archive, 2025, 33(1): 158-180. doi: 10.3934/era.2025009
    [10] Jingqian Xu, Ma Zhu, Baojun Qi, Jiangshan Li, Chunfang Yang . AENet: attention efficient network for cross-view image geo-localization. Electronic Research Archive, 2023, 31(7): 4119-4138. doi: 10.3934/era.2023210
  • This paper employs differential subordination and quantum calculus to investigate a new class of q-starlike functions associated with an eight-like image domain. Our study laid a foundational understanding of the behavior of these q-starlike functions. We derived the results in first-order differential subordination. We established sharp inequalities for the initial Taylor coefficients and provided optimal estimates for solving the Fekete-Szegö problem and a second-order Hankel determinant applicable to all q-starlike functions in this class. Furthermore, we presented a series of corollaries that demonstrate the broader implications of our findings in geometric function theory.



    The study on flow of fluids which are electrically conducting is known as magnetohydrodynamics (MHD). The magnetohydrodynamics have important applications in the polymer industry and engineering fields (Garnier [1]). Heat transfer caused by hydromagnetism was discussed by Chakrabarthi and Gupta [2]. Using an exponentially shrinking sheet, Nadeem et al. [3] investigated the MHD flow of a Casson fluid. Krishnendu Bhattacharyya [4] examined the effect of thermal radiation on MHD stagnation-point Flow over a Stretching Sheet.

    Mixed convection magnetohydrodynamics flow is described by Ishak on a vertical and on a linearly stretching sheet [5,6,7]. Hayat et al. [10] examine a mixed convection flow within a stretched sheet of Casson nanofluid. Subhas Abel and Monayya Mareppa, examine magnetohydrodynamics flow on a vertical plate [11]. Shen et al. [12], examined a vertical stretching sheet which was non-linear. Ishikin Abu Bakar [13] investigates how boundary layer flow is affected by slip and convective boundary conditions over a stretching sheet. A vertical plate oscillates with the influence of slip on a free convection flow of a Casson fluid [14].

    Nasir Uddin et al. [15] used a Runge-Kutta sixth-order integration method. Barik et al. [16] implicit finite distinction methodology of Crank Sir Harold George Nicolson sort Raman and Kumar [17] utilized an exact finite distinction theme of DuFort–Frankel. Mondal et al. [18] used a numerical theme over the whole vary of physical parameters. With the laplace transform method, we can determine the magnetohydrodynamic flow of a viscous fluid [19]. Thamizh Suganya et al. [20] obtained that the MHD for the free convective flow of fluid is based on coupled non-linear differential equations. In this study, the analytical approximation of concentration profiles in velocity, temperature and concentration using homotopy perturbation method (HPM).

    The governing differential equations in dimensionless form [19] as follows:

    d2udy2Hu+Grθ+Gmϕ=0, (2.1)
    1Fd2θdy2=0, (2.2)
    1Scd2ϕdy2Sr2ϕy2γϕ=0. (2.3)

    The dimensionless boundary conditions given by:

    u=0, θ=1,ϕ=0  at  y=0 (2.4)

    and

    u=0, θ=0,ϕ=0  at  y. (2.5)

    He [21,22] established the homotopy perturbation method, which waives the requirement of small parameters. Many researchers have used HPM to obtain approximate analytical solutions for many non-linear engineering dynamical systems [23,24]. The basic concept of the HPM as follows:

    d2udy2Hu+Grθ+Gmϕ=0 (3.1)
    1Fd2θdy2=0 (3.2)
    1Scd2ϕdy2Sr2ϕy2γϕ=0 (3.3)

    with initial and boundary conditions given by:

    y=0  at u=0, θ=1,C=1y  as u=0, θ=1,ϕ=0. (3.4)

    Homotopy for the above Eqs (3.1) to (3.4) can be constructed as follows:

    (1p)[d2udy2Hu+Grθ+Gmϕ]+p[d2udy2Hu+Grθ+Gmϕ]=0 (3.5)
    (1p)[1Fd2θdy2θ]+p[1Fd2θdy2θ+θ]=0 (3.6)
    (1p)[1Scd2ϕdy2γϕ]+p[1Scd2ϕdy2Sr2θy2γϕ]=0 (3.7)

    The approximate solution of the Eqs (3.5) to (3.7) are

    u=u0+pu1+p2u2+p3u3+... (3.8)
    θ=θ0+pθ1+p2θ2+p3θ3+... (3.9)
    ϕ=ϕ0+pϕ1+p2ϕ2+p3ϕ3+... (3.10)

    Substitution Eqs (3.5) to (3.7) in Eqs (3.8) to (3.10) respectively. We obtain the following equations

