Research article Topical Sections

Sharp inequalities for $ q $-starlike functions associated with differential subordination and $ q $-calculus

  • Received: 19 August 2024 Revised: 24 September 2024 Accepted: 27 September 2024 Published: 08 October 2024
  • MSC : 05A30, 30C45

  • This paper employs differential subordination and quantum calculus to investigate a new class of $ q $-starlike functions associated with an eight-like image domain. Our study laid a foundational understanding of the behavior of these $ q $-starlike functions. We derived the results in first-order differential subordination. We established sharp inequalities for the initial Taylor coefficients and provided optimal estimates for solving the Fekete-Szegö problem and a second-order Hankel determinant applicable to all $ q $-starlike functions in this class. Furthermore, we presented a series of corollaries that demonstrate the broader implications of our findings in geometric function theory.

    Citation: Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan. Sharp inequalities for $ q $-starlike functions associated with differential subordination and $ q $-calculus[J]. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379

    Related Papers:

  • This paper employs differential subordination and quantum calculus to investigate a new class of $ q $-starlike functions associated with an eight-like image domain. Our study laid a foundational understanding of the behavior of these $ q $-starlike functions. We derived the results in first-order differential subordination. We established sharp inequalities for the initial Taylor coefficients and provided optimal estimates for solving the Fekete-Szegö problem and a second-order Hankel determinant applicable to all $ q $-starlike functions in this class. Furthermore, we presented a series of corollaries that demonstrate the broader implications of our findings in geometric function theory.



    加载中


    [1] M. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of $q$-starlike functions associated with the conic domain defined by $q$-derivative, J. Funct. Space, 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
    [2] A. Ahmad, J. Gong, A. Rasheed, S. Hussain, A. Ali, Z. Cheikh, Sharp results for a new class of analytic functions associated with the $q$-differential operator and the symmetric Balloon-shaped domain, Symmetry, 16 (2024), 1134. https://doi.org/10.3390/sym16091134 doi: 10.3390/sym16091134
    [3] L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized $q$-operator, Symmetry, 12 (2020), 291. https://doi.org/10.3390/sym12020291 doi: 10.3390/sym12020291
    [4] B. Ahmad, M. G. Khan, B. A. Frasin, M. K. Aouf, T. Abdeljawad, W. K. Mashwani, et al., On $q$-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., 6 (2020), 3037–3052. https://doi.org/10.3934/math.2021185 doi: 10.3934/math.2021185
    [5] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [6] E. E. Ali, G. I. Oros, S. Ali Shah, A. M. Albalahi, Applications of $q$-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705
    [7] E. E. Ali, G. I. Oros, S. Ali Shah, A. M. Albalahi, Differential subordination and superordination studies involving symmetric functions using a $q$-analogue multiplier operator, AIMS Math., 8 (2023), 27924–27946. https://doi.org/10.3934/math.20231428 doi: 10.3934/math.20231428
    [8] K. Jabeen, A. Saliu, J. Gong, S. Hussain, Majorization problem for q-general family of functions with bounded radius rotations, Mathematics, 12 (2024), 2605. https://doi.org/10.3390/math12172605 doi: 10.3390/math12172605
    [9] A. B. Makhlouf, O. Naifar, M. A. Hammami, B. Wu, FTS and FTB of conformable fractional order linear systems, Math. Probl. Eng., 2018 (2018), 2572986.
    [10] O. Naifar, A. Jmal, A. M. Nagy, A. B. Makhlouf, Improved quasiuniform stability for fractional order neural nets with mixed delay, Math. Probl. Eng., 2020 (2020), 8811226. https://doi.org/10.1155/2020/8811226 doi: 10.1155/2020/8811226
    [11] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, P. Ame. Math. Soc., 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9
    [12] J. W. Noonan, D. K. Thomas, On the second Hankel determinant of a really mean $p$-valent functions, T. Am. Math. Soc., 22 (1976), 337–346. https://doi.org/10.1090/S0002-9947-1976-0422607-9 doi: 10.1090/S0002-9947-1976-0422607-9
    [13] W. K. Hayman, On the second Hankel determinant of mean univalent functions, P. Lond. Math. Soc., 3 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77 doi: 10.1112/plms/s3-18.1.77
    [14] H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turk. J. Math., 40 (2016), 679–687. https://doi.org/10.3906/mat-1505-3 doi: 10.3906/mat-1505-3
    [15] L. Shi, M. G. Khan, B. Ahmad, W. K. Mashwani, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 5 (2021), 137. https://doi.org/10.3390/fractalfract5040137 doi: 10.3390/fractalfract5040137
    [16] K. O. Babalola, On $H_{3}\left(1\right) $ Hankel determinant for some classes of univalent functions, Inequal. Theor. Appl., 6 (2007), 1–7.
    [17] M. G. Khan, W. K. Mashwani, J. S. Ro, B. Ahmad, Problems concerning sharp coefficient functionals of bounded turning functions, AIMS Math., 8 (2023), 27396–27413. https://doi.org/10.3934/math.20231402 doi: 10.3934/math.20231402
    [18] M. G. Khan, W. K. Mashwani, L. Shi, S. Araci, B. Ahmad, B. Khan, Hankel inequalities for bounded turning functions in the domain of cosine hyperbolic function, AIMS Math., 8 (2023), 21993–22008. https://doi.org/10.3934/math.20231121 doi: 10.3934/math.20231121
    [19] I. Al-shbeil, J. Gong, S. Khan, N. Khan, A. Khan, M. F. Khan, et al., Hankel and symmetric Toeplitz determinants for a new subclass of q-starlike functions, Fractal Fract., 6 (2022), 658. https://doi.org/10.3390/fractalfract6110658 doi: 10.3390/fractalfract6110658
    [20] M. G. Khan, B. Khan, J. Gong, F. Tchier, F. M. O. Tawfiq, Applications of first-order differential subordination for subfamilies of analytic functions related to symmetric image domains, Symmetry, 15 (2023), 2004. https://doi.org/10.3390/sym15112004 doi: 10.3390/sym15112004
    [21] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 23 (1970), 159–177. https://doi.org/10.4064/ap-23-2-159-177 doi: 10.4064/ap-23-2-159-177
    [22] M. G. Khan, B. Khan, F. M. O. Tawfiq, J. S. Ro, Zalcman functional and majorization results for certain subfamilies of holomorphic functions, Axioms, 12 (2023), 868. https://doi.org/10.3390/axioms12090868 doi: 10.3390/axioms12090868
    [23] F. H. Jackson, On $q$-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [24] M. S. Ur Rehman, Q. Z. Ahmad, I. Al-Shbeil, S. Ahmad, A. Khan, B. Khan, et al., Coefficient inequalities for multivalent Janowski type q-starlike functions involving certain conic domains, Axioms, 11 (2022), 494. https://doi.org/10.3390/axioms11100494 doi: 10.3390/axioms11100494
    [25] K. Ademogullari, Y. Kahramaner, $q$-harmonic mappings for which analytic part is $q$-convex functions, Nonlinear Anal. Diff. Eq., 4 (2016), 283–293. https://doi.org/10.12988/nade.2016.6311 doi: 10.12988/nade.2016.6311
    [26] C. Pommerenke, G. Jensen, Univalent functions, Gottingen, Germany: Vandenhoeck and Ruprecht, 1975.
    [27] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the Conference on Complex Analysis, Tianjin, 1992,157–169.
    [28] R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in $P$, P. Am. Math. Soc., 87 (1983), 251–257. https://doi.org/10.1090/S0002-9939-1983-0681830-8 doi: 10.1090/S0002-9939-1983-0681830-8
    [29] J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szego problem, J. Math. Soc., 59 (2007), 707–727. https://doi.org/10.2969/jmsj/05930707 doi: 10.2969/jmsj/05930707
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(249) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog