Research article

On the Rayleigh-Taylor instability for the two coupled fluids

  • Received: 14 September 2024 Revised: 22 October 2024 Accepted: 01 November 2024 Published: 20 November 2024
  • MSC : 76E25, 76E17, 76W05, 35Q35

  • In this paper, we considered the Rayleigh-Taylor (RT) instability for two incompressible, immisicible, invisid coupled fluids, which were Euler and magnetohydrodynamic with zero resistivity. Under the action of the uniform gravitational field, the two fluids interacted at a free interface. We utilized the flow map to denote the Lorentz force under the Lagrangian coordinates. We first showed the ill-posedness to the linear problem around the RT steady state solution. By virtue of such an ill-posed result, we showed that the nonlinear system is also ill-posed.

    Citation: Yiping Meng. On the Rayleigh-Taylor instability for the two coupled fluids[J]. AIMS Mathematics, 2024, 9(11): 32849-32871. doi: 10.3934/math.20241572

    Related Papers:

  • In this paper, we considered the Rayleigh-Taylor (RT) instability for two incompressible, immisicible, invisid coupled fluids, which were Euler and magnetohydrodynamic with zero resistivity. Under the action of the uniform gravitational field, the two fluids interacted at a free interface. We utilized the flow map to denote the Lorentz force under the Lagrangian coordinates. We first showed the ill-posedness to the linear problem around the RT steady state solution. By virtue of such an ill-posed result, we showed that the nonlinear system is also ill-posed.



    加载中


    [1] R. Duan, F. Jiang, S. Jiang, On the Rayleigh-Taylor instability for incompressible, inviscid magnetohydamic flows, SIAM J. Appl. Math., 71 (2011), 1990–2013. https://doi.org/10.1137/110830113 doi: 10.1137/110830113
    [2] Y. J. Wang, Critical magnetic number in the MHD Rayleigh-Taylor instability, J. Math. Phys., 53 (2012), 073701 https://doi.org/10.1063/1.4731479 doi: 10.1063/1.4731479
    [3] M. Faganello, F. Califano, F. Pegoraro, Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: The solar-wind interaction with earth's magnetosphere, Phys. Rev. Lett., 100 (2008), 015001. https://doi.org/10.1103/PhysRevLett.100.015001 doi: 10.1103/PhysRevLett.100.015001
    [4] M. Modestov, V. Bychkov, M. Marklund, The Rayleigh-Taylor instability in quantum magnetized plasma with para- and ferromagnetic properties, Phys. Plasmas, 16 (2009), 032106. https://doi.org/10.1063/1.3085796 doi: 10.1063/1.3085796
    [5] R. Betti, J. Sanz, Bubble acceleration in the ablative Rayleigh-Taylor instability, Phys. Rev. Lett., 97 (2006), 205002. https://doi.org/10.1103/PhysRevLett.97.205002 doi: 10.1103/PhysRevLett.97.205002
    [6] D. H. Sharp, An overview of Rayleigh-Taylor instability, Phys. D, 12 (1984), 3–18. https://doi.org/10.1016/0167-2789(84)90510-4 doi: 10.1016/0167-2789(84)90510-4
    [7] L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. London Math. Soc., 14 (1882), 170–177. https://doi.org/10.1112/plms/s1-14.1.170 doi: 10.1112/plms/s1-14.1.170
    [8] G. I. Taylor, The stability of liquid surface when accelerated in a direction perpendicular to their planes, Proc. Roy Soc. London Ser. A, 201 (1950), 192–196. https://doi.org/10.1098/rspa.1950.0052 doi: 10.1098/rspa.1950.0052
    [9] Y. Li, X. S. Luo, Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability, Acta Phys. Sin., 63 (2014), 085203. https://doi.org/10.7498/aps.63.085203 doi: 10.7498/aps.63.085203
    [10] H. Kull, Theory of the Rayleigh-Taylor instability, Phys. Rep., 206 (1991), 197–325. https://doi.org/10.1016/0370-1573(91)90153-D doi: 10.1016/0370-1573(91)90153-D
    [11] Y. Guo, I. Tice, Compressible, inviscid Rayleigh-Taylor instability, Indiana Univ. Math. J., 60 (2011), 677–712. Available from: http://www.jstor.org/stable/24903436
    [12] Y. Guo, I. Tice, Linear Rayleigh-Taylor instability for viscous, compressible fluids, SIAM J. Math. Anal., 42 (2010), 1688–1720. https://doi.org/10.1137/090777438 doi: 10.1137/090777438
    [13] M. Kruskal, M. Schwarzchild, Some instabilities of a completely ionized plasma, Proc. R. Soc. Lond. Ser. A., 223 (1954), 348–360. https://doi.org/10.1098/rspa.1954.0120 doi: 10.1098/rspa.1954.0120
    [14] F. Jiang, S. Jiang, Y. J. Wang, On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations, Commun. Partial Differ. Equ., 39 (2014), 399–438. https://doi.org/10.1080/03605302.2013.863913 doi: 10.1080/03605302.2013.863913
    [15] F. Jiang, S. Jiang, On linear instability and stability of the Rayleigh-Taylor Problem in magnetohydrodynamics, J. Math. Fluid Mech., 17 (2015), 639–668. https://doi.org/10.1007/s00021-015-0221-x doi: 10.1007/s00021-015-0221-x
    [16] F. Jiang, S. Jiang, W. W. Wang, Nonlinear Rayleigh-Taylor instability in nonhomogeneous incompressible viscous magnetohydrodynamic fluids, Discrete Contin. Dyn. Syst., 9 (2016), 1853–1898. http://doi.org/10.3934/dcdss.2016076 doi: 10.3934/dcdss.2016076
    [17] J. Simon, Compact sets in the space $L^p (0, T;B)$, Ann. Mat. Pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(213) PDF downloads(21) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog