Research article Special Issues

Multicomponent thermodynamics with instabilities and diffuse interfaces fluids

  • Received: 30 March 2024 Revised: 05 June 2024 Accepted: 13 June 2024 Published: 06 September 2024
  • MSC : 80A17, 76B45, 35Q35

  • We investigated the mathematical structure of Gibbsian multicomponent thermodynamics with instabilities. We analyzed the construction of such thermodynamics from a pressure law using ideal gases as the low density limit. The fluid mixtures were allowed to have mechanically and chemically unstable states that were excluded in previous work on supercritical fluids, and the Soave-Redlich-Kwong cubic equation of state was specifically considered. We also investigated the mathematical structure of extended thermodynamics in the presence of cohesive forces—capillary effects—for a simplified diffuse interface fluid model. The thermodynamic formalism was validated by comparison with experimental data for mixtures of ethane and nitrogen. Very good agreement with experimental data was obtained for specific heats, multiphase equilibrium, and critical points, and we also analyzed the structure of strained jets of ethane.

    Citation: Vincent Giovangigli, Yoann Le Calvez, Guillaume Ribert. Multicomponent thermodynamics with instabilities and diffuse interfaces fluids[J]. AIMS Mathematics, 2024, 9(9): 25979-26034. doi: 10.3934/math.20241270

    Related Papers:

  • We investigated the mathematical structure of Gibbsian multicomponent thermodynamics with instabilities. We analyzed the construction of such thermodynamics from a pressure law using ideal gases as the low density limit. The fluid mixtures were allowed to have mechanically and chemically unstable states that were excluded in previous work on supercritical fluids, and the Soave-Redlich-Kwong cubic equation of state was specifically considered. We also investigated the mathematical structure of extended thermodynamics in the presence of cohesive forces—capillary effects—for a simplified diffuse interface fluid model. The thermodynamic formalism was validated by comparison with experimental data for mixtures of ethane and nitrogen. Very good agreement with experimental data was obtained for specific heats, multiphase equilibrium, and critical points, and we also analyzed the structure of strained jets of ethane.



    加载中


    [1] E. A. Guggenheim, Thermodynamics, Amsterdam: North Holland, 1962.
    [2] N. Z. Shapiro, L. S. Shapley, Mass action law and the Gibbs free energy function, SIAM J. Appl. Math., 13 (1965), 353–375. https://doi.org/10.1137/0113020 doi: 10.1137/0113020
    [3] R. Aris, Prolegomena to the rational analysis of systems of chemical reactions, Archiv. Rat. Mech. Anal., 19 (1965), 81–99. https://doi.org/10.1007/BF00282276 doi: 10.1007/BF00282276
    [4] C. Truesdell, Rational thermodynamics, New York: McGraw-Hill, 1969. https://doi.org/10.1007/978-1-4612-5206-1
    [5] F. J. Krambeck, The mathematical structure of chemical kinetics, Arch. Rational Mech. Anal., 38 (1970), 317–347. https://doi.org/10.1007/BF00251527 doi: 10.1007/BF00251527
    [6] J. Pousin, Modélisation et analyse numérique de couches limites Réactives d'air, Doctorat es Sciences, Ecole Polytechnique Fédérale de Lausanne, 1993.
    [7] P. Helluy, H. Mathis, Pressure laws and fast Legendre transform, Math. Mod. Meth. Appl. S., 21 (2010), 745–775. https://doi.org/10.1142/S0218202511005209 doi: 10.1142/S0218202511005209
    [8] V. Giovangigli, Multicomponent flow modeling, Boston: Birkhaüser, 1999. https://doi.org/10.1007/978-1-4612-1580-6
    [9] V. Giovangigli, L. Matuszewski, Supercritical fluid thermodynamics from equations of state, Phys. D, 241 (2012), 649–670. https://doi.org/10.1016/j.physd.2011.12.002 doi: 10.1016/j.physd.2011.12.002
    [10] K. O. Friedrichs, P. D. Lax, Systems of conservation laws with a convex extension, P. Natl. Acad. Sci. USA, 68 (1971), 1686–1688. https://doi.org/10.1073/pnas.68.8.1686 doi: 10.1073/pnas.68.8.1686
    [11] T. Ruggeri, Thermodynamics and symmetric hyperbolic systems, Rend. Semin. Mat. U. Torino, 1988,167–183.
    [12] E. Godlevski, P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, New York: Springer, 118 (1996). https://doi.org/10.1007/978-1-4612-0713-9
    [13] C. Dafermos, Hyperbolic conservation laws in continuum physics, Heidelberg: Springer, 2000. https://doi.org/10.1007/978-3-662-22019-1
    [14] A. I. Vol'pert, S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sbornik, 16 (1972), 517–544. https://doi.org/10.1070/sm1972v016n04abeh001438 doi: 10.1070/sm1972v016n04abeh001438
    [15] S. Kawashima, Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tôhoku Math. J., 40 (1988), 449–464. https://doi.org/10.2748/tmj/1178227986 doi: 10.2748/tmj/1178227986
    [16] V. Giovangigli, M. Massot, Asymptotic stability of equilibrium states for multicomponent reactive flows, Math. Mod. Meth. Appl. S., 8 (1998), 251–297. https://doi.org/10.1142/S0218202598000123 doi: 10.1142/S0218202598000123
    [17] V. Giovangigli, M. Massot, Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry, Math. Method. Appl. Sci., 27 (2004), 739–768. https://doi.org/10.1002/mma.429 doi: 10.1002/mma.429
    [18] V. Giovangigli, L. Matuszewski, Mathematical modeling of supercritical multicomponent reactive fluids, Math. Mod. Meth. Appl. S., 23 (2013), 2193–2251. https://doi.org/10.1142/S0218202513500309 doi: 10.1142/S0218202513500309
    [19] V. Giovangigli, W. A. Yong, Asymptotic stability and relaxation for fast chemistry fluids, Nonlinear Anal., 159 (2017), 208–263. https://doi.org/10.1016/j.na.2017.02.025 doi: 10.1016/j.na.2017.02.025
    [20] J. D. V. der Waals, Thermodynamische theorie der capillariteit in de onderstelling van continue Dichtheidsverandering, J. Müller, 20 (1979), 197–244. https://doi.org/10.1007/BF01011513 doi: 10.1007/BF01011513
    [21] J. D. V. der Waals, Thermodynamisch theorie der kapillariät unter voraussetzung stetiger dichteanderung, Z. Phys. Chem., 13 (1894), 657–725.
    [22] D. J. Korteweg, Sur la Forme que Prennent les Equations du Mouvement Fluide si l'on tient Compte de Forces Capillaires Causées par les Variations de Densité Considérables mais Continues et sur la Théorie de la Capillarité dans l'Hypothèse d'une Variations Continue de la Densité, Arch. Neerl. Sci. Exactes, 6 (1901), 1–20. Available from: https://archive.org/details/archivesnerland261901laha/page/n17/mode/2up.
    [23] J. E. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. An., 133 (1985), 95–133. https://doi.org/10.1007/BF00250907 doi: 10.1007/BF00250907
    [24] P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys., 57 (1985), 827–863. https://doi.org/10.1103/RevModPhys.57.827 doi: 10.1103/RevModPhys.57.827
    [25] J. S. Rowlinson, B. Widom, Molecular theory of capillarity, Courier Corporation, 2013.
    [26] [annurev.fluid.30.1.139] D. M. Anderson, G. B. McFadden, A. A. Wheeler, Diffuse interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139–165. https://doi.org/10.1146/annurev.fluid.30.1.139 doi: 10.1146/annurev.fluid.30.1.139
    [27] D. Jamet, Diffuse interface models in fluid mechanics, GdR CNRS Documentation, see Pmc. Polytechnique, 2001.
    [28] D. Jamet, O. Lebaigue, N. Coutris, J. M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comput. Phys., 169 (2001), 624–651. https://doi.org/10.1006/jcph.2000.6692 doi: 10.1006/jcph.2000.6692
    [29] P. Gaillard, V. Giovangigli, L. Matuszewski, A diffuse interface lox/hydrogen transcritical flame model, Combust. Theor. Model., 20 (2016), 486–520. https://doi.org/10.1080/13647830.2016.1150518 doi: 10.1080/13647830.2016.1150518
    [30] P. Gaillard, V. Giovangigli, L. Matuszewski, Erratum for a diffuse interface lox/hydrogen transcritical flame model. Available from: https://hal.science/hal-04198003.
    [31] D. Nayigizente, S. Ducruix, T. Schmitt, Development of an interface thickening method for the direct numerical simulation of compressible liquid-vapor flows in the framework of the second gradient theory, Phys. Fluids, 33 (2021), 052119. https://doi.org/10.1063/5.0048715 doi: 10.1063/5.0048715
    [32] Y. Le Calvez, Modélisation mathématique et simulation numériques des mélanges fluides avec interfaces diffuses, PhD thesis, (in preparation), 2024.
    [33] S. Gavrilyuk, S. Shugrin, Media with equations of state that depend on derivatives, J. Appl. Mech. Techn. Ph.+, 37 (1996), 177–189. https://doi.org/10.1007/BF02382423 doi: 10.1007/BF02382423
    [34] Y. Rocard, Equations hydrodynamiques avec termes capillaires, Théorie de la tension superficielle, J. Phys. Radium, 4 (1933), 533–548. https://doi.org/10.1051/jphysrad:01933004010053300 doi: 10.1051/jphysrad:01933004010053300
    [35] P. Barbante, A. Frezzotti, A comparison of models for the evaporation of a Lennard-Jones fluid, Eur. J. Mech. B-Fluid., 64 (2017), 69–80. https://doi.org/10.1016/j.euromechflu.2017.01.020 doi: 10.1016/j.euromechflu.2017.01.020
    [36] V. Giovangigli, Kinetic derivation of diffuse-interface fluid models, Phys. Rev. E, 102 (2020), 012110. https://doi.org/10.1103/PhysRevE.102.012110 doi: 10.1103/PhysRevE.102.012110
    [37] J. W. Cahn, J. E. Hilliard, Free energy of a non uniform system Ⅰ, Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [38] J. W. Cahn, J. E. Hilliard, Free energy of a non uniform system Ⅱ, thermodynamic basis, J. Chem. Phys., 30 (1959), 1121–1124. https://doi.org/10.1063/1.1730145 doi: 10.1063/1.1730145
    [39] F. Falk, Cahn-Hilliard theory and irreversible thermodynamics, J. Non-Equil. Thermody., 17 (1992), 53–65. https://doi.org/10.1515/jnet.1992.17.1.53 doi: 10.1515/jnet.1992.17.1.53
    [40] J. Kim, J. Lowengrub, Phase field modeling and simulation of three-phase flows, Inter. Free Boundary, 7 (2005), 435–466. https://doi.org/10.4171/IFB/132 doi: 10.4171/IFB/132
    [41] H. W. Alt, The entropy principle for interfaces, fluids and solids, Adv. Math. Sci. Appl., 19 (2009), 585–663.
    [42] H. Abels, H. Garcke, G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Mod. Meth. Appl. S., 22 (2012), 1150013. https://doi.org/10.1142/S0218202511500138 doi: 10.1142/S0218202511500138
    [43] Z. Guo, P. Lin, A thermodynamically consistent phase-field model for two-phase flows with thermocapillarity effects, J. Fluid Mech., 766 (2015), 226–271. https://doi.org/10.1017/jfm.2014.696 doi: 10.1017/jfm.2014.696
    [44] V. Giovangigli, Kinetic derivation of Cahn-Hilliard fluid models, Phys. Rev. E, 104 (2021), 054109. https://doi.org/10.1103/PhysRevE.104.054109 doi: 10.1103/PhysRevE.104.054109
    [45] H. G. Lee, J. Yang, S. Kim, J. Kim, Modeling and simulation of droplet evaporation using a modified Cahn-Hilliard equation, Appl. Math. Comput., 390 (2021), 125591. https://doi.org/10.1016/j.amc.2020.125591 doi: 10.1016/j.amc.2020.125591
    [46] C. Wang, S. M. Wise, A thermodynamically-consistent phase field crystal model of solidification with heat flux, J. Math. Study, 55 (2022), 337–357. https://doi.org/10.4208/jms.v55n4.22.01 doi: 10.4208/jms.v55n4.22.01
    [47] F. Wang, H. Zhang, Y. Wu, B. Nestler, A thermodynamically consistent diffuse interface model for the wetting phenomenon of miscible and immiscible ternary fluids, J. Fluid Mech., 970 (2023), A17. https://doi.org/10.1017/jfm.2023.561 doi: 10.1017/jfm.2023.561
    [48] H. Zhang, F. Wang, B. Nestler, Multi-component electro-hydro-thermodynamic model with phase-field method. Ⅰ. Dielectric, J. Comput. Phys., 505 (2024), 112907. https://doi.org/10.1016/j.jcp.2024.112907 doi: 10.1016/j.jcp.2024.112907
    [49] A. Miranville, The Cahn-Hilliard equation: Recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics 95, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2019. https://doi.org/10.1137/1.9781611975925
    [50] E. Bretin, S. Masnou, E. Oudet, Phase-field approximations of the Willmore functional and flow, Numer. Math., 131 (2015), 115–171. https://doi.org/10.1007/s00211-014-0683-4 doi: 10.1007/s00211-014-0683-4
    [51] E. Benilov, The multicomponent diffuse-interface model and its application to water/air interfaces, J. Fluid Mech., 954 (2023), A41. https://doi.org/10.1017/jfm.2022.1032 doi: 10.1017/jfm.2022.1032
    [52] M. Dressler, B. Edwards, C. Öttinger, Macroscopic thermodynamics of flowing polymeric liquids, Rheol. Acta, 38 (1999), 117–136. https://doi.org/10.1007/s003970050162 doi: 10.1007/s003970050162
    [53] D. Bruno, V. Giovangigli, Relaxation of internal temperature and volume viscosity, Phys. Fluids, 23 (2011), 093104. https://doi.org/10.1063/1.3640083 doi: 10.1063/1.3640083
    [54] E. V. Kustova, E. A. Nagnibeda, On a correct description of a multi-temperature dissociating CO$_2$ flow, Chem. Phys., 321 (2006), 293–310. https://doi.org/10.1016/j.chemphys.2005.08.026 doi: 10.1016/j.chemphys.2005.08.026
    [55] R. H. Fowler, Statistical mechanics, Cambridge: Cambridge University Press, 1936.
    [56] J. H. Ferziger, H. G. Kaper, Mathematical theory of transport processes in gases, Amsterdam: North Holland, 1972.
    [57] J. Keizer, Statistical thermodynamics of nonequilibrium processes, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-1054-2
    [58] K. Laasonen, S. Wonczak, R. Strey, A. Laaksonena, Molecular dynamics simulations of gas-liquid nucleation of Lennard-Jones fluid, J. Chem. Phys., 113 (2000), 9741–9747. https://doi.org/10.1063/1.1322082 doi: 10.1063/1.1322082
    [59] S. Chen, G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30 (1998), 329–364. https://doi.org/10.1146/annurev.fluid.30.1.329 doi: 10.1146/annurev.fluid.30.1.329
    [60] S. R. de Groot, P. Mazur, Non-equilibrium thermodynamics, Mineola: Dover publications, 1984.
    [61] C. Öttinger, Beyond equilibrium thermodynamics, Hoboken: John Wiley and Sons, 2005. https://doi.org/10.1002/0471727903
    [62] L. J. Gillespie, Equilibrium pressures of individual gases in mixtures and the mass-action law for gases, J. Am. Chem. Soc., 47 (1925), 305–312. https://doi.org/10.1021/ja01679a003 doi: 10.1021/ja01679a003
    [63] M. Benedict, G. B. Webb, L. C. Rubin, An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures, J. Chem. Phys., 8 (1940), 334–345. https://doi.org/10.1063/1.1750658 doi: 10.1063/1.1750658
    [64] J. A. Beattie, The computation of the thermodynamic properties of real gases and mixtures of real gases, Chem. Rev., 18 (1948), 141–192. https://doi.org/10.1021/cr60137a010 doi: 10.1021/cr60137a010
    [65] O. Redlich, J. N. S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev., 44 (1949), 233–244. https://doi.org/10.1021/cr60137a013 doi: 10.1021/cr60137a013
    [66] [/10.1016/0009-2509(72)80096-4] G. S. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 27 (1972), 157–172. https://doi.org/10.1016/0009-2509(72)80096-4 doi: 10.1016/0009-2509(72)80096-4
    [67] G. S. Soave, An effective modification of the Benedict-Webb-Rubin equation of state, Fluid Phase Equilbr., 164 (1999), 157–172. https://doi.org/10.1016/S0378-3812(99)00252-6 doi: 10.1016/S0378-3812(99)00252-6
    [68] D. Y. Peng, D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15 (1976), 59–64. https://doi.org/10.1021/i160057a011 doi: 10.1021/i160057a011
    [69] M. S. Graboski, T. E. Daubert, A modified Soave equation of state for phase equilibrium calculations. 3. Systems containing hydrogen, Ind. Eng. Chem. Process. Dev. Des., 18 (1979), 300–306. https://doi.org/10.1021/i260070a022 doi: 10.1021/i260070a022
    [70] E. D. Ozokwelu, J. H. Erbar, An improved Soave-Redlich-Kwong equation of state, Chem. Eng. Commun., 52 (1987), 9–19. https://doi.org/10.1080/00986448708911854 doi: 10.1080/00986448708911854
    [71] K. G. Harstad, R. S. Miller, J. Bellan, Efficient high pressure state equations, AICHE J., 43 (1997), 1605–1610. https://doi.org/10.1002/aic.690430624 doi: 10.1002/aic.690430624
    [72] A. Congiunti, C. Bruno, E. Giacomazzi, Supercritical combustion properties, 11th Aerospace Sciences Meeting and Exhibit, AIAA-2003-478, 2003. https://doi.org/10.2514/6.2003-478
    [73] P. Colonna, P. Silva, Dense gas thermodynamic properties of single and multicomponent fluids for fluid dynamics simulations, J. Fluid Eng., 125 (2003), 414–427. https://doi.org/10.1115/1.1567306 doi: 10.1115/1.1567306
    [74] W. A. C. Marín, U. E. G. Aconcha, J. D. O. Arango, Comparison of different cubic equations of state and combination rules for predicting residual chemical potential of binary and ternary Lennard-Jones mixtures: Solid-supercritical fluid phase equilibria, Fluid Phase Equilibr., 234 (2005), 42–50. https://doi.org/10.1016/j.fluid.2005.05.014 doi: 10.1016/j.fluid.2005.05.014
    [75] W. A. C. Marín, J. D. O. Arango, U. E. G. Aconcha, C. P. S. Tavera, Thermodynamic derivative properties and densities for hyperbaric gas condensates: SRK equation of state predictions versus Monte Carlo data, Fluid Phase Equilibr., 253 (2007), 147–154. https://doi.org/10.1016/j.fluid.2007.02.004 doi: 10.1016/j.fluid.2007.02.004
    [76] A. M. Saur, F. Behrendt, E. U. Franck, Calculation of high pressure counterflow diffusion flame up to 3000 bar, Ber. Bunsenges Phys. Chem., 97 (1993), 900–908. https://doi.org/10.1002/bbpc.19930970710 doi: 10.1002/bbpc.19930970710
    [77] H. Meng, V. Yang, A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme, J. Comput. Phys., 189 (2003), 277–304. https://doi.org/10.1016/S0021-9991(03)00211-0 doi: 10.1016/S0021-9991(03)00211-0
    [78] J. C. Oefelein, Thermophysical characteristics of shear-coaxial LOX-H$_2$ flames at supercritical pressure, P. Combust. Inst., 30 (2005), 2929–2937. https://doi.org/10.1016/j.proci.2004.08.212 doi: 10.1016/j.proci.2004.08.212
    [79] G. Ribert, N. Zong, V. Yang, L. Pons, N. Darabiha, S. Candel, Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures, Combust. Flame, 154 (2008), 319–330. https://doi.org/10.1016/j.combustflame.2008.04.023 doi: 10.1016/j.combustflame.2008.04.023
    [80] V. Giovangigli, L. Matuszewski, F. Dupoirieux, Detailed modeling of planar transcritical H$_2$-O$_2$-N$_2$ flames, Combust. Theor. Model., 15 (2011), 141–182. https://doi.org/10.1080/13647830.2010.527016 doi: 10.1080/13647830.2010.527016
    [81] P. Gaillard, V. Giovangigli, L. Matuszewski, Nonmixing layers, Phys. Rev. Fluids, 1 (2016), 084001. https://doi.org/10.1103/PhysRevFluids.1.084001
    [82] S. Gavrilyuk, H. Gouin, Symmetric form of governing equations for capillary fluids, arXiv Preprint, 2008. https://doi.org/10.48550/arXiv.0802.1670
    [83] S. B. Gavage, R. Danchin, L. Mazet, D. Jamet, Structure of Korteweg models and stability of diffuse interfaces, Interface. Free Bound., 7 (2005), 371–414. https://doi.org/10.4171/IFB/130 doi: 10.4171/IFB/130
    [84] D. Bresch, F. Couderc, P. Noble, J. P. Vila, A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler-Korteweg equations, C. R. Math. Acad. Sci. Paris, 354 (2008), 39–43. http://dx.doi.org/10.1016/j.crma.2015.09.020 doi: 10.1016/j.crma.2015.09.020
    [85] D. Bresch, V. Giovangigli, E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part Ⅰ Well posedness for zero Mach number systems, J. Math. Pure. Appl., 104 (2015), 762–800. https://doi.org/10.1016/j.matpur.2015.05.003 doi: 10.1016/j.matpur.2015.05.003
    [86] M. Kotschote, Dynamics of compressible non-isothermal fluids of new-newtonian Korteweg type, SIAM J. Math. Anal., 44 (2012), 74–101. https://doi.org/10.1137/110821202 doi: 10.1137/110821202
    [87] V. Giovangigli, Y. Le Calvez, F. Nabet, Symmetrization and local existence of strong solutions for diffuse interface fluid models, J. Math. Fluid Mech., 25 (2023), 82. https://doi.org/10.1007/s00021-023-00825-4 doi: 10.1007/s00021-023-00825-4
    [88] M. R. Marcelin, Sur la mécanique des phénomènes irréversibles, C. R. Acad. Sci. Paris, 1910, 1052–1055.
    [89] M. R. Marcelin, Contribution à l'étude de la cinétique physico-chimique, Thèses de la Faculté des Sciences de Paris, 1914.
    [90] A. Ern, V. Giovangigli, The Kinetic equilibrium regime, Phys. A, 260 (1998), 49–72. https://doi.org/10.1016/S0378-4371(98)00303-3 doi: 10.1016/S0378-4371(98)00303-3
    [91] V. Giovangigli, Solutions for models of chemically reacting mixtures, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Yoshikazu Giga and Antonín Novotný Editors, Springer-Verlag, 2018, 2979–3030. https://doi.org/10.1007/978-3-319-10151-4
    [92] L. Pons, N. Darabiha, S. Candel, G. Ribert, V. Yang, Mass transfer and combustion in transcritical non-premixed counterflows, Combust. Theor. Model., 13 (2009), 57–81. https://doi.org/10.1080/13647830802368821 doi: 10.1080/13647830802368821
    [93] V. Giovangigli, L. Matuszewski, Numerical simulation of transcritical strained laminar flames, Combust. Flame, 159 (2012), 2829–2840. https://doi.org/10.1016/j.combustflame.2012.05.011 doi: 10.1016/j.combustflame.2012.05.011
    [94] R. J. Kee, F. M. Rupley, J. A. Miller, Chemkin Ⅱ: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics, Livermore: Sandia National Lab. (SNL-CA), 1989. https://doi.org/10.2172/5681118
    [95] D. G. Goodwin, R. L. Speth, H. K. Moffat, B. W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, Zenodo, 2018. https://doi.org/10.5281/zenodo.4527812
    [96] P. Deuflhard, Newton methods for nonlinear problems, Berlin: Springer, 2004.
    [97] H. B. Keller, Numerical Solution of bifurcation and nonlinear eigenvalue problems, Appl. Bifurcat. Theory, 1977,359–384.
    [98] M. D. Smooke, Solution of burner stabilized premixed laminar flames by boundary value methods, J. Comput. Phys., 48 (1982), 72–105. https://doi.org/10.1016/0021-9991(82)90036-5 doi: 10.1016/0021-9991(82)90036-5
    [99] M. D. Smooke, The computation of laminar flames, P. Combust. Inst., 34 (2013), 65–98. https://doi.org/10.1016/j.proci.2012.09.005 doi: 10.1016/j.proci.2012.09.005
    [100] E. S. Oran, J. P. Boris, Numerical simulation of reactive flows, Cambridge: Cambridge University Press, 2001.
    [101] V. Giovangigli, M. D. Smooke, Adaptive continuation algorithms with application to combustion problems, Appl. Numer. Math., 5 (1989), 305–331. https://doi.org/10.1016/0168-9274(89)90013-5 doi: 10.1016/0168-9274(89)90013-5
    [102] V. Giovangigli, N. Darabiha, Vector computers and complex chemistry combustion, Mathematical Modeling in Combustion and Related Topics, C. Brauner and C. S. Lainé Eds., Dordrecht: Springer Netherlands, 140 (1988), 491–503. https://doi.org/10.1007/978-94-009-2770-4
    [103] A. Ern, V. Giovangigli, Optimized transport algorithms for flame codes, Combust. Sci. Tech., 118 (1996), 387–395. https://doi.org/10.1080/00102209608951988 doi: 10.1080/00102209608951988
    [104] L. Matuszewski, Modélisation et simulation numérique des phénomènes de combustion en régime supercritique, PhD Thesis, University Paris, 2011.
    [105] A. Ern, V. Giovangigli, Projected iterative algorithms with application to multicomponent transport, Linear Algebra Appl., 250 (1997), 289–315. https://doi.org/10.1016/0024-3795(95)00502-1 doi: 10.1016/0024-3795(95)00502-1
    [106] V. Giovangigli, Multicomponent transport algorithms for partially ionized plasmas, J. Comput. Phys., 229 (2010), 4117–4142. https://doi.org/10.1016/j.jcp.2010.02.001 doi: 10.1016/j.jcp.2010.02.001
    [107] V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms, Impact Comput. Sci. Eng., 2 (1990), 73–97. https://doi.org/10.1016/0899-8248(90)90004-T doi: 10.1016/0899-8248(90)90004-T
    [108] V. Giovangigli, Convergent iterative methods for multicomponent diffusion, Impact Comput. Sci. Eng., 3 (1991), 244–276. https://doi.org/10.1016/0899-8248(91)90010-R doi: 10.1016/0899-8248(91)90010-R
    [109] A. Ern, V. Giovangigli, Multicomponent transport algorithms, Lecture Notes in Physics, Monograph m24, Heidelberg: Springer-Verlag, 1994. https://doi.org/10.1007/978-3-540-48650-3
    [110] A. Ern, V. Giovangigli, The structure of transport linear systems in Dilute isotropic gas mixtures, Phys. Rev. E, 53 (1996), 485–492. https://doi.org/10.1103/PhysRevE.53.485 doi: 10.1103/PhysRevE.53.485
    [111] A. Ern, V. Giovangigli, Thermal diffusion effects in hydrogen-air and methane-air flames, Combust. Theor. Model., 2 (1998), 349–372. https://doi.org/10.1088/1364-7830/2/4/001 doi: 10.1088/1364-7830/2/4/001
    [112] P. H. Van Konynenburg, R. L. Scott, Critical lines and phase equilibria in binary van der waals mixtures, Philos. T. R. Soc., 298 (1980), 495–540. https://doi.org/10.1098/rsta.1980.0266 doi: 10.1098/rsta.1980.0266
    [113] J. M. Prausnitz, R. N. Lichtenthaler, E. G. de Avezo, Molecular thermodynamics of fluid-phase equilibria, Pearson Education, 1999.
    [114] J. F. Ely, H. J. Hanley, Prediction of transport properties. 2. Thermal conductivity of pure fluids and mixtures, Indus. Eng. Chem. Fundat., 22 (1983), 90–97. https://doi.org/10.1021/i100009a016 doi: 10.1021/i100009a016
    [115] T. H. Chung, M. Ajlan, L. L. Lee, K. E. Starling, Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Eng. Chem. Res., 27 (1988), 671–679. https://doi.org/10.1021/ie00076a024 doi: 10.1021/ie00076a024
    [116] V. I. Kurochkin, S. F. Makarenko, G. A. Tirskii, Transport coefficients and the Onsager relations in the kinetic theory of dense gas mixtures, J. Appl. Mech. Tech. Ph.+, 25 (1984), 218–225. https://doi.org/10.1007/BF00910464 doi: 10.1007/BF00910464
    [117] R. J. Kee, F. M. Rupley, J. A. Miller, The Chemkin thermodynamic data base, SANDIA National Laboratories Report, 1987. https://doi.org/10.2172/7073290
    [118] M. W. Chase Jr, NIST-JANAF thermochemical tables, 4 Eds., J. Phys. Chem. Ref. Data, 1998.
    [119] B. J. McBride, M. J. Zehe, S. Gordon, NASA Glenn coefficients for calculating thermodynamic properties of individual species, National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field, 2002.
    [120] H. Lin, Y. Y. Duan, Q. Min, Gradient theory modeling of surface tension for pure fluids and binary mixtures, Fluid Phase Equilibr., 254 (2007), 75–90. https://doi.org/10.1016/j.fluid.2007.02.013 doi: 10.1016/j.fluid.2007.02.013
    [121] B. A. Younglove, Thermophysical properties of fluids I, Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen, J. Phys. Chem. Ref. Data, 11 (1982).
    [122] B. A. Younglove, J. F. Ely, Thermophysical properties of fluids. Ⅱ. Methane, ethane, propane, isobutane, and normal butane, J. Phys. Chem. Ref. Data, 16 (1987), 577–798.
    [123] M. K. Gupta, G. C. Gardner, M. J. Hegarty, A. J. Kidnay, Liquid-vapor equilibria for the N$_2 ^+$CH$_4 ^+$C$_2$H$_6$ System from 260 to 280 K, J. Chem. Eng. Data, 25 (1980), 313–318. https://doi.org/10.1021/je60087a016 doi: 10.1021/je60087a016
    [124] B. E. Eakin, R. T. Ellington, D. C. Gami, Physical-chemical properties of Ethane-Nitrogen mixtures, Institute of Gas Technology, 1955.
    [125] R. Stryjek, P. S. Chappelear, R. Kobayashi, Low-temperature vapor-liquid equilibria of Nitrogen-Ethane system, J. Chem. Eng. Data, 19 (1974), 340–343. https://doi.org/10.1021/je60063a024 doi: 10.1021/je60063a024
    [126] K. D. Wisotzki, G. M. Schneider, Fluid phase equilibria of the binary systems N$_2 ^+$ Ethane and N$_2 ^+$ Pentane Between 88 K and 313 K and Pressures up to 200 MPa, Ber. Bunsenges. Phys. Chem., 89 (1985), 21–25. https://doi.org/10.1002/bbpc.19850890106 doi: 10.1002/bbpc.19850890106
    [127] M. L. Japas, E. U. Franck, High pressure phase equilibria and PVT-data of the water-oxygen system including water-air to 673 K and 250 MPa, Ber. Bunsenges. Phys. Chem., 89 (1985), 1268–1275. https://doi.org/10.1002/bbpc.19850891206 doi: 10.1002/bbpc.19850891206
    [128] D. Y. Peng, D. B. Robinson, A rigorous method for predicting the critical properties of multicomponent systems from an equation of state, AICHE J., 23 (1977), 137–144. https://doi.org/10.1002/aic.690230202 doi: 10.1002/aic.690230202
    [129] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329–1346. https://doi.org/10.1088/0951-7715/24/4/016 doi: 10.1088/0951-7715/24/4/016
    [130] M. Liero, A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems, Philos. T. R. Soc., A371 (2013), 20120346. https://doi.org/10.1098/rsta.2012.0346 doi: 10.1098/rsta.2012.0346
    [131] L. Dong, C. Wang, S. M. Wise, Z. Zhang, A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters, J. Comput. Phys., 442 (2021), 110451. https://doi.org/10.1016/j.jcp.2021.110451 doi: 10.1016/j.jcp.2021.110451
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(92) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog