Research article Special Issues

Impact of a spherical interface on a concentrical spherical droplet

  • Received: 15 July 2024 Revised: 29 August 2024 Accepted: 06 September 2024 Published: 08 October 2024
  • MSC : 35Q30, 76B99, 76D05, 76T06

  • In this paper, an analytical and numerical technique are examined in order to analyse the Stokes flow determination problem due to a viscous sphere droplet moving at a concentric instantaneous position inside a spherical interface separating finite and semi-infinite immiscible fluid phases. Here, when only one of the three phases of the fluid (micropolar fluid) has a microstructure, attention is focused on this case. The motion is considered when Reynolds- and capillary-numbers are low, and the droplet surface and the fluid-fluid interface have insignificant deformation. A general solution is obtained in a spherical coordinate system based on a concentric position to analyse the slow axisymmetric movement of the micropolar fluid, considering microrotation and velocity components. Boundary conditions are initially fulfilled at the fluid-fluid interface and subsequently at the droplet surface. The normalised hydrodynamic drag force applying to a moving viscous droplet appears to be a function of the droplet-to-interface radius ratio, which increases monotonically and becomes unbounded when the droplet surface touches the fluid-fluid interface. The numerical outcomes of the normalised drag force acting on the viscous droplet are derived for different values of the parameters, and are presented in a tabular and graphical framework. A comparison was made between our numerical outcomes for the drag force and the pertinent data for the special cases found in the literature.

    Citation: Ahmed G. Salem, Turki D. Alharbi, Abdulaziz H. Alharbi, Anwar Ali Aldhafeeri. Impact of a spherical interface on a concentrical spherical droplet[J]. AIMS Mathematics, 2024, 9(10): 28400-28420. doi: 10.3934/math.20241378

    Related Papers:

  • In this paper, an analytical and numerical technique are examined in order to analyse the Stokes flow determination problem due to a viscous sphere droplet moving at a concentric instantaneous position inside a spherical interface separating finite and semi-infinite immiscible fluid phases. Here, when only one of the three phases of the fluid (micropolar fluid) has a microstructure, attention is focused on this case. The motion is considered when Reynolds- and capillary-numbers are low, and the droplet surface and the fluid-fluid interface have insignificant deformation. A general solution is obtained in a spherical coordinate system based on a concentric position to analyse the slow axisymmetric movement of the micropolar fluid, considering microrotation and velocity components. Boundary conditions are initially fulfilled at the fluid-fluid interface and subsequently at the droplet surface. The normalised hydrodynamic drag force applying to a moving viscous droplet appears to be a function of the droplet-to-interface radius ratio, which increases monotonically and becomes unbounded when the droplet surface touches the fluid-fluid interface. The numerical outcomes of the normalised drag force acting on the viscous droplet are derived for different values of the parameters, and are presented in a tabular and graphical framework. A comparison was made between our numerical outcomes for the drag force and the pertinent data for the special cases found in the literature.



    加载中


    [1] A. C. Eringen, Theory of micropolar fluids, J. Math. Mec., 1966, 1–18. Available from: https://www.jstor.org/stable/24901466
    [2] G. Lukaszewicz, Micropolar fluids: Theory and applications, Springer Science & Business Media, 1999. https://doi.org/10.1007/978-1-4612-0641-5
    [3] A. C. Eringen, Microcontinuum field theories: II. Fluent media, Springer Science & Business Media, 2 (2001).
    [4] M. A. Seddeek, Flow of a magneto-micropolar fluid past a continuously moving plate, Phys. Lett. A, 306 (2003), 255–257. https://doi.org/10.1016/S0375-9601(02)01513-X doi: 10.1016/S0375-9601(02)01513-X
    [5] I. Abdullah, N. Amin, A micropolar fluid model of blood flow through a tapered artery with a stenosis, Math. Method. Appl. Sci., 33 (2010), 1910–1923. https://doi.org/10.1002/mma.1303 doi: 10.1002/mma.1303
    [6] P. M. Hatzikonstantinou, P. Vafeas, A general theoretical model for the magnetohydrodynamic flow of micropolar magnetic fluids. Application to Stokes flow, Math. Method. Appl. Sci., 33 (2010), 233–248. https://doi.org/10.1002/mma.1170 doi: 10.1002/mma.1170
    [7] N. Kumar, S. Gupta, MHD free-convective flow of micropolar and Newtonian fluids through porous medium in a vertical channel, Meccanica, 47 (2012), 277–291. https://doi.org/10.1007/s11012-011-9435-z doi: 10.1007/s11012-011-9435-z
    [8] J. Happel, H. Brenner, Low Reynolds number hydrodynamics: With special applications to particulate media, Springer Science & Business Media, 1 (1983).
    [9] H. J. Tu, H. J. Keh, Some solutions of a cell model for a suspension of spherical vesicles in osmophoresis, Colloid. Surface. B, 20 (2001), 177–187. https://doi.org/10.1016/S0927-7765(00)00192-2 doi: 10.1016/S0927-7765(00)00192-2
    [10] A. G. Salem, Effects of a spherical slip cavity filled with micropolar fluid on a spherical micropolar droplet, Fluid Dyn. Res., 55 (2023), 065502. https://doi.org/10.1088/1873-7005/ad0ee3 doi: 10.1088/1873-7005/ad0ee3
    [11] A. H. Alharbi, A. G. Salem, Analytical and numerical investigation of viscous fluid-filled spherical slip cavity in a spherical micropolar droplet, AIMS Math., 9 (2024), 15097–15118. https://dx.doi.org/10.3934/math.2024732 doi: 10.3934/math.2024732
    [12] M. J. Hadamard, Mécanique-mouvement permanent lent d'une sphèere liquide et visqueuse dans un liquid visqueux, Compt. Rend. Acad. Sci., 152 (1911), 1735–1738. https://doi.org/10.7883/yoken1952.2.381 doi: 10.7883/yoken1952.2.381
    [13] W. Rybczynski, On the translatory motion of a fluid sphere in a viscous medium, Bull. Acad. Sci. Cracow, Ser. A, 40 (1911), 33–78.
    [14] E. Bart, The slow unsteady settling of a fluid sphere toward a flat fluid interface, Chem. Eng. Sci., 23 (1968), 193–210. https://doi.org/10.1016/0009-2509(86)85144-2 doi: 10.1016/0009-2509(86)85144-2
    [15] A. G. Salem, M. S. Faltas, H. H. Sherief, The Stokes thermocapillary motion of a spherical droplet in the presence of an interface, Eur. J. Mech. B-Fluid., 101 (2023), 303–319. https://doi.org/10.1016/j.euromechflu.2023.06.007 doi: 10.1016/j.euromechflu.2023.06.007
    [16] G. Hetsroni, S. Haber, The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field, Rheol. Acta., 9 (1970), 488–496. https://doi.org/10.1007/BF01985457 doi: 10.1007/BF01985457
    [17] H. Brenner, Pressure drop due to the motion of neutrally buoyant particles in duct flows. II. Spherical droplets and bubbles, Ind. Eng. Chemistry Fund., 10 (1971), 537–543. https://doi.org/10.1021/i160040a001 doi: 10.1021/i160040a001
    [18] M. Coutanceau, P. Thizon, Wall effect on the bubble behaviour in highly viscous liquids, J. Fluid Mech., 107 (1981), 339–373. https://doi.org/10.1017/S0022112081001808 doi: 10.1017/S0022112081001808
    [19] N. Kühl, M. Hinze, T. Rung, Cahn-Hilliard Navier-Stokes simulations for marine free-surface flows, Exp. Comput. Multi. Flo., 4 (2022), 274–290. https://doi.org/10.1007/s42757-020-0101-3 doi: 10.1007/s42757-020-0101-3
    [20] G. Giustini, R. I. Issa, Modelling of free bubble growth with interface capturing computational fluid dynamics, Exp. Comput. Multi. Flo., 5 (2023), 357–364. https://doi.org/10.1007/s42757-022-0139-5 doi: 10.1007/s42757-022-0139-5
    [21] J. Zhao, H. Zhu, J. Chen, L. Wang, X. Yan, J. Sun, Numerical simulation on the motion behavior of micro-inclusions at the steel-slag interface, Metall. Mater. Trans. B, 55 (2024), 1700–1711. https://doi.org/10.1007/s11663-024-03060-y doi: 10.1007/s11663-024-03060-y
    [22] T. C. Lee, H. J. Keh, Creeping motion of a fluid drop inside a spherical cavity, Eur. J. Mech. B-Fluid., 34 (2012), 97–104. https://doi.org/10.1016/j.euromechflu.2012.01.008 doi: 10.1016/j.euromechflu.2012.01.008
    [23] H. Ramkissoon, Flow of a micropolar fluid past a Newtonian fluid sphere, ZAMM-J. Appl. Math. Mec. / Z. Angew. Math. Me., 65 (1985), 635–637. https://doi.org/10.1515/9783112547120 doi: 10.1515/9783112547120
    [24] H. Ramkissoon, S. R. Majumdar, Micropolar flow past a slightly deformed fluid sphere, ZAMM-J. Appl. Math. Mec. / Z. Angew. Math. Me., 68 (1988), 155–160. https://doi.org/10.1002/zamm.19880680312 doi: 10.1002/zamm.19880680312
    [25] R. Niefer, P. N. Kaloni, On the motion of a micropolar fluid drop in a viscous fluid, J. Eng. Math., 14 (1980), 107–116. https://doi.org/10.1007/BF00037621 doi: 10.1007/BF00037621
    [26] H. Hayakawa, Slow viscous flows in micropolar fluids, Phys. Rev. E, 61 (2000), 5477. https://doi.org/10.1103/PhysRevE.61.5477 doi: 10.1103/PhysRevE.61.5477
    [27] K. H. Hoffmann, D. Marx, N. D. Botkin, Drag on spheres in micropolar fluids with non-zero boundary conditions for microrotations, J. Fluid Mech., 590 (2007), 319–330. https://doi.org/10.1017/S0022112007008099 doi: 10.1017/S0022112007008099
    [28] A. G. Salem, M. S. Faltas, H. H. Sherief, Migration of nondeformable droplets in a circular tube filled with micropolar fluids, Chinese J. Phys., 79 (2022), 287–305. https://doi.org/10.1016/j.cjph.2022.08.003 doi: 10.1016/j.cjph.2022.08.003
    [29] N. Blanken, M. S. Saleem, M. J. Thoraval, C. Antonini, Impact of compound drops: A perspective, Curr. Opin. Colloid In., 51 (2021), 101389. https://doi.org/10.1016/j.cocis.2020.09.002 doi: 10.1016/j.cocis.2020.09.002
    [30] A. G. Salem, Effects of a spherical slip cavity filled with micropolar fluid on a spherical viscous droplet, Chinese J. Phys., 86 (2023), 98–114. https://doi.org/10.1016/j.cjph.2023.09.004 doi: 10.1016/j.cjph.2023.09.004
    [31] J. Happel, H. Brenner, Low Reynolds number hydrodynamics: With special applications to particulate media, Germany: Springer Netherlands, 2012. https://doi.org/10.1007/978-94-009-8352-6
    [32] H. Ramkissoon, S. R. Majumdar, Drag on an axially symmetric body in the Stokes' flow of micropolar fluid, Phys. Fluids, 19 (1976), 16–21. https://doi.org/10.1063/1.861320 doi: 10.1063/1.861320
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(247) PDF downloads(30) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog