In this paper, an analytical and numerical technique are examined in order to analyse the Stokes flow determination problem due to a viscous sphere droplet moving at a concentric instantaneous position inside a spherical interface separating finite and semi-infinite immiscible fluid phases. Here, when only one of the three phases of the fluid (micropolar fluid) has a microstructure, attention is focused on this case. The motion is considered when Reynolds- and capillary-numbers are low, and the droplet surface and the fluid-fluid interface have insignificant deformation. A general solution is obtained in a spherical coordinate system based on a concentric position to analyse the slow axisymmetric movement of the micropolar fluid, considering microrotation and velocity components. Boundary conditions are initially fulfilled at the fluid-fluid interface and subsequently at the droplet surface. The normalised hydrodynamic drag force applying to a moving viscous droplet appears to be a function of the droplet-to-interface radius ratio, which increases monotonically and becomes unbounded when the droplet surface touches the fluid-fluid interface. The numerical outcomes of the normalised drag force acting on the viscous droplet are derived for different values of the parameters, and are presented in a tabular and graphical framework. A comparison was made between our numerical outcomes for the drag force and the pertinent data for the special cases found in the literature.
Citation: Ahmed G. Salem, Turki D. Alharbi, Abdulaziz H. Alharbi, Anwar Ali Aldhafeeri. Impact of a spherical interface on a concentrical spherical droplet[J]. AIMS Mathematics, 2024, 9(10): 28400-28420. doi: 10.3934/math.20241378
In this paper, an analytical and numerical technique are examined in order to analyse the Stokes flow determination problem due to a viscous sphere droplet moving at a concentric instantaneous position inside a spherical interface separating finite and semi-infinite immiscible fluid phases. Here, when only one of the three phases of the fluid (micropolar fluid) has a microstructure, attention is focused on this case. The motion is considered when Reynolds- and capillary-numbers are low, and the droplet surface and the fluid-fluid interface have insignificant deformation. A general solution is obtained in a spherical coordinate system based on a concentric position to analyse the slow axisymmetric movement of the micropolar fluid, considering microrotation and velocity components. Boundary conditions are initially fulfilled at the fluid-fluid interface and subsequently at the droplet surface. The normalised hydrodynamic drag force applying to a moving viscous droplet appears to be a function of the droplet-to-interface radius ratio, which increases monotonically and becomes unbounded when the droplet surface touches the fluid-fluid interface. The numerical outcomes of the normalised drag force acting on the viscous droplet are derived for different values of the parameters, and are presented in a tabular and graphical framework. A comparison was made between our numerical outcomes for the drag force and the pertinent data for the special cases found in the literature.
[1] | A. C. Eringen, Theory of micropolar fluids, J. Math. Mec., 1966, 1–18. Available from: https://www.jstor.org/stable/24901466 |
[2] | G. Lukaszewicz, Micropolar fluids: Theory and applications, Springer Science & Business Media, 1999. https://doi.org/10.1007/978-1-4612-0641-5 |
[3] | A. C. Eringen, Microcontinuum field theories: II. Fluent media, Springer Science & Business Media, 2 (2001). |
[4] | M. A. Seddeek, Flow of a magneto-micropolar fluid past a continuously moving plate, Phys. Lett. A, 306 (2003), 255–257. https://doi.org/10.1016/S0375-9601(02)01513-X doi: 10.1016/S0375-9601(02)01513-X |
[5] | I. Abdullah, N. Amin, A micropolar fluid model of blood flow through a tapered artery with a stenosis, Math. Method. Appl. Sci., 33 (2010), 1910–1923. https://doi.org/10.1002/mma.1303 doi: 10.1002/mma.1303 |
[6] | P. M. Hatzikonstantinou, P. Vafeas, A general theoretical model for the magnetohydrodynamic flow of micropolar magnetic fluids. Application to Stokes flow, Math. Method. Appl. Sci., 33 (2010), 233–248. https://doi.org/10.1002/mma.1170 doi: 10.1002/mma.1170 |
[7] | N. Kumar, S. Gupta, MHD free-convective flow of micropolar and Newtonian fluids through porous medium in a vertical channel, Meccanica, 47 (2012), 277–291. https://doi.org/10.1007/s11012-011-9435-z doi: 10.1007/s11012-011-9435-z |
[8] | J. Happel, H. Brenner, Low Reynolds number hydrodynamics: With special applications to particulate media, Springer Science & Business Media, 1 (1983). |
[9] | H. J. Tu, H. J. Keh, Some solutions of a cell model for a suspension of spherical vesicles in osmophoresis, Colloid. Surface. B, 20 (2001), 177–187. https://doi.org/10.1016/S0927-7765(00)00192-2 doi: 10.1016/S0927-7765(00)00192-2 |
[10] | A. G. Salem, Effects of a spherical slip cavity filled with micropolar fluid on a spherical micropolar droplet, Fluid Dyn. Res., 55 (2023), 065502. https://doi.org/10.1088/1873-7005/ad0ee3 doi: 10.1088/1873-7005/ad0ee3 |
[11] | A. H. Alharbi, A. G. Salem, Analytical and numerical investigation of viscous fluid-filled spherical slip cavity in a spherical micropolar droplet, AIMS Math., 9 (2024), 15097–15118. https://dx.doi.org/10.3934/math.2024732 doi: 10.3934/math.2024732 |
[12] | M. J. Hadamard, Mécanique-mouvement permanent lent d'une sphèere liquide et visqueuse dans un liquid visqueux, Compt. Rend. Acad. Sci., 152 (1911), 1735–1738. https://doi.org/10.7883/yoken1952.2.381 doi: 10.7883/yoken1952.2.381 |
[13] | W. Rybczynski, On the translatory motion of a fluid sphere in a viscous medium, Bull. Acad. Sci. Cracow, Ser. A, 40 (1911), 33–78. |
[14] | E. Bart, The slow unsteady settling of a fluid sphere toward a flat fluid interface, Chem. Eng. Sci., 23 (1968), 193–210. https://doi.org/10.1016/0009-2509(86)85144-2 doi: 10.1016/0009-2509(86)85144-2 |
[15] | A. G. Salem, M. S. Faltas, H. H. Sherief, The Stokes thermocapillary motion of a spherical droplet in the presence of an interface, Eur. J. Mech. B-Fluid., 101 (2023), 303–319. https://doi.org/10.1016/j.euromechflu.2023.06.007 doi: 10.1016/j.euromechflu.2023.06.007 |
[16] | G. Hetsroni, S. Haber, The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field, Rheol. Acta., 9 (1970), 488–496. https://doi.org/10.1007/BF01985457 doi: 10.1007/BF01985457 |
[17] | H. Brenner, Pressure drop due to the motion of neutrally buoyant particles in duct flows. II. Spherical droplets and bubbles, Ind. Eng. Chemistry Fund., 10 (1971), 537–543. https://doi.org/10.1021/i160040a001 doi: 10.1021/i160040a001 |
[18] | M. Coutanceau, P. Thizon, Wall effect on the bubble behaviour in highly viscous liquids, J. Fluid Mech., 107 (1981), 339–373. https://doi.org/10.1017/S0022112081001808 doi: 10.1017/S0022112081001808 |
[19] | N. Kühl, M. Hinze, T. Rung, Cahn-Hilliard Navier-Stokes simulations for marine free-surface flows, Exp. Comput. Multi. Flo., 4 (2022), 274–290. https://doi.org/10.1007/s42757-020-0101-3 doi: 10.1007/s42757-020-0101-3 |
[20] | G. Giustini, R. I. Issa, Modelling of free bubble growth with interface capturing computational fluid dynamics, Exp. Comput. Multi. Flo., 5 (2023), 357–364. https://doi.org/10.1007/s42757-022-0139-5 doi: 10.1007/s42757-022-0139-5 |
[21] | J. Zhao, H. Zhu, J. Chen, L. Wang, X. Yan, J. Sun, Numerical simulation on the motion behavior of micro-inclusions at the steel-slag interface, Metall. Mater. Trans. B, 55 (2024), 1700–1711. https://doi.org/10.1007/s11663-024-03060-y doi: 10.1007/s11663-024-03060-y |
[22] | T. C. Lee, H. J. Keh, Creeping motion of a fluid drop inside a spherical cavity, Eur. J. Mech. B-Fluid., 34 (2012), 97–104. https://doi.org/10.1016/j.euromechflu.2012.01.008 doi: 10.1016/j.euromechflu.2012.01.008 |
[23] | H. Ramkissoon, Flow of a micropolar fluid past a Newtonian fluid sphere, ZAMM-J. Appl. Math. Mec. / Z. Angew. Math. Me., 65 (1985), 635–637. https://doi.org/10.1515/9783112547120 doi: 10.1515/9783112547120 |
[24] | H. Ramkissoon, S. R. Majumdar, Micropolar flow past a slightly deformed fluid sphere, ZAMM-J. Appl. Math. Mec. / Z. Angew. Math. Me., 68 (1988), 155–160. https://doi.org/10.1002/zamm.19880680312 doi: 10.1002/zamm.19880680312 |
[25] | R. Niefer, P. N. Kaloni, On the motion of a micropolar fluid drop in a viscous fluid, J. Eng. Math., 14 (1980), 107–116. https://doi.org/10.1007/BF00037621 doi: 10.1007/BF00037621 |
[26] | H. Hayakawa, Slow viscous flows in micropolar fluids, Phys. Rev. E, 61 (2000), 5477. https://doi.org/10.1103/PhysRevE.61.5477 doi: 10.1103/PhysRevE.61.5477 |
[27] | K. H. Hoffmann, D. Marx, N. D. Botkin, Drag on spheres in micropolar fluids with non-zero boundary conditions for microrotations, J. Fluid Mech., 590 (2007), 319–330. https://doi.org/10.1017/S0022112007008099 doi: 10.1017/S0022112007008099 |
[28] | A. G. Salem, M. S. Faltas, H. H. Sherief, Migration of nondeformable droplets in a circular tube filled with micropolar fluids, Chinese J. Phys., 79 (2022), 287–305. https://doi.org/10.1016/j.cjph.2022.08.003 doi: 10.1016/j.cjph.2022.08.003 |
[29] | N. Blanken, M. S. Saleem, M. J. Thoraval, C. Antonini, Impact of compound drops: A perspective, Curr. Opin. Colloid In., 51 (2021), 101389. https://doi.org/10.1016/j.cocis.2020.09.002 doi: 10.1016/j.cocis.2020.09.002 |
[30] | A. G. Salem, Effects of a spherical slip cavity filled with micropolar fluid on a spherical viscous droplet, Chinese J. Phys., 86 (2023), 98–114. https://doi.org/10.1016/j.cjph.2023.09.004 doi: 10.1016/j.cjph.2023.09.004 |
[31] | J. Happel, H. Brenner, Low Reynolds number hydrodynamics: With special applications to particulate media, Germany: Springer Netherlands, 2012. https://doi.org/10.1007/978-94-009-8352-6 |
[32] | H. Ramkissoon, S. R. Majumdar, Drag on an axially symmetric body in the Stokes' flow of micropolar fluid, Phys. Fluids, 19 (1976), 16–21. https://doi.org/10.1063/1.861320 doi: 10.1063/1.861320 |