    (1p)[d2(u0+pu1+p2u2+p3u3+...)dy2H(u0+pu1+p2u2+p3u3+...)+Gr(θ0+pθ1+p2θ2+p3θ3+...)+Gm(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]+p[d2(u0+pu1+p2u2+p3u3+...)dy2H(u0+pu1+p2u2+p3u3+...)+Gr(θ0+pθ1+p2θ2+p3θ3+...)+Gm(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]=0 (3.11)

    and

    (1p)[1Fd2(θ0+pθ1+p2θ2+p3θ3+...)dy2(θ0+pθ1+p2θ2+p3θ3+...)]+p[1Fd2(θ0+pθ1+p2θ2+p3θ3+...)dy2(θ0+pθ1+p2θ2+p3θ3+...)+(θ0+pθ1+p2θ2+p3θ3+...)]=0, (3.12)

    and

    (1p)[1Scd2(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)dy2γ(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]+p[1Scd2(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)dy2Sr2(θ0+pθ1+p2θ2+p3θ3+...)y2γ(ϕ0+pϕ1+p2ϕ2+p3ϕ3+...)]=0. (3.13)

    Equating the coefficient of p on both sides, we get the following equations

    P0:d2u0dy2Hu0+Grθ0+Gmϕ0=0; (3.14)
    p0:1Fd2θ0dy2θ0=0; (3.15)
    P1:1Fd2θ0dy2θ0+θ1=0; (3.16)
    P1:1Scd2ϕ0dy2γϕ0=0; (3.17)
    P1:1Scd2ϕ0dy2Sr2θ0y2γϕ0=0. (3.18)

    The boundary conditions are

    u0=0, θ0=1,ϕ0=1  at  y=0u0=0, θ0=1,ϕ0=1  at  y. (3.19)

    and

    u1=0, θ1=0,ϕ1=0  at  y=0u1=0, θ1=0,ϕ1=0  at  y. (3.20)

    Solving the Eqs (3.9)–(3.14), we obtain

    u0(t)=Gr1F+H[ey1FeyH]+GmγSc+H[eyγSceyH]; (3.21)
    θ0(y)=ey1F; (3.22)
    ϕ0(y)=eyγSc; (3.23)
    ϕ1(y)=ScSrF+FγSc[ey1FeyγSc]. (3.24)

    Considering the iteration, we get,

    u(t)=Gr1F+H[ey1FeyH]+GmγSc+H[eyγSceyH]; (3.25)
    θ(y)=eyF; (3.26)
    ϕ(y)=eyγSc+ScSrF+FγSc[ey1FeyγSc]. (3.27)

    From the Eqs (3.25)–(3.27), we obtain

    Cf=(uy)y=0=(GmγScGmH+Gr(γSc+H)1+RPr+GmHγSc+(GmGr)H32γGrHSc)(1+RPr+H(γSc+H)); (4.1)
    Nu=(θy)y=0=1+RPr; (4.2)
    Sh=(ϕy)y=0=ScSr(1+R)1+RPrγSc((R1)1+RPr+((1+R)ScPrγ)Sc)(1+R)1+RPrPrγSc (4.3)

    The combined impacts of transient MHD free convective flows of an incompressible viscous fluid through a vertical plate moving with uniform motion and immersed in a porous media are examined using an exact approach. The approximate analytical expressions for the velocity u, temperature θ, and concentration profile ϕ are solved by using the homotopy perturbation method for fixed values of parameters is graphically presented.

    Velocity takes time at first, and for high values of y, it takes longer, and the velocity approaches zero as time increases. The velocity of fluid rises with Gr increasing, as exposed in Figure 1.

    Figure 1.  An illustration of velocity profiles for different values of Gr.

    The variations of parameter Gm are depicted in Figure 2. It has been established that as the value of increases, neither does the concentration. Gm. This is because increasing the number of 'Gm' diminishes the slog energy, allow the fluid to transfer very rapidly.The dimensionless Prandtl number is a number which combines the viscosity of a fluid with its thermal conductivity. For example, Figure 3 shows how a decrease in 'Pr'increases the concentration of velocity profile.

    Figure 2.  An illustration of velocity profiles for different values of Gm.
    Figure 3.  An illustration of velocity profiles for different values of Pr.

    The Figure 4 shows how a decrease in concentration occurs when the value of H increases.As shown in Figure 5, when the Schmidt number Sc increases, the concentration of velocity profiles decreases, while the opposite is true for the Soret number Sr, as shown in Figures 6, 7 and 8, represented the radiation parameter R, chemical reaction parameter γ is increasing when it implies a decrease in concentration.

    Figure 4.  An illustration of velocity profiles for different values of H.
    Figure 5.  An illustration of velocity profiles for different values of Sc.
    Figure 6.  An illustration of velocity profiles for different values of Sr.
    Figure 7.  An illustration of velocity profiles for different values of γ.
    Figure 8.  An illustration of velocity profiles for different values of R.

    Based on Figure 9, it is evident that the thickness of the momentum boundary layer increases for fluids with Pr<1. When Pr<0.015, the heat diffuses rapidly in comparison to the velocity.

    Figure 9.  An illustration profile of Temperature for various values of Pr.

    Figure 10 depicts the impact of the radiation parameter R on temperature profiles. The temperature profiles θ, which are a decreasing function of R, are found to decrease the flow and lower fluid velocity. As the radiation parameter R is increased, the fluid thickens, temperatures and thermal boundary layer thickness to decrease.

    Figure 10.  An illustration profile of Temperature for various values of R.

    This statement is justified because the thermal conductivity of a fluid declines by the growing Prandtl number Pr and hence the thickness of thermal boundary layers and temperature profiles decrease as well. Based on Figure 9, we see an increase in fluid concentration with large Prandtl numbers Pr. Radiation parameter R and temperature profiles are illustrated in Figure 10. The temperature profiles θ, which are a decreasing function of R, are initiate to reduction the flow and decline the fluid velocity. Radiation parameter R increases as fluid thickness increases, temperature increases, and thickness of thermal boundary layer decreases.

    The influence of Pr, R, γ, Sc, and Sr on the concentration profiles ϕ is shown in Figures 1115. The fluid concentration rises on highest values of Pr, as shown in Figure 11. The profile of temperature is affected by the radiation parameter R which is shown in Figure 12. As a function of R, the concentration profiles reduce the flow and decrease fluid velocity.

    Figure 11.  Profile of concentration for distinct values of Pr.
    Figure 12.  Profile of concentration for distinct values of R.
    Figure 13.  Profile of concentration for distinct values of Sc.
    Figure 14.  Profile of concentration for distinct values of Sr.
    Figure 15.  Profile of concentration for distinct values of γ.

    The growing values of γ and Sc lead to falling in the concentration profiles, is described from Figures 13 and 15. The concentration profiles increase as the number of sorts (Sr) increases, as shown in Figure 14.

    A free convection magnetohydrodynamic (MHD) flow past a vertical plate embedded in a porous medium was offered in this paper. Homotopy perturbation method is used to find approximate analytical solutions for the concentration of species. The effects of system parameters on temperature and velocity profiles were investigated using these analytical expressions. The graphic representation of the impact of several physical parameters attempting to control the velocity, temperature, and concentration profiles and a brief discussion. Analytical expressions were also developed for the Skin-friction and Nusselt and Sherwood numbers.

    The authors declare that they have no conflict of interest.

    The authors are thankful to the reviewers for their valuable comments and suggestions to improve the quality of the paper. The work of H. Alotaibi is supported by Taif University Researchers Supporting Project Number (TURSP-2020/304), Taif University, Taif, Saudi Arabia.



    [1] M. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of q-starlike functions associated with the conic domain defined by q-derivative, J. Funct. Space, 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
    [2] A. Ahmad, J. Gong, A. Rasheed, S. Hussain, A. Ali, Z. Cheikh, Sharp results for a new class of analytic functions associated with the q-differential operator and the symmetric Balloon-shaped domain, Symmetry, 16 (2024), 1134. https://doi.org/10.3390/sym16091134 doi: 10.3390/sym16091134
    [3] L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry, 12 (2020), 291. https://doi.org/10.3390/sym12020291 doi: 10.3390/sym12020291
    [4] B. Ahmad, M. G. Khan, B. A. Frasin, M. K. Aouf, T. Abdeljawad, W. K. Mashwani, et al., On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., 6 (2020), 3037–3052. https://doi.org/10.3934/math.2021185 doi: 10.3934/math.2021185
    [5] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [6] E. E. Ali, G. I. Oros, S. Ali Shah, A. M. Albalahi, Applications of q-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705
    [7] E. E. Ali, G. I. Oros, S. Ali Shah, A. M. Albalahi, Differential subordination and superordination studies involving symmetric functions using a q-analogue multiplier operator, AIMS Math., 8 (2023), 27924–27946. https://doi.org/10.3934/math.20231428 doi: 10.3934/math.20231428
    [8] K. Jabeen, A. Saliu, J. Gong, S. Hussain, Majorization problem for q-general family of functions with bounded radius rotations, Mathematics, 12 (2024), 2605. https://doi.org/10.3390/math12172605 doi: 10.3390/math12172605
    [9] A. B. Makhlouf, O. Naifar, M. A. Hammami, B. Wu, FTS and FTB of conformable fractional order linear systems, Math. Probl. Eng., 2018 (2018), 2572986.
    [10] O. Naifar, A. Jmal, A. M. Nagy, A. B. Makhlouf, Improved quasiuniform stability for fractional order neural nets with mixed delay, Math. Probl. Eng., 2020 (2020), 8811226. https://doi.org/10.1155/2020/8811226 doi: 10.1155/2020/8811226
    [11] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, P. Ame. Math. Soc., 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9
    [12] J. W. Noonan, D. K. Thomas, On the second Hankel determinant of a really mean p-valent functions, T. Am. Math. Soc., 22 (1976), 337–346. https://doi.org/10.1090/S0002-9947-1976-0422607-9 doi: 10.1090/S0002-9947-1976-0422607-9
    [13] W. K. Hayman, On the second Hankel determinant of mean univalent functions, P. Lond. Math. Soc., 3 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77 doi: 10.1112/plms/s3-18.1.77
    [14] H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turk. J. Math., 40 (2016), 679–687. https://doi.org/10.3906/mat-1505-3 doi: 10.3906/mat-1505-3
    [15] L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 5 (2021), 137. https://doi.org/10.3390/fractalfract5040137 doi: 10.3390/fractalfract5040137
    [16] K. O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions, Inequal. Theor. Appl., 6 (2007), 1–7.
    [17] M. G. Khan, W. K. Mashwani, J. S. Ro, B. Ahmad, Problems concerning sharp coefficient functionals of bounded turning functions, AIMS Math., 8 (2023), 27396–27413. https://doi.org/10.3934/math.20231402 doi: 10.3934/math.20231402
    [18] M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine hyperbolic function, AIMS Math., 8 (2023), 21993–22008. https://doi.org/10.3934/math.20231121 doi: 10.3934/math.20231121
    [19] I. Al-shbeil, J. Gong, S. Khan, N. Khan, A. Khan, M. F. Khan, et al., Hankel and symmetric Toeplitz determinants for a new subclass of q-starlike functions, Fractal Fract., 6 (2022), 658. https://doi.org/10.3390/fractalfract6110658 doi: 10.3390/fractalfract6110658
    [20] M. G. Khan, B. Khan, J. Gong, F. Tchier, F. M. O. Tawfiq, Applications of first-order differential subordination for subfamilies of analytic functions related to symmetric image domains, Symmetry, 15 (2023), 2004. https://doi.org/10.3390/sym15112004 doi: 10.3390/sym15112004
    [21] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 23 (1970), 159–177. https://doi.org/10.4064/ap-23-2-159-177 doi: 10.4064/ap-23-2-159-177
    [22] M. G. Khan, B. Khan, F. M. O. Tawfiq, J. S. Ro, Zalcman functional and majorization results for certain subfamilies of holomorphic functions, Axioms, 12 (2023), 868. https://doi.org/10.3390/axioms12090868 doi: 10.3390/axioms12090868
    [23] F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [24] M. S. Ur Rehman, Q. Z. Ahmad, I. Al-Shbeil, S. Ahmad, A. Khan, B. Khan, et al., Coefficient inequalities for multivalent Janowski type q-starlike functions involving certain conic domains, Axioms, 11 (2022), 494. https://doi.org/10.3390/axioms11100494 doi: 10.3390/axioms11100494
    [25] K. Ademogullari, Y. Kahramaner, q-harmonic mappings for which analytic part is q-convex functions, Nonlinear Anal. Diff. Eq., 4 (2016), 283–293. https://doi.org/10.12988/nade.2016.6311 doi: 10.12988/nade.2016.6311
    [26] C. Pommerenke, G. Jensen, Univalent functions, Gottingen, Germany: Vandenhoeck and Ruprecht, 1975.
    [27] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the Conference on Complex Analysis, Tianjin, 1992,157–169.
    [28] R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, P. Am. Math. Soc., 87 (1983), 251–257. https://doi.org/10.1090/S0002-9939-1983-0681830-8 doi: 10.1090/S0002-9939-1983-0681830-8
    [29] J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szego problem, J. Math. Soc., 59 (2007), 707–727. https://doi.org/10.2969/jmsj/05930707 doi: 10.2969/jmsj/05930707
  • This article has been cited by:

    1. Fadwa Alrowais, Asma Abbas Hassan, Wafa Sulaiman Almukadi, Meshari H. Alanazi, Radwa Marzouk, Ahmed Mahmud, Boosting Deep Feature Fusion-Based Detection Model for Fake Faces Generated by Generative Adversarial Networks for Consumer Space Environment, 2024, 12, 2169-3536, 147680, 10.1109/ACCESS.2024.3470128
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(679) PDF downloads(38) Cited by(0)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